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Preface to the Third Edition

Panel data econometrics is one of the most exciting fields in econometrics
today. The possibility of modeling more realistic behavioral hypotheses and
challenging methodological issues, together with the increasing availability of
panel data have led to the phenomenal proliferation of studies on panel data.
This edition is a substantial revision of the second edition. Two new chap-
ters on modeling cross-sectionally dependent data and the dynamic system of
equations have been added. Some of the more complicated concepts have been
further streamlined and new material on correlated random-coefficients models,
pseudo-panels, duration and count data models, quantile analysis, alternative
approaches for controlling the impact of unobserved heterogeneity in nonlin-
ear panel data models, inference with data having both large cross section and
long time series, etc. have been incorporated into existing chapters. It is hoped
that the present version can provide a reasonably comprehensive, coherent, and
intuitive review of panel methodologies that are useful for empirical analysis.
However, no single monograph can do justice to the huge amount of literature
in this field. I apologize for any omissions of the important contributions in
panel data analysis.

I would like to thank the former and current Cambridge University Press pub-
lisher, Scott Parris and Karen Maloney, for their encouragement and support
for this project. I am grateful to Econometrica, International Monetary Fund,
Financial Times, Journal of the American Statistical Association, Journal of
Applied Econometrics, Journal of Econometrics, Regional Science and Urban
Economics, Review of Economic Studies, the University of Chicago Press, and
Elsevier for permission to reproduce some of the materials published here.
Thanks to Kristin Purdy and Kate Gavino for assistance in obtaining the copy-
right permissions and K. Bharadwaj, S. Shankar, J. Penney, and T. Kornak
for their excellent work on copyediting and typesetting. During the process of
preparing this monograph I have benefited from the excellent working condi-
tions provided by the University of Southern California, Xiamen University,
the City University of Hong Kong, and Hong Kong University of Science and
Technology and the partial research support of the China Natural Science Foun-
dation grant #71131008. I am grateful to Sena Schlessinger for her excellent
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typing of various drafts of the monograph; R. Matzkin and two referees; and
J. C. Duan, R. Koenker, C. Lambache, L. F. Lee, X. Lu, M. H. Pesaran, H. R.
Moon, L. Su, T. Wansbeek, and J. H. Yu for helpful comments on some parts
of the book. I would like to thank Q. Zhou for pointing out many typos and
oversights in an early version of the manuscript; Michael Hsiao for preparing
Tables 1.1, 6.9–6.11, and 9.1; Shui Wan for preparing Tables 9.2–9.5 and Fig-
ures 9.1–9.4; and T. Wang for kindly making the source files for Table 12.1 and
Figures 12.1 and 12.2 available. In spite of their help, no doubt errors remain.
I apologize for the errors and would appreciate being informed of any that are
spotted.



Preface to the Second Edition

Since the publication of the first edition of this monograph in 1986, there has
been a phenomenal growth of articles dealing with panel data. According to
the Social Science Citation Index, there were 29 articles related to panel data
in 1989. But in 1997 there were 518; in 1998, 553; and in 1999, 650. The
increasing attention is partly due to the greater availability of panel data sets,
which can better answer questions of substantial interest than a single set of
cross-sectional or time series data can, and partly due to the rapid growth in
computational power of the individual researcher. It is furthermore motivated
by the internal methodological logic of the subject (e.g., Trognon (2000)).

The current version is a substantial revision of the first edition. The major
additions are essentially on nonlinear panel data models of discrete choice
(Chapter 7) and sample selection (Chapter 8); a new Chapter 10 on miscella-
neous topics such as simulation techniques, large N and T theory, unit root
and cointegration tests, multiple level structure, and cross-sectional depen-
dence; and new sections on estimation of dynamic models (4.5–4.7), Bayesian
treatment of models with fixed and random coefficients (6.6–6.8), and repeated
cross-sectional data (or pseudopanels), etc. In addition, many of the discussions
in old chapters have been updated. For instance, the notion of strict exogene-
ity is introduced, and estimators are also presented in a generalized method
of moments framework to help link the assumptions that are required for the
identification of various models. The discussion of fixed and random effects is
updated in regard to restrictions on the assumption about unobserved specific
effects, etc.

The goal of this revision remains the same as that of the first edition. It
aims to bring up to date a comprehensive analytical framework for the analy-
sis of a greater variety of data. The emphasis is on formulating appropri-
ate statistical inference for issues shaped by important policy concerns. The
revised edition of this monograph is intended as neither an encyclopedia nor
a history of panel data econometrics. I apologize for the omissions of many
important contributions. A recount of the history of panel data econometrics
can be found in Nerlove (2000). Some additional issues and references can
also be found in a survey by Arellano and Honoré (2001) and in four recent
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edited volumes – Matyás and Sevester (1996); Hsiao, Lahiri, Lee, and Pesaran
(1999); Hsiao, Morimune, and Powell (2001); and Krishnakumar and Ronchetti
(2000). Software is reviewed by Blanchard (1996).

I would like to thank the editor, Scott Parris, for his encouragement and
assistance in preparing the revision, and Andrew Chesher and two anonymous
readers for helpful comments on an early draft. I am also very grateful to E.
Kyriazidou for her careful and detailed comments on Chapters 7 and 8, S. Chen
and J. Powell for their helpful comments and suggestions on Chapter 8, H. R.
Moon for the section on large panels, Sena Schlessinger for her expert typing
of the manuscript except for Chapter 7, Yan Shen for carefully proofreading
the manuscript and for expertly typing Chapter 7, and Siyan Wang for draw-
ing the figures for Chapter 8. Of course, all remaining errors are mine. The
kind permissions to reproduce parts of articles by James Heckman, C. Man-
ski, Daniel McFadden, Ariel Pakes, Econometrica, Journal of the American
Statistical Association, Journal of Econometrics, Regional Science and Urban
Economics, Review of Economic Studies, the University of Chicago Press, and
Elsevier Science are also gratefully acknowledged.



Preface to the First Edition

Recently, empirical research in economics has been enriched by the availability
of a wealth of new sources of data: cross sections of individuals observed over
time. These allow us to construct and test more realistic behavioral models
that could not be identified using only a cross section or a single time series
data set. Nevertheless, the availability of new data sources raises new issues.
New methods are constantly being introduced, and points of view are changing.
An author preparing an introductory monograph has to select the topics to be
included. My selection involves controlling for unobserved individual and/or
time characteristics to avoid specification bias and to improve the efficiency of
the estimates. The more basic and more commonly used methods are treated
here, although to some extent the coverage is a matter of taste. Some examples
of applications of the methods are also given, and the uses, computational
approaches, and interpretations are discussed.

I am very much indebted to C. Manski and to a reader for Cambridge
University Press, as well as to G. Chamberlain and J. Ham, for helpful comments
and suggestions. I am also grateful to Mario Tello Pacheco, who read through the
manuscript and made numerous suggestions concerning matters of exposition
and corrections of errors of every magnitude. My appreciation also goes to
V. Bencivenga, A. C. Cameron, T. Crawley, A. Deaton, E. Kuh, B. Ma, D.
McFadden, D. Mountain, G. Solon, G. Taylor, and K. Y. Tsui, for helpful
comments, and Sophia Knapik and Jennifer Johnson, who patiently typed and
retyped innumerable drafts and revisions. Of course, in material like this it is
easy to generate errors, and the reader should put the blame on the author for
any remaining errors.

Various parts of this monograph were written while I was associated with
Bell Laboratories, Murray Hill, Princeton University, Stanford University, the
University of Southern California, and the University of Toronto. I am grateful
to these institutions for providing me with secretarial and research facilities
and, most of all, stimulating colleagues. Financial support from the National
Science Foundation, U.S.A., and from the Social Sciences and Humanities
Research Council of Canada is gratefully acknowledged.
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CHAPTER 1

Introduction

1.1 INTRODUCTION

A longitudinal, or panel, data set is one that follows a given sample of individ-
uals over time, and thus provides multiple observations on each individual in
the sample. Panel data have become widely available in both the developed and
developing countries. In the United States, two of the most prominent panel
data sets are the National Longitudinal Surveys of Labor Market Experience
(NLS) and the University of Michigan’s Panel Study of Income Dynamics
(PSID).

The NLS was initiated in 1966. The surveys include data about a wide range
of attitudes, behaviors, and events related to schooling, employment, marriage,
fertility, training, child care, health, and drug and alcohol use. The original
four cohorts were men aged 45 to 59 in 1966, young men aged 14 to 24 in
1966, women aged 30 to 44 in 1967, and young women aged 14 to 24 in 1968.
Table 1.1 summarizes the size and the span of years each group of these original
samples has been interviewed, as well as the currently ongoing surveys (the
NLS Handbook 2005 U.S. Department of Labor, Bureau of Labor Statistics).
In 1979, the NLS expanded to include a nationally representative sample of
12,686 young men and women who were 14 to 22 years old. These individ-
uals were interviewed annually through 1994 and are currently interviewed
on a biennial basis (NLS79). In 1986, the NLS started surveys of the chil-
dren born to women who participated in the National Longitudinal Survey of
Youth 1979 (NLS79 Children and Young Adult). In addition to all the mother’s
information from the NLS79, the child survey includes additional demographic
and development information. For children aged 10 years and older, informa-
tion has been collected from the children biennially since 1988. The National
Longitudinal Survey of Youth 1997 (NLS97) consists of a nationally represen-
tative sample of youths who were 12 to 16 years old as of December 31, 1996.
The original sample includes 8,984 respondents. The eligible youths continued
to be interviewed on an annual basis. The survey collects extensive information
on respondents’ labor market behavior and educational experiences. The sur-
vey also includes data on the youths’ families and community backgrounds. It
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2 Introduction

Table 1.1. The span and sample sizes of the National Longitudinal Surveys

Beginning Number
Beginning year/ sample interviewed

Cohorts Age Birth year ending year/ size in year

Older men 45–59 4/2/1907–4/1/1921 1966/1990 5,020 2,092 (1990)
Mature women 30–44 4/2/1923–4/1/1937 1967/2003 5,083 2,237 (2003)
Young men 14–24 4/2/1942–4/1/1952 1966/1981 5,225 3,398 (1981)
Young women 14–24 1944–1954 1968/2003 5,159 2,287 (2003)
NLS79 14–21 1957–1964 1979/– 12,686 7,724 (2002)
NLS79 children 0–14 — 1986/– 5,255 7,467 (2002)
NLS79 young

adult
15–22 — 1994/– 980 4,238 (2002)

NLS97 12–16 1980–1984 1997/– 8,984 7,756 (2004)

Source: Bureau of Labor Statistics, National Longitudinal Surveys Handbook (2005).

documents the transition from school to work and from adolescence to adult-
hood. Access on NLS data and documentation is available online at the NLS
Product Availability Center at NLSinfo.org.

The PSID began in 1968 with collection of annual economic information
from a representative national sample of about 6,000 families and 15,000 indi-
viduals and their descendants and has continued to the present. The PSID gath-
ers data on the family as a whole and on individuals residing within the family,
emphasizing the dynamic and interactive aspects of family economics, demog-
raphy, and health. The data set contains more than 5,000 variables, including
employment, income, and human capital variables, as well as information on
housing, travel to work, and mobility. PSID data were collected annually from
1968 to 1997 and biennially after 1997. They are available online in the PSID
Data Center at no charge (PSID.org). In addition to the NLS and PSID data sets
there are several other panel data sets that are of interest to economists, and
these have been cataloged and discussed by Borus (1981) and Juster (2001);
also see Ashenfelter and Solon (1982) and Becketti et al. (1988).1

In Europe, various countries have their annual national or more frequent sur-
veys: the Netherlands Socio-Economic Panel (SEP), the German Social Eco-
nomics Panel (GSOEP), the Luxembourg’s Social Economic Panel (PSELL),
the British Household Panel Survey (BHPS), and so forth. Starting in 1994,
the National Data Collection Units (NDU) of the Statistical Office of the Euro-
pean Communities, “in response to the increasing demand in the European
Union for comparable information across the member states on income, work
and employment, poverty and social exclusion, housing, health, and many
other diverse social indicators concerning living conditions of private house-
holds and persons” (Eurostat 1996), have begun coordinating and linking exist-
ing national panels with centrally designed standardized multipurpose annual

1 For examples of marketing data, see Beckwith (1972); for biomedical data, see Sheiner, Rosen-
berg, and Melmon (1972); for a financial-market database, see Dielman, Nantell, and Wright
(1980).



1.1 Introduction 3

longitudinal surveys. For instance, the Manheim Innovation Panel (MIP) and the
Manheim Innovation Panel-Service Sector (MIP-S), started in 1993 and 1995,
respectively, contain annual surveys of innovative activities such as product
innovations, expenditure on innovations, expenditure on research and devel-
opment (R&D), factors hampering innovations, the stock of capital, wages
and skill structures of employees, and so on of German firms with at least
five employees in manufacturing and service sectors. The survey methodol-
ogy is closely related to the recommendations on innovation surveys mani-
fested in the Oslo Manual of the Organisation for Economic Co-operation and
Development (OECD) and Eurostat, thereby yielding international comparable
data on innovation activities of German firms. The 1993 and 1997 surveys
also become part of the European Community Innovation Surveys CIS I and
CIS II (for details, see Janz et al. 2001). Similarly, the European Community
Household Panel (ECHP) is meant to represent the population of the European
Union (EU) at the household and individual level. The ECHP contains infor-
mation on demographics, labor force behavior, income, health, education and
training, housing, migration, and so forth. With the exception of Sweden, the
ECHP now covers 14 of the 15 countries (Peracchi 2000). Detailed statistics
from the ECHP are published in Eurostat’s reference data based New Cronos
in three domains, namely health, housing, and “ILC” – income and living
conditions.2

Panel data have also become increasingly available in developing countries.
In these countries, there may not have a long tradition of statistical collection.
It is especially important to obtain original survey data to answer many sig-
nificant and important questions. Many international agencies have sponsored
and helped to design panel surveys. For instance, the Dutch non-government
organization (NGO), Investing in Children and their Societies (ICS), Africa col-
laborated with the Kenya Ministry of Health have carried out a Primary School
Deworming Project (PDSP). The project took place in a poor and densely
settled farming region in western Kenya – the Busia district. The 75 project
schools include nearly all rural primary schools in this area, with more than
30,000 enrolled pupils between the ages of 6 and 18 years from 1998 to 2001.
The World Bank has also sponsored and helped to design many panel surveys.
For instance, the Development Research Institute of the Research Center for
Rural Development of the State Council of China, in collaboration with the
World Bank, undertook an annual survey of 200 large Chinese township and
village enterprises from 1984 to 1990 (Hsiao et al. 1998).

There is also a worldwide concerted effort to collect panel data about aging,
retirement, and health in many countries. It started with the biannual panel data
of the Health and Retirement Study in the USA (HRS; http://www.rand.org/
labor/aging/dataprod/, http://hrsonline.isr.umich.edu/), followed by the English

2 Potential users interested in the ECHP can access and download the detailed documentation of
the ECHP users’ database (ECHP UDP) from the ECHP website: http://forum.europa.eu.int/
irc/dsis/echpane/info/data/information.html.
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Longitudinal Study of Aging (ELSA; http://www.ifs.org.uk/elsa/), and the
Survey of Health, Aging and Retirement in Europe (SHARE; http://www
.share-project.org/), which covers 11 continental European countries, but more
European countries, as well as Israel, will be added. Other countries are also
developing similar projects, in particular several Asian countries. These data
sets are collected with a multidisciplinary view and are set up such that the
data are highly comparable across countries. They contain a great deal of infor-
mation about people of (approximately) 50 years of age and older and their
households. Among others, this involves labor history and present labor force
participation, income from various sources (labor, self-employment, pensions,
social security, assets), wealth in various categories (stocks, bonds, pension
plans, housing), various aspects of health (general health, diseases, problems
with activities of daily living and mobility), subjective predictions of retirement,
and actual retirement. Using these data, researchers can study various substan-
tive questions that cannot be studied from other (panel) studies, such as the
development of health at older age and the relation between health and retire-
ment. Furthermore, owing to the highly synchronized questionnaires across a
large number of countries, it becomes possible to study the role of institutional
factors, such as pension systems, retirement laws, and social security plans, on
labor force participation and retirement, and so forth (for further information,
see Wansbeek and Meijer 2007).

1.2 ADVANTAGES OF PANEL DATA

A panel data set for economic research possesses several major advantages over
conventional cross-sectional or time series data sets (e.g., Hsiao 1985a, 1995,
2001, 2007) such as:

1. More accurate inference of model parameters. Panel data usually give
researchers a large number of data points, increasing the degrees of
freedom and reducing the collinearity among explanatory variables –
hence improving the efficiency of econometric estimates.

2. Greater capacity for constructing more realistic behavioral hypothe-
ses. By blending interindividual differences with intraindividual
dynamics, longitudinal data allow a researcher to analyze a number of
important economic questions that cannot be addressed using cross-
sectional or time series data sets. For instance, a typical assumption
for the analysis using cross-sectional data is that individuals with
the same conditional variables, x, have the same expected value,
E(yi | xi = a) = E(yj | xj = a). Under this assumption, if a cross-
sectional sample of married women is found to have an average yearly
labor force participation rate of 50 percent, it would imply that each
woman in a homogeneous population has a 50 percent chance of being
in the labor force in any given year. Each woman would be expected
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to spend half of her married life in the labor force, and half out of
the labor force, and job turnover would be expected to be frequent,
with an average job duration of two years. However, as Ben-Porath
(1973) illustrated that the cross-sectional sample could be drawn from
a heterogeneous population, 50 percent of the women were from the
population that always works and 50 percent from the population that
never works. In this case, there is no turnover, and current information
about work status is a perfect predictor of future work status. The
availability of panel data makes it possible to discriminate between
these two models. The sequential observations for a number of indi-
viduals allows a researcher to utilize individual labor force histories
to estimate the probability of participation in different subintervals of
the life cycle.

The difficulties of making inferences about the dynamics of change
from cross-sectional evidence are seen as well in other labor market
situations. Consider the impact of unionism on economic behav-
ior (e.g., Freeman and Medoff, 1981). Those economists who tend
to interpret the observed differences between union and nonunion
firms/employees as largely real believe that unions and the collective
bargaining process fundamentally alter key aspects of the employ-
ment relationship: compensation, internal and external mobility of
labor, work rules, and environment. Those economists who regard
union effects as largely illusory tend to posit that the real world is
close enough to satisfying the conditions of perfect competition; they
believe that the observed union/nonunion differences are due mainly
to differences between union and nonunion firms/workers prior to
unionism or post-union sorting. Unions do not raise wages in the
long run, because firms react to higher wages (forced by the union)
by hiring better quality workers. If one believes the former view, the
coefficient of the dummy variable for union status in a wage or earning
equation is a measure of the effect of unionism. If one believes the
latter view, then the dummy variable for union status could be simply
acting as a proxy for worker quality. A single cross-sectional data set
usually cannot provide a direct choice between these two hypotheses,
because the estimates are likely to reflect interindividual differences
inherent in comparisons of different people or firms. However, if panel
data are used, one can distinguish these two hypotheses by studying
the wage differential for a worker moving from a nonunion firm to a
union firm, or vice versa. If one accepts the view that unions have no
effect, then a worker’s wage should not be affected when he moves
from a nonunion firm to a union firm, if the quality of this worker is
constant over time. On the other hand, if unions truly do raise wages,
then, holding worker quality constant, the worker’s wage should rise
as he moves to a union firm from a nonunion firm. By following given
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individuals or firms over time as they change status (say from nonunion
to union, or vice versa), one can construct a proper recursive structure
to study the before/after effect.

3. Uncovering dynamic relationships. Because of institutional or tech-
nological rigidities or inertia in human behavior, “economic behavior
is inherently dynamic” (Nerlove 2000). Microdynamic and macrody-
namic effects typically cannot be estimated using a cross-sectional data
set. A single time series data set often cannot provide good estimates
of dynamic coefficients either. For instance, consider the estimation
of a distributed-lag model:

yt =
h∑
τ=0

βτxt−τ + ut , t = 1, . . . , T , (1.2.1)

where xt is an exogenous variable and ut is a random disturbance
term. In general, xt is near xt−1, and still nearer 2xt−1 − xt−2 =
xt−1 + (xt−1 − xt−2); fairly strict multicollinearities appear among
h+ 1 explanatory variables, x1, xt−1, . . . , xt−h. Hence, there is not
sufficient information to obtain precise estimates of any of the lag
coefficients without specifying, a priori, that each of them is a function
of only a very small number of parameters [e.g., Almon lag, rational
distributed lag, Malinvaud (1970)]. If panel data are available, we can
utilize the interindividual differences in x values to reduce the prob-
lem of collinearity, thus allowing us to drop the ad hoc conventional
approach of constraining the lag coefficients {βτ } and to impose a
different prior restriction to estimate an unconstrained distributed-lag
model.

4. Controlling the impact of omitted variables (or individual or time het-
erogeneity). The use of panel data provides a means of resolving or
reducing the magnitude of a key econometric problem that often arises
in empirical studies, namely, the often heard assertion that the real rea-
son one finds (or does not find) certain effects is because of omitted
(mismeasured, not observed) variables that correlate with explanatory
variables. By utilizing information on both the intertemporal dynam-
ics and the individuality of the entities being investigated, one is
better able to control in a more natural way for the effects of missing
or unobserved variables. For instance, consider a simple regression
model:

yit = α∗ + �′xit + �′zit + uit , i = 1, . . . , N,

t = 1, . . . T ,
(1.2.2)

where xit and zit are k1 × 1 and k2 × 1 vectors of exogenous vari-
ables; α∗, �, and � are 1 × 1, k1 × 1, and k2 × 1 vectors of con-
stants, respectively; and the error term uit is independently, identically
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distributed over i and t , with mean zero and variance σ 2
u . It is well

known that the least-squares regression of yit on xit and zit yields
unbiased and consistent estimators of α∗, �, and �. Now suppose
that zit values are unobservable, and the covariances between xit and
zit are nonzero. Then the least-squares regression coefficients of yit
on xit are biased. However, if repeated observations for a group of
individuals are available, they may allow us to get rid of the effects
of z through a linear transformation. For example, if zit = zi for all
t (i.e., z values stay constant through time for a given individual but
vary across individuals), we can take the first difference of individual
observations over time and obtain

yit − yi,t−1 = �′(xit − xi,t−1) + (uit − ui,t−1), i = 1, . . . , N,

t = 2, . . . , T .

(1.2.3)

Similarly if zit = zt for all i (i.e., z values stay constant across individ-
uals at a given time, but exhibit variation through time), we can take
the deviation from the mean across individuals at a given time and
obtain

yit − yt = �′(xit − xt ) + (uit − ut ), i = 1, . . . , N,

t = 1, . . . , T ,
(1.2.4)

where yt = (1/N)
∑N
i=1 yit , xt = (1/N )

∑N
i=1 xit and ut =

(1/N )
∑N
i=1 uit . Least-squares regression of (1.2.3) or (1.2.4)

now provides unbiased and consistent estimates of �. Nevertheless,
if we have only a single cross-sectional data set (T = 1) for the
former case (zit = zi), or a single time series data set (N = 1) for the
latter case (zit = zt ), such transformations cannot be performed. We
cannot get consistent estimates of � unless there exist instruments
that correlate with x but do not correlate with z and u.

MaCurdy’s (1981) work on the life cycle labor supply of prime
age males under certainty is an example of this approach. Under cer-
tain simplifying assumptions, MaCurdy shows that a worker’s labor
supply function can be written as (1.2.2), where y is the logarithm
of hours worked, x is the logarithm of the real wage rate, and z is
the logarithm of the worker’s (unobserved) marginal utility of initial
wealth, which, as a summary measure of a worker’s lifetime wages and
property income, is assumed to stay constant through time but to vary
across individuals (i.e., zit = zi). Given the economic problem, not
only does xit correlate with zi , but every economic variable that could
act as an instrument for xit (such as education) also correlates with zi .
Thus, in general, it is not possible to estimate � consistently from a
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cross-sectional data set,3 but if panel data are available, one can con-
sistently estimate � by first differencing (1.2.2).

The “conditional convergence” of the growth rate is another exam-
ple (e.g., Durlauf 2001; Temple 1999). Given the role of transitional
dynamics, it is widely agreed that growth regressions should control
for the steady-state level of income (e.g., Barro and Sala-i-Martin
1995; Mankiw, Romer, and Weil 1992). Thus, the growth rate regres-
sion model typically includes investment ratio, initial income, and
measures of policy outcomes such as school enrollment and the black
market exchange rate premium as regressors. However, an important
component, the initial level of a country’s technical efficiency, zi0,
is omitted because this variable is unobserved. Because a country
that is less efficient is also more likely to have lower investment
rate or school enrollment, one can easily imagine that zi0 corre-
lates with the regressors and the resulting cross-sectional parameters
estimates are subject to omitted variable bias. However, with panel
data one can eliminate the influence of initial efficiency by taking
the first difference of individual country observations over time as
in (1.2.3).

5. Generating more accurate predictions for individual outcomes. Pool-
ing the data could yield more accurate predictions of individual out-
comes than generating predictions using the data on the individual
in question if individual behaviors are similar conditional on certain
variables. When data on individual history are limited, panel data pro-
vide the possibility of learning an individual’s behavior by observing
the behavior of others. Thus, it is possible to obtain a more accu-
rate description of an individual’s behavior by supplementing obser-
vations of the individual in question with data on other individuals
(e.g., Hsiao, Appelbe, and Dineen 1993; Hsiao, Mountain, Tsui, and
Chan 1989).

6. Providing micro-foundations for aggregate data analysis. In macro
analysis economists often invoke the “representative agent” assump-
tion. However, if micro-units are heterogeneous, not only can the time
series properties of aggregate data be very different from those of
disaggregate data (e.g., Granger 1980; Lewbel 1992; Pesaran 2003),
but also policy evaluation based on aggregate data may be grossly
misleading. Furthermore, the prediction of aggregate outcomes using
aggregate data can be less accurate than the prediction based on aggre-
gating micro-equations (e.g., Hsiao, Shen, and Fujiki 2005). Panel
data containing time series observations for a number of individuals
are ideal for investigating the “homogeneity” versus “heterogeneity”
issue.

3 This assumes that there are no other variables, such as consumption, that can act as a proxy for
zi . Most North American data sets do not contain information on consumption.
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7. Simplifying computation and statistical inference. Panel data involve
at least two dimensions, a cross-sectional dimension and a time series
dimension. Under normal circumstances one would expect that the
computation of panel data estimator or inference would be more com-
plicated than estimators based on cross-sectional or time series data
alone. However, in certain cases, the availability of panel data actually
simplifies computation and inference. For instance:

a. Analysis of nonstationary time series. When time series data are
not stationary, the large sample approximations of the distribu-
tions of the least-squares or maximum likelihood estimators are
no longer normally distributed (e.g., Anderson 1959; Dickey and
Fuller (1979, 1981); Phillips and Durlauf 1986). But if panel
data are available, one can invoke the central limit theorem
across cross-sectional units to show that the limiting distribu-
tions of many estimators remain asymptotically normal and the
Wald type test statistics are asymptotically chi-square distributed.
(e.g., Binder, Hsiao, and Pesaran 2005; Im, Pesaran, and Shin
2003; Levin, Lin, and Chu 2002; Phillips and Moon 1999).

b. Measurement errors. Measurement errors can lead to under-
identification of an econometric model (e.g., Aigner, Hsiao,
Kapteyn, and Wansbeek 1984). The availability of multiple obser-
vations for a given individual or at a given time may allow a
researcher to make different transformations to induce different
and deducible changes in the estimators, and hence to identify
an otherwise unidentified model (e.g., Biørn 1992; Griliches and
Hausman 1986; Wansbeek and Koning 1989).

c. Dynamic Tobit models. When a variable is truncated or censored,
the actual realized value is unobserved. If an outcome variable
depends on previous realized value and the previous realized
value are unobserved, one has to take integration over the trun-
cated range to obtain the likelihood of observables. In a dynamic
framework with multiple missing values, the multiple integration
is computationally infeasible. For instance, consider a dynamic
Tobit model of the form

y∗
it = γy∗

i,t−1 + βxit + εit (1.2.5)

where y∗ is unobservable, and what we observe is y, where
yit = y∗

it if y∗
it > 0 and 0 otherwise. The conditional density of

yit given yi,t−1 = 0 is much more complicated than the case if
y∗
i,t−1 is known because the joint density of (yit , yi,t−1) involves

the integration of y∗
i,t−1 from −∞ to 0. Moreover, when there are

a number of censored observations over time, the full implemen-
tation of the maximum likelihood principle is almost impossible.
However, with panel data, the estimation of γ and β can be simpli-
fied considerably by simply focusing on the subset of data where
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yi,t−1 > 0 because the joint density of f (yit , yi,t−1) can be written
as the product of the conditional density f (yi,t | yi,t−1) and the
marginal density of yi,t−1. But if y∗

i,t−1 is observable, the condi-
tional density of yit given yi,t−1 = y∗

i,t−1 is simply the density of
εit (Arellano, Bover, and Labeaga 1999).

1.3 ISSUES INVOLVED IN UTILIZING PANEL DATA

1.3.1 Unobserved Heterogeneity across Individuals and over Time

The oft-touted power of panel data derives from their theoretical ability to
isolate the effects of specific actions, treatments, or more general policies.
This theoretical ability is based on the assumption that economic data are
generated from controlled experiments in which the outcomes are random
variables with a probability distribution that is a smooth function of the various
variables describing the conditions of the experiment. If the available data
were in fact generated from simple controlled experiments, standard statistical
methods could be applied. Unfortunately, most panel data come from the very
complicated process of everyday economic life. In general, different individuals
may be subject to the influences of different factors. In explaining individual
behavior, one may extend the list of factors ad infinitum. It is neither feasible
nor desirable to include all the factors affecting the outcome of all individuals
in a model specification because the purpose of modeling is not to mimic the
reality but to capture the essential forces affecting the outcome. It is typical
to leave out those factors that are believed to have insignificant impacts or are
peculiar to certain individuals. However, when important factors peculiar to a
given individual are left out, the typical assumption that economic variable y is
generated by a parametric probability distribution function F (y | �), where � is
an m-dimensional real vector, identical for all individuals at all times, may not
be a realistic one. If the conditional density of yit given xit varies across i and
over t, fit (yit | xit ), the conditions for the fundamental theorems for statistical
analysis, the law of large numbers and central limit theorem, may not hold.
The challenge of panel data analysis is how to model the heterogeneity across
individuals and over time that are not captured by x. A popular approach to
control the unobserved heterogeneity is to let the parameters characterizing
the conditional distribution of yit given xit to vary across i and over t, f (yit |
xit ,�it ). However, if no structure is imposed on �it , there will be more unknown
parameters than the number of available sample observations. To allow the
inference about the relationship between yit and xit ,�it is often decomposed
into two components, � and �it , where � is assumed identical across i and
over t , and �it is allowed to vary with i and t . The common parameters, �, are
called structural parameters in the statistical literature. When �it are treated
as random variables, it is called the random effects model (e.g., Balestra and
Nerlove 1966). When �it are treated as fixed unknown constants, it is called the
fixed effects model (e.g., Kuh 1963). The parameters γit vary with i and t and are
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called incidental parameters in the statistical literature because when sample
sizes increase, so do the unknown �it . There is also an issue about whether �it
correlates with the conditional variables (or regressors) (e.g., Mundlak 1978a;
Hausman 1978; Chamberlain 1984).

The focus of panel data analysis is how to control the impact of unobserved
heterogeneity to obtain valid inference on the common parameters, �. For
instance, in a linear regression framework, suppose unobserved heterogeneity
is individual specific and time invariant. Then this individual-specific effect on
the outcome variable yit could either be invariant with the explanatory variables
xit or interact with xit . A linear regression model for yit to take account of both
possibilities with a single explanatory variable xit could be postulated as

yit = α∗
i + βixit + uit , i = 1, . . . , N,

t = 1, . . . , T ,
(1.3.1)

where uit is the error term, uncorrelated with x, with mean zero and con-
stant variance σ 2

u . The parameters α∗
i and βi may be different for different

cross-sectional units, although they stay constant over time. Following this
assumption, a variety of sampling distributions may occur. Such sampling dis-
tributions can seriously mislead the least-squares regression of yit on xit when
all NT observations are used to estimate the model:

yit = α∗ + βxit + uit , i = 1, . . . , N,

t = 1, . . . , T .
(1.3.2)

For instance, consider the situation that the data are generated as either in case
1 or case 2:

Case 1: Heterogeneous intercepts (α∗
i �= α∗

j ), homogeneous slope (βi = βj ).
We use graphs to illustrate the likely biases of estimating (1.3.2) because
α∗
i /∈ α∗

j and βi = βj . In these graphs, the broken-line circles represent the point
scatter for an individual over time, and the broken straight lines represent the
individual regressions. Solid lines serve the same purpose for the least-squares
regression of (1.3.2) using all NT observations. A variety of circumstances
may arise in this case, as shown in Figures 1.1, 1.2, and 1.3. All of these figures
depict situations in which biases arise in pooled least-squares estimates of
(1.3.2) because of heterogeneous intercepts. Obviously, in these cases, pooled
regression ignoring heterogeneous intercepts should never be used. Moreover,
the direction of the bias of the pooled slope estimates cannot be identified a
priori; it can go either way.

Case 2: Heterogeneous intercepts and slopes (α∗
i �= α∗

j , βi �= βj ). In Figures
1.4 and 1.5 the point scatters are not shown, and the circled numbers signify
the individuals whose regressions have been included in the analysis. For the
example depicted in Figure 1.4, a straightforward pooling of all NT observa-
tions, assuming identical parameters for all cross-sectional units, would lead
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Fig. 1.1 Fig. 1.2 Fig. 1.3

Fig. 1.4 Fig. 1.5

L

Fig. 1.6

to nonsensical results because they would represent an average of coefficients
that differ greatly across individuals. Nor does Figure 1.5 make any sense,
because it gives rise to the false inference that the pooled relation is curvilinear.
In either case, the classic paradigm of the “representative agent” simply does
not hold and a common slope parameter model makes no sense.

These are some of the likely biases when parameter heterogeneities among
cross-sectional units are ignored. Similar patterns of bias will also arise if the
intercepts and slopes vary through time, even though for a given time period
they are identical for all individuals. More elaborate patterns than those de-
picted here are, of course, likely to occur (e.g., Chesher and Lancaster 1983;
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Kuh 1963). Moreover, if γit is persistent over time, say γit represents the impact
of individual time-invariant variables so γit = γi , then E(yit | xit , γi, yi,t−1) =
E(yit | xit , γi) �= E(yit | xit ) and E(yit | xit ) �= E(yit | xit , yi,t−1). The latter
inequality could lead an investigator to infer falsely that there is state depen-
dence. However, the presence of yi,t−1 improves the prediction of yit because
yi,t−1 serves as a proxy for the omitted γi . The observed state dependence is
spurious (e.g., Heckman 1978a, 1981b).

1.3.2 Incidental Parameters and Multidimensional Statistics

Panel data contain at least two dimensions: a cross-sectional dimension of size
N and a time series dimension of size T . The observed data can take the form
of eitherN is fixed and T is large; or T is fixed andN is large; or bothN and T
are finite or large. When the individual time-varying parameters �it are treated
as fixed constants (the fixed effects model), and either N or T is fixed, it raises
the incidental parameters issue because when sample size increases, so do the
unknown �it . The classical law of large numbers or central limit theorems rely
on the assumption that the number of unknowns stay constant when sample size
increases. If �it affects the observables yit linearly, simple linear transformation
can eliminate �it from the transformed model (e.g., Anderson and Hsiao 1981,
1982; Kuh 1963). However, if �it affects yit nonlinearly, no general rule of
transformation to eliminate the incidental parameters exists. Specific structure
of a nonlinear model needs to be explored to find appropriate transformation
to eliminate the incidental parameters (e.g., Chamberlain 1980; Honoré 1992;
Honoré and Kyriazidou 2000a; Manski 1985).

When N and T are of similar magnitude or N and T increase at the same
or arbitrary rate, Phillips and Moon (2000) show that naively by first apply-
ing one-dimensional asymptotics, followed by expanding the sample size in
another dimension could lead to misleading inferences. The multidimensional
asymptotics are quite complex (e.g., Alvarez and Arellano 2003; Hahn and
Kuersteiner 2002 or some general remarks in Hsiao 2012). Moreover, when N
and T are large, the cross-sectional dependence (e.g., Anselin 1988; Bai 2009;
Lee 2004; Pesaran 2004) or time series properties of a variable (e.g., unit root
or cointegration test) could impact inference significantly.

1.3.3 Sample Attrition

Another frequently observed source of bias in both cross-sectional and panel
data is that the sample may not be randomly drawn from the population. Panel
data follow a given individual over time. One of the notable feature of the
NLS in Table 1.1 is the attrition over time. For instance, there were 5,020
individuals for the older men group in the NLS when the annual interview
started in 1966. By 1990, when the annual interview of this group was stopped,
only 2,092 individuals were left. When attrition is behaviorally related, the
observed sample could no longer be viewed as a random sample.
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Another example that the observed sample may not be viewed as a random
sample is that the New Jersey negative income tax experiment excluded all
families in the geographic areas of the experiment who had incomes above
1.5 times the officially defined poverty level. When the truncation is based on
earnings, uses of the data that treat components of earnings (specifically, wages
or hours) as dependent variables will often create what is commonly referred to
as selection bias (e.g., Hausman and Wise 1977; Heckman 1976a, 1979; Hsiao
1974b).

For ease of exposition, we shall consider a cross-sectional example to get
some idea of how using a nonrandom sample may bias the least-square esti-
mates. We assume that in the population the relationship between earnings (y)
and exogenous variables (x), including education, intelligence, and so forth, is
of the form

yi = �′xi + ui, i = 1, . . . , N, (1.3.3)

where the disturbance term ui is independently distributed with mean zero and
variance σ 2

u . If the participants of an experiment are restricted to have earnings
less than L, the selection criterion for families considered for inclusion in the
experiment can be stated as follows:

yi = �′xi + ui ≤ L, included,

yi = �′xi + ui > L, excluded.
(1.3.4)

For simplicity, we assume that the values of exogenous variables, except for
the education variable, are the same for each observation. In Figure 1.6 we let the
upward-sloping solid line indicate the “average” relation between education and
earnings and the dots represent the distribution of earnings around this mean for
selected values of education. All individuals with earnings above a given level
L, indicated by the horizontal line, would be eliminated from this experiment.
In estimating the effect of education on earnings, we would observe only the
points below the limit (circled) and thus would tend to underestimate the effect
of education using ordinary least squares.4 In other words, the sample selection
procedure introduces correlation between right-hand variables and the error
term, which leads to a downward-biased regression line, as the dashed line in
Figure 1.6 indicates.

1.4 OUTLINE OF THE MONOGRAPH

The source of sample variation critically affects the formulation and inferences
of many economic models. This monograph takes a pedagogical approach.
We focus on controlling for the impact of unobserved heterogeneity in cross-
sectional unit i at time t to draw inferences about certain characteristics of
the population that are of interest to an investigator or policymaker. Instead of

4 For a formal treatment of this, see Chapter 8.
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presenting all the issues simultaneously in a general-to-specific manner, we take
a pedagogical approach, introducing the various complications successively.
We first discuss linear models because they remain widely used. We first briefly
review the classic test of homogeneity for a linear regression model (analysis
of covariance procedures) in Chapter 2. We then relax the assumption that the
parameters that characterize all temporal cross-sectional sample observations
are identical and examine a number of specifications that allow for differences
in behavior across individuals as well as over time. For instance, a single
equation model with observations of y depending on a vector of characteristics
x can be written in the following form:

1. Slope coefficients are constant, and the intercept varies over individ-
uals:

yit = α∗
i +

K∑
k=1

βkxkit + uit , i = 1, . . . , N,

t = 1, . . . , T .

(1.4.1)

2. Slope coefficients are constant, and the intercept varies over individ-
uals and time:

yit = α∗
it +

K∑
k=1

βkxkit + uit , i = 1, . . . , N,

t = 1, . . . , T .

(1.4.2)

3. All coefficients vary over individuals:

yit = α∗
i +

K∑
k=1

βkixkit + uit , i = 1, . . . , N,

t = 1, . . . , T .

(1.4.3)

4. All coefficients vary over time and individuals:

yit = α∗
it +

K∑
k=1

βkitxkit + uit , i = 1, . . . , N,

t = 1, . . . , T .

(1.4.4)

In each of these cases the model can be classified further depending on whether
the coefficients are assumed to be random or fixed.

We first focus on models in which the unobserved individual or time het-
erogeneity is invariant with respect to variations in explanatory variables, the
constant slopes, and variable intercepts models (1.4.1) and (1.4.2) because
they provide simple yet reasonably general alternatives to the assumption that
parameters take values common to all agents at all times. Static models with
variable intercepts are discussed in Chapter 3, dynamic models in Chapter 4, and
simultaneous-equations models in Chapter 5. Chapter 6 relaxes the assump-
tion that the time or individual invariance of unobserved heterogeneity with
explanatory variables by allowing the unobserved heterogeneity to interact
with them. Chapters 7 and 8 discuss the difficulties of controlling unobserved
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heterogeneity in nonlinear models by focusing on two types of widely used
models, the discrete data and sample selection models, respectively. Chapter 9
considers the issues of modeling cross-sectional dependence. Chapter 10 con-
siders models for dynamic systems. The incomplete panel data issues such
as rotating sample, pooling of a series of independent cross sections (pseudo-
panel), pooling of a single cross section and a single time-series data, and
estimating distributed-lag models in short panels are discussed in Chapter 11.
Chapter 12 discusses miscellaneous topics such as duration data and count data
models, panel quantile regression, simulation methods, data with multilevel
structures, measurement errors, and the nonparametric approach. A summary
view is provided in Chapter 13.



CHAPTER 2

Homogeneity Tests for Linear Regression
Models (Analysis of Covariance)

2.1 INTRODUCTION

Suppose we have sample observations of characteristics of N individuals over
T time periods denoted by yit , xkit , i = 1, . . . N, t = 1, . . . , T , k = 1, . . . , K .
Conventionally, observations of y are assumed to be the random outcomes of
some experiment with a probability distribution conditional on vectors of the
characteristics x and a fixed number of parameters �, f (y | x,�). When panel
data are used, one of the ultimate goals is to use all available information to
make inferences on �. For instance, a simple model commonly postulated is
that y is a linear function of x. Yet to run a least-squares regression with all
NT observations, we need to assume that the regression parameters take value
common to all cross-sectional units for all time periods. If this assumption is
not valid, as shown in Chapter 1, Section 1.2, the pooled least-squares estimates
may lead to false inferences. Thus, as a first step toward full exploitation of
the data, we often test whether or not parameters characterizing the random
outcome variable y stay constant across all i and t .

In the case of linear regression model, a widely used procedure to iden-
tify the source of sample variation preliminarily is the analysis of covariance
(ANCOVA) test. The name “analysis of variance” (ANOVA) is often reserved
for a particular category of linear hypotheses that stipulate that the expected
value of a random variable y depends only on the class (defined by one or more
factors) to which the individual considered belongs, but excludes tests relating
to regressions. On the other hand, ANCOVA models are of a mixed character
involving genuine exogenous variables, as do regression models, and at the
same time allowing the true relation for each individual to depend on the class
to which the individual belongs, as do the usual ANOVA models.

A linear model commonly used to assess the effects of both quantitative and
qualitative factors is postulated as

yit = α∗
it + �′

itxit + uit , i = 1, . . . , N,
t = 1, . . . , T , (2.1.1)

where α∗
it and �′

it = (β1it , β2it , . . . , βKit ) are 1 × 1 and 1 ×K vectors of con-
stants that vary across i and t , respectively, x′

it = (x1it , . . . , xKit ) is a 1 ×K
17
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vector of exogenous variables, and uit is the error term. Two aspects of the esti-
mated regression coefficients can be tested: first, the homogeneity of regression
slope coefficients; second, the homogeneity of regression intercept coefficients.
The test procedure as suggested by Kuh (1963) has three main steps:

1. Test whether or not slopes and intercepts simultaneously are homoge-
neous among different individuals at different times.

2. Test whether or not the regression slopes collectively are the same.
3. Test whether or not the regression intercepts are the same.

It is obvious that if the hypothesis of overall homogeneity (step 1) is accepted,
the testing procedure will go no further. However, should the overall homo-
geneity hypothesis be rejected, the second step of the analysis is to decide if
the regression slopes are the same. If this hypothesis of homogeneity is not
rejected, one then proceeds to the third and final test to determine the equality
of regression intercepts. In principle, step 1 is separable from steps 2 and 3.1

Although this type of analysis can be performed on several dimensions, as
described by Scheffé (1959) or Searle (1971), only one-way ANCOVA has been
widely used. Therefore, here we present only the procedures for performing
one-way ANCOVA.

2.2 ANALYSIS OF COVARIANCE

Model (2.1.1) only has descriptive value. It can neither be estimated nor used to
generate prediction because the available degrees of freedom, NT , is less than
the number of parameters, NT (K + 1) number of parameters, characterizing
the distribution of yit . A structure has to be imposed on (2.1.1) before any
inference can be made. To start with, we assume that parameters are constant
over time, but can vary across individuals. Thus, we can postulate a separate
regression for each individual:

yit = α∗
i + �′

ixit + uit , i = 1, . . . , N,

t = 1, . . . , T .
(2.2.1)

Three types of restrictions can be imposed on (2.2.1), namely:

H1: Regression slope coefficients are identical, and intercepts are not.
That is,

yit = α∗
i + �′xit + uit . (2.2.2)

H2: Regression intercepts are the same, and slope coefficients are not.
That is,

yit = α∗ + �′
ixit + uit . (2.2.3)

1 Note that even if the homogeneity hypothesis is rejected, some useful information can be found
in pooling the data, as long as the source of sample variability can be identified. For details, see
later chapters.
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H3: Both slope and intercept coefficients are the same. That is,

yit = α∗ + �′xit + uit . (2.2.4)

Because it is seldom a meaningful question to ask if the intercepts are the same
when the slopes are unequal, we shall ignore the type of restrictions postulated
by (2.2.3). We shall refer to (2.2.1) as the unrestricted model, (2.2.2) as the
individual-mean or cell-mean corrected regression model, and (2.2.4) as the
pooled regression.

Let

ȳi = 1

T

T∑
t=1

yit , (2.2.5)

x̄i = 1

T

T∑
t=1

xit , (2.2.6)

be the means of y and x, respectively, for the ith individual. The least-squares
estimates of �i and α∗

i in the unrestricted model (2.2.1) are given by2

�̂i = W−1
xx,iWxy,i , α̂i = ȳi − �̂′

i x̄i , i = 1, . . . , N, (2.2.7)

where

Wxx,i =
T∑
t=1

(xit − x̄i)(xit − x̄i)′,

Wxy,i =
T∑
t=1

(xit − x̄i)(yit − ȳi), (2.2.8)

Wyy,i =
T∑
t=1

(yit − ȳi)2.

In the ANCOVA terminology, equations (2.2.7) are called within-group
estimates. The ith-group residual sum of squares is RSSi = Wyy,i −
W ′
xy,iW

−1
xx,iWxy,i . The unrestricted residual sum of squares is

S1 =
N∑
i=1

RSSi . (2.2.9)

The least-squares regression of the individual mean corrected model yields
parameter estimates

�̂w = W−1
xx Wxy, (2.2.10)

α̂∗
i = ȳi − �̂′

w x̄i , i = 1, . . . , N,

2 We assume that T > K + 1. For details of this, see Chapter 3, Section 3.2.
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where

Wxx =
N∑
i=1

Wxx,i and Wxy =
N∑
i=1

Wxy,i .

LetWyy =∑N
i=1Wyy,i ; the residual sum of squares of (2.2.2) is

S2 = Wyy −W ′
xyW

−1
xx Wxy. (2.2.11)

The least-squares regression of the pooled model (2.2.4) yields parameter
estimates

�̂ = T −1
xx Txy, α̂∗ = ȳ − �̂′ x̄, (2.2.12)

where

Txx =
N∑
i=1

T∑
t=1

(xit − x̄)(xit − x̄)′,

Txy =
N∑
i=1

T∑
t=1

(xit − x̄)(yit − ȳ),

Tyy =
N∑
i=1

T∑
t=1

(yit − ȳ)2,

ȳ = 1

NT

N∑
i=1

T∑
t=1

yit , x̄ = 1

NT

N∑
i=1

T∑
t=1

xit .

The (overall) residual sum of squares is

S3 = Tyy − T ′
xyT

−1
xx Txy. (2.2.13)

Under the assumption that the uit are independently normally distributed
over i and t with mean 0 and variance σ 2

u , F tests can be used to test the
restrictions postulated by (2.2.2) and (2.2.4). In effect, (2.2.2) and (2.2.4) can
be viewed as (2.2.1) subject to various types of linear restrictions. For instance,
the hypothesis of heterogeneous intercepts but homogeneous slopes [equation
(2.2.2)] can be reformulated as (2.2.1) subject to (N − 1)K linear restrictions:

H1 : �1 = �2 = · · · = �N .

The hypothesis of common intercept and slopes can be viewed as (2.2.1) subject
to (K + 1)(N − 1) linear restrictions:

H3 : α∗
1 = α∗

2 = · · · = α∗
N,

�1 = �2 = · · · = �N.

Thus, application of the ANCOVA test is equivalent to the ordinary hypothesis
test based on the sums of squared residuals from linear regression outputs.
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The unrestricted residual sum of squares S1 divided by σ 2
u has a chi square

(χ2) distribution with NT −N (K + 1) degrees of freedom. The increment
in the explained sum of squares due to allowing for the parameters to vary
across i is measured by (S3 − S1). Under H3, the restricted residual sum of
squares S3 divided by σ 2

u has a χ2 distribution with NT − (K + 1) degrees of
freedom, and (S3 − S1)/σ 2

u has a χ2 distribution with (N − 1)(K + 1) degrees
of freedom. Because (S3 − S1)/σ 2

u is independent of S1/σ
2
u , the F statistic,

F3 = (S3 − S1)/[(N − 1)(K + 1)]

S1/[NT −N (K + 1)]
, (2.2.14)

can be used to test H3. If F3 with (N − 1)(K + 1) and N (T −K − 1) degrees
of freedom is not significant, we pool the data and estimate a single equation
of (2.2.4). If the F ratio is significant, a further attempt is usually made to
find out if the nonhomogeneity can be attributed to heterogeneous slopes or
heterogeneous intercepts.

Under the hypothesis of heterogeneous intercepts but homogeneous slopes
(H1), the residual sum of squares of (2.2.2), S2 = Wyy −W ′

xy W
−1
xx Wxy , divided

by σ 2
u has a χ2 distribution withN (T − 1) −K degrees of freedom. The F test

of H1 is thus given by

F1 = (S2 − S1)/[(N − 1)K]

S1/[NT −N (K + 1)]
. (2.2.15)

IfF1 with (N − 1)K andNT −N (K + 1) degrees of freedom is significant, the
test sequence is naturally halted and model (2.2.1) is treated as the maintained
hypothesis. If F1 is not significant, we can then determine the extent to which
nonhomogeneities can arise in the intercepts.

If H1 is accepted, one can also apply a conditional test for homogeneous
intercepts, namely,

H4 : α∗
1 = α∗

2 = · · · = α∗
N given �1 = · · · = �N .

The unrestricted residual sum of squares now is S2, and the restricted residual
sum of squares is S3. The reduction in the residual sum of squares in moving
from (2.2.4) to (2.2.2) is (S3 − S2). UnderH4, S3 divided by σ 2

u is χ2 distributed
withNT − (K + 1) degrees of freedom, and S2 divided by σ 2

u is χ2 distributed
with N (T − 1) −K degrees of freedom. Because S2/σ

2
u is independent of

(S3 − S2)/σ 2
u , which is χ2 distributed with N − 1 degrees of freedom, the F

test for H4 is

F4 = (S3 − S2)/(N − 1)

S2/[N (T − 1) −K]
(2.2.16)

We can summarize these tests in an ANCOVA table (Table 2.1).
Alternatively, we can assume that coefficients are constant across individuals

at a given time, but can vary over time. Hence, a separate regression can be



Table 2.1. Covariance tests for homogeneity

Source of variation Residual sum of squares Degrees of freedom Mean squares

Within group with heterogeneous intercept and slope S1 =∑N
i=1

(
Wyy,i −W ′

xy,iW
−1
xx,iWxy,i

)
N (T −K − 1) S1/N (T −K − 1)

Constant slope: heterogeneous intercept S2 = Wyy −W ′
xyW

−1
xx Wxy N (T − 1) −K S2/[N (T − 1) −K]

Common intercept and slope S3 = Tyy − T ′
xyT

−1
xx Txy NT − (K + 1) S3/[NT − (K + 1)]

Notation:
Cells or groups (or individuals) i = 1, . . . , N
Observations within cell t = 1, . . . , T
Total sample size NT
Within-cell (group) mean ȳi , x̄i
Overall mean ȳ, x̄
Within-group covariance Wyy,i ,Wyx,i ,Wxx,i
Total variation Tyy, Tyx, Txx

22
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postulated for each cross section:

yit = α∗
t + �′

txit + uit , i = 1, . . . , N,
(2.2.17)

t = 1, . . . , T ,

where we again assume thatuit is independently normally distributed with mean
0 and constant variance σ 2

u . Analogous ANCOVA can then be performed to test
the homogeneities of the cross-sectional parameters over time. For instance, we
can test for overall homogeneity (H ′

3 : α∗
1 = α∗

2 = · · · = α∗
T ,�1 = �2 = · · · =

�T ) by using the F statistic

F ′
3 = (S3 − S ′

1)/[(T − 1)(K + 1)]

S ′
1/[NT − T (K + 1)]

. (2.2.18)

with (T − 1)(K + 1) and NT − T (K + 1) degrees of freedom, where

S ′
1 =

T∑
t=1

(Wyy,t −W ′
xy,tW

−1
xx,tWxy,t ),

Wyy,t =
N∑
i=1

(yit − ȳt )2, ȳt = 1

N

N∑
i=1

yit , (2.2.19)

Wxx,t =
N∑
i=1

(xit − x̄t )(xit − x̄t )′, x̄t = 1

N

N∑
i=1

xit ,

Wxy,t =
N∑
i=1

(xit − x̄t )(yit − ȳt ).

Similarly, we can test the hypothesis of heterogeneous intercepts, but homoge-
neous slopes (H ′

1 : α∗
1 �= α∗

2 �= · · · �= α∗
T ,�1 = �2 = · · · = �T ), by using the

F statistic

F ′
1 = (S ′

2 − S ′
1)/[(T − 1)K]

S ′
1/[NT − T (K + 1)]

, (2.2.20)

with (T − 1)K and NT − T (K + 1) degrees of freedom, where

S ′
2 =

T∑
t=1

Wyy,t −
(

T∑
t=1

W ′
xy,t

)(
T∑
t=1

Wxx,t

)−1 ( T∑
t=1

Wxy,t

)
, (2.2.21)

or test the hypothesis of homogeneous intercepts conditional on homogeneous
slopes β1 = β2 = · · · = βT (H ′

4) by using the F statistic

F ′
4 = (S3 − S ′

2)/(T − 1)

S ′
2/[T (N − 1) −K]

, (2.2.22)
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with (T − 1) and T (N − 1) −K degrees of freedom. In general, unless both
cross section and time series ANCOVAs indicate the acceptance of homogeneity
of regression coefficients, unconditional pooling (i.e., a single least-squares
regression using all observations of cross-sectional units through time) may
lead to serious bias.

It should be noted that the foregoing tests are not independent. For example,
the uncomfortable possibility exists that according to F3 (or F ′

3) we might find
homogeneous slopes and intercepts, and yet this finding could be compatible
with opposite results according to F1(F ′

1) and F4(F ′
4), because the alternative or

null hypotheses are somewhat different in the two cases. Worse still, we might
reject the hypothesis of overall homogeneity using the test ratioF3(F ′

3), but then
find according to F1(F ′

1) and F4(F ′
4) that we cannot reject the null hypothesis,

so that the existence of heterogeneity indicated by F3 (or F ′
3) cannot be traced.

This outcome is quite proper at a formal statistical level, although at the less
formal but important level of interpreting test statistics it is an annoyance.

It should also be noted that the validity of the F -tests are based on the
assumption that the errors of the equation, uit , are independently, identically
distributed (i.i.d.) and are independent of the regressors, xit (i.e., the conditional
variables, xit , are strictly exogenous (or are fixed constants). In empirical anal-
ysis, the errors of the equation could be heteroscedastic or serially correlated,
or even correlated with the regressors due to simultaneity or joint depen-
dence. Interpreting F -test statistics ignoring these issues could be seriously
misleading. Nevertheless, the idea of F -tests continue to serve as the basis
for developing more robust interference procedures (e.g., the robust standard
errors of Stock and Watson 2008). Moreover, given the availability of F -test
statistics in practically all statistical software packages, it could be considered
as a useful first and preliminary step to explore the source of sample variability.
We shall discuss some more sophisticated exploratory diagnostic statistics in
later chapters when we relax the assumption of “classical” regression model
one by one.

2.3 AN EXAMPLE

With the aim of suggesting certain modifications to existing theories of invest-
ment behavior and providing estimates of the coefficients of principal interest,
Kuh (1963) used data on 60 small and middle-sized firms in capital-goods-
producing industries from 1935 to 1955, excluding the war years (1942–1945),
to probe the proper specification for the investment function. He explored vari-
ous models based on capacity accelerator behavior or internal funds flows, with
various lags. For ease of illustration, we report here only functional specifica-
tions and results based on profit theories, capacity-utilization theories, finan-
cial restrictions, and long-run growth theories in arithmetic form (Table 2.2,
part A), their logarithmic transformations (part B), and several ratio models
(part C). The equations are summarized in Table 2.2.
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Table 2.2. Investment equation forms estimated by Kuh (1963)

Part A

Iit = α0 + β1Ci + β2
Kit + β3
Sit (2.3.1)

Iit = α0 + β1Ci + β2
Kit + β4
Pit (2.3.2)

Iit = α0 + β1Ci + β2
Kit + β3
Sit + β4
Pit (2.3.3)
Iit = α0 + β1Ci + β2Kit + β3Sit (2.3.4)
Iit = α0 + β1Ci + β2Kit + β4Pit (2.3.5)
Iit = α0 + β1Ci + β2Kit + β3Sit + β4Pit (2.3.6)
Iit = α0 + β1Ci + β2Kit + β3Si,t−1 (2.3.7)
Iit = α0 + β1Ci + β2Kit + β4Pi,t−1 (2.3.8)
Iit = α0 + β1Ci + β2Kit + β3Si,t−1 + β4Pi,t−1 (2.3.9)
Iit = α0 + β1Ci + β2Kit + β3[(Sit + Si,t−1) ÷ 2] (2.3.10)
Iit = α0 + β1Ci + β2Kit + β4[(Pit + Pi,t−1) ÷ 2] (2.3.11)
Iit = α0 + β1Ci + β2Kit + β3[(Sit + Si,t−1) ÷ 2] (2.3.12)

+β4[(Pit + Pi,t−1) ÷ 2]
[(Iit + Ii,t−1) ÷ 2] = α0 + β1Ci + β2Kit + β3[(Sit + Si,t−1) ÷ 2] (2.3.13)
[(Iit + Ii,t−1) ÷ 2] = α0 + β1Ci + β2Kit + β4[(Pit + Pi,t−1) ÷ 2] (2.3.14)
[(Iit + Ii,t−1) ÷ 2] = α0 + β1Ci + β2Kit + β3[(Sit + Si,t−1) ÷ 2] (2.3.15)

+β4[(Pit + Pi,t−1) ÷ 2]

Part B

 log Iit = α0 + β1 logCi + β2
 logKit + β3
 log Sit (2.3.16)
log Iit = α0 + β1 logCi + β2 logKit + β3 log Sit (2.3.17)
log Iit = α0 + β1 logCi + β2 logKit + β3 log Si,t−1 (2.3.18)
log Iit = α0 + β1 logCi + β2 log[(Kit +Ki,t−1) ÷ 2] (2.3.19)

+β3 log[(Sit + Si,t−1) ÷ 2]

Part C
Iit

Kit
= α0 +β1

Pit

Kit
+ β2

Si,t−1

Ci ·Ki,t−1
(2.3.20)

Iit

Kit
= α0 +β1

Pit

Kit
+ β2

Si,t−1

Ci ·Ki,t−1
+ β3

Sit

Ci ·Kit (2.3.21)

Iit

Kit
= α0 +β1

Pit + Pi,t−1

Kit · 2
+ β2

Si,t−1

Ci ·Ki,t−1
(2.3.22)

Iit

Kit
= α0 +β1

Pit + Pi,t−1

Kit · 2
+ β2

Si,t−1

Ci ·Ki,t−1
+ β3

Sit

Ci ·Kit (2.3.23)

Note: I = gross investment;C = capital-intensity index; K = capital stock; S = sales;P = gross
retained profits.

There were two main reasons that Kuh resorted to using individual-firm
data rather than economic aggregates. One was the expressed doubt about
the quality of the aggregate data, together with the problems associated with
estimating an aggregate time series model when the explanatory variables are
highly correlated. The other was the desire to construct and test more compli-
cated behavioral models that require many degrees of freedom. However, as
stated in Section 1.2, a single regression using all observations through time



26 Homogeneity Tests for Linear Regression Models

makes sense only when individual observations conditional on the explana-
tory variables can be viewed as random draws from the same universe. Kuh
(1963) used the ANCOVA techniques discussed in Section 2.2. to test for over-
all homogeneity (F3 or F ′

3), slope homogeneity (F1 or F ′
1), and homogeneous

intercept conditional on acceptance of homogeneous slopes (F4 or F ′
4) for

both cross-sectional units and time series units.3 The results for testing homo-
geneity of time series estimates across cross-sectional units and homogeneity
of cross-sectional estimates over time are reproduced in Tables 2.3 and 2.4,
respectively.

A striking fact recorded from these statistics is that except for the time series
results for equations (2.3.1) and (2.3.3) (which are in first-difference form), all
other specifications failed the overall homogeneity tests.4 Furthermore, in most
cases, with the exception of cross-sectional estimates of (2.3.17) and (2.3.18)
(Table 2.4), the intercept and slope variabilities cannot be rigorously separated.
Nor do the time series results correspond closely to cross-sectional results for
the same equation. Although ANCOVA, like other statistics, is not a mill that
will grind out results automatically, these results do suggest that the effects of
excluded variables in both time series and cross sections may be very different.
It would be quite careless not to explore the possible causes of discrepancies
that give rise to the systematic interrelationships between different individuals
at different periods of time.5

Kuh explored the sources of estimation discrepancies through decompo-
sition of the error variances, comparison of individual coefficient behavior,
assessment of the statistical influence of various lag structures, and so forth. He
concluded that sales seem to include critical time-correlated elements common
to a large number of firms and thus have a much greater capability of anni-
hilating systematic, cyclical factors. In general, his results are more favorable
to the acceleration sales model than to the internal liquidity/profit hypothesis
supported by the results obtained using cross-sectional data (e.g., Meyer and
Kuh 1957). He found that the cash flow effect is more important some time
before the actual capital outlays are made than it is in actually restricting the
outlays during the expenditure period. It appears more appropriate to view
internal liquidity flows as a critical part of the budgeting process that later
is modified, primarily in light of variations in levels of output and capacity
utilization.

The policy implications of Kuh’s conclusions are clear. Other things being
equal, a small percentage increase in sales will have a greater effect on

3 See Johnston (1972, Chapter 6) for an illustration of the computation of analysis of covariance.
4 If the firm differences stay constant over time, heterogeneity among firms can be absorbed into

the intercept term. Because intercepts are eliminated by first-differencing, the first-difference
model (such as (2.3.1) or (2.3.3)) will be more likely to display homogeneous responses. See
Chapter 3 and Chapter 4.

5 For further discussion of this issue, see Chapter 11, Section 11.3 and Mairesse (1990).



Table 2.3. Covariance tests for regression-coefficient homogeneity across cross-sectional unitsa

F3 overall test F1 slope homogeneity F4 cell mean significance

Degrees of freedom Degrees of freedom Degrees of freedom

Equation Numerator Denominator Actual F s Numerator Denominator Actual F s Numerator Denominator Actual F s

(2.3.1) 177 660 1.25 118 660 1.75c 57 660 0.12
(2.3.2) 177 660 1.40b 118 660 1.94c 57 660 0.11
(2.3.3) 236 600 1.13 177 600 1.42b 56 600 0.10
(2.3.4) 177 840 2.28c 118 840 1.58c 57 840 3.64c
(2.3.5) 177 840 2.34c 118 840 1.75c 57 840 3.23c
(2.3.6) 236 780 2.24c 177 780 1.76c 56 780 3.57c
(2.3.7) 177 720 2.46c 118 720 1.95c 57 720 3.57c
(2.3.8) 177 720 2.50c 118 720 1.97c 57 720 3.31c
(2.3.9) 236 660 2.49c 177 660 2.11c 56 660 3.69c
(2.3.10) 177 720 2.46c 118 720 1.75c 57 720 3.66c
(2.3.11) 177 720 2.60c 118 720 2.14c 57 720 3.57c
(2.3.12) 236 660 2.94c 177 660 2.49c 56 660 4.18c
(2.3.16) 177 720 1.92c 118 720 2.59c 57 720 0.55
(2.3.17) 177 840 4.04c 118 840 2.70c 57 840 0.39
(2.3.18) 177 720 5.45c 118 720 4.20c 57 720 6.32c
(2.3.19) 177 720 4.68c 118 720 3.17c 57 720 7.36c
(2.3.20) 177 720 3.64c 118 720 3.14c 57 720 3.66c
(2.3.21) 236 660 3.38c 177 660 2.71c 56 660 4.07c
(2.3.22) 177 600 3.11c 118 600 2.72c 57 600 3.22c
(2.3.23) 236 540 2.90c 177 540 2.40c 56 540 3.60c

a Critical F values were obtained from A.M. Mood, Introduction to Statistics, Table V, pp. 426–427. Linear interpolation was employed except for degrees
of freedom exceeding 120. The critical F values in every case have been recorded for 120 degrees of freedom for each denominator sum of squares even
though the actual degrees of freedom were at least four times as great. The approximation error in this case is negligible.

b Significant at the 5 percent level.
c Significant at the 1 percent level.
Source: Kuh (1963, pp. 141–142).
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Table 2.4. Covariance tests for homogeneity of cross-sectional estimates over timea

F
′
3 overall test F

′
1 slope homogeneity F

′
4 cell mean significance

Degrees of freedom Degrees of freedom Degrees of freedom

Equation Numerator Denominator Actual F s Numerator Denominator Actual F s Numerator Denominator Actual F s

(2.3.1) 52 784 2.45b 39 784 2.36b 10 784 2.89b

(2.3.2) 52 784 3.04b 39 784 2.64b 10 784 4.97b

(2.3.3) 65 770 2.55b 52 770 2.49b 9 770 3.23b

(2.3.4) 64 952 2.01b 48 952 1.97b 13 952 2.43b

(2.3.5) 64 952 2.75b 48 952 2.45b 13 952 3.41b

(2.3.6) 80 935 1.91b 64 935 1.82b 12 935 2.66b

(2.3.7) 56 840 2.30b 42 840 2.11b 11 840 3.66b

(2.3.8) 56 840 2.83b 42 840 2.75b 11 840 3.13b

(2.3.9) 70 825 2.25b 56 825 2.13b 10 825 3.53b

(2.3.10) 56 840 1.80b 42 840 1.80b 11 840 1.72d

(2.3.11) 56 840 2.30b 42 840 2.30b 11 840 1.79d

(2.3.12) 70 825 1.70b 56 825 1.74b 10 825 1.42

28

(2.3.13) 56 840 2.08b 42 840 2.11b 11 840 2.21c

(2.3.14) 56 840 2.66b 42 840 2.37b 11 840 2.87b

(2.3.15) 70 825 1.81b 56 825 1.76b 10 825 2.35c

(2.3.16) 56 840 3.67b 42 840 2.85b 11 840 3.10b

(2.3.17) 64 952 1.51c 48 952 1.14 13 952 0.80
(2.3.18) 56 840 2.34b 42 840 1.04 11 840 1.99c

(2.3.19) 56 840 2.29b 42 840 2.03b 11 840 2.05c

(2.3.20) 42 855 4.13b 28 855 5.01b 12 855 2.47b

(2.3.21) 56 840 2.88b 42 840 3.12b 11 840 2.56b

(2.3.22) 42 855 3.80b 28 855 4.62b 12 855 1.61b

(2.3.23) 56 840 3.51b 42 840 4.00b 11 840 1.71b

a Critical F values were obtained from A.M. Mood, Introduction to Statistics, Table V, pp. 426–427. Linear interpolation was employed except for
degrees of freedom exceeding 120. The critical F values in every case have been recorded for 120 degrees of freedom for each denominator sum
of squares even though the actual degrees of freedom were at least four times as great. The approximation error in this case is negligible.

b Significant at the 1 percent level.
c Significant at the 5 percent level.
d Significant at the 10 percent level.
Source: Kuh (1963, pp. 137–138).
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30 Homogeneity Tests for Linear Regression Models

investment than will a small percentage increase in internal funds. If the gov-
ernment seeks to stimulate investment and the objective is magnitude, not qual-
itative composition, it inexorably follows that the greatest investment effect
will come from measures that increase demand rather than from measures that
increase internal funds.6

6 For further discussion of investment expenditure behavior, see Chapter 6 or Hsiao and Tahmis-
cioglu (1997).



CHAPTER 3

Simple Regression with Variable Intercepts

3.1 INTRODUCTION

When the overall homogeneity hypothesis is rejected by the panel data while
the specification of a model appears proper, a simple way to take account
of the unobserved heterogeneity across individuals and/or through time is to
use the variable-intercept models (1.3.1) and (1.3.2). The basic assumption
of such models is that, conditional on the observed explanatory variables,
the effects of all omitted (or excluded) variables are driven by three types of
variables: individual time-invariant, period individual-invariant, and individual
time-varying variables.1 The individual time-invariant variables are variables
that are the same for a given cross-sectional unit through time but that vary
across cross-sectional units. Examples of these are attributes of individual
firm management, ability, sex, and socioeconomic background variables. The
period individual-invariant variables are variables that are the same for all cross-
sectional units at a given point in time but that vary through time. Examples of
these variable are prices, interest rates, and widespread optimism or pessimism.
The individual time-varying variables are variables that vary across cross-
sectional units at a given point in time and also exhibit variations through time.
Examples of these variables are firm profits, sales, and capital stock.

The variable-intercept models assume that the effects of the numerous omit-
ted individual time-varying variables are each individually unimportant but are
collectively significant and possess the property of a random variable that is
uncorrelated with (or independent of) all other included and excluded variables.
On the other hand, because the effects of remaining omitted variables either
stay constant through time for a given cross-sectional unit or are the same for
all cross-sectional units at a given point in time, or a combination of both, they
can be absorbed into the intercept term of a regression model as a means to
allow explicitly for the individual and/or time heterogeneity contained in the

1 These three different sorts of variations apply, of course, to both included and excluded variables.
Throughout this monograph we concentrate on relations between excluded variables and included
variables.
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32 Simple Regression with Variable Intercepts

temporal cross-sectional data. Moreover, when the individual- or time-specific
effects are absorbed into the intercept term, there is no need to assume that the
individual- or time-specific effects are uncorrelated with x, although sometimes
they are.

The variable-intercept models can provide a fairly useful specification for
fitting regression models using panel data. For example, consider fitting a
Cobb–Douglas production function

yit = μ+ β1x1it + · · · + βKxKit + vit , i = 1, . . . , N,

t = 1, . . . , T ,
(3.1.1)

where y is the logarithm of output and x1, . . . , xK are the logarithms of respec-
tive inputs. The classic procedure is to assume that the effects of omitted
variables are independent of x and are independently identically distributed.
Thus, conditioning on x all observations are random variations of a represen-
tative firm. However, (3.1.1) has often been criticized for ignoring variables
reflecting managerial and other technical differences between firms or variables
that reflect general conditions affecting the productivity of all firms but that are
fluctuating over time (such as weather factors in agriculture production) (e.g.,
Hoch 1962; Mundlak 1961; Nerlove 1965). Ideally, such firm- and time-effects
variables, sayMi and Pt , should be introduced explicitly into (3.1.1). Thus, vit
can be written as

vit = αMi + λPt + uit , (3.1.2)

with uit representing the effects of all remaining omitted variables. However,
if there are no observations on Mi and Pt , it is impossible to estimate α
and λ directly. A natural alternative would then be to consider the effects of
the product, αi = αMi and λt = λPt , which then leads to a variable-intercept
model: (1.3.1) or (1.3.2).

Such a procedure was used by Hoch (1962) to estimate parameters of a
Cobb–Douglas production function based on annual data for 63 Minnesota
farms from 1946 to 1951. He treated output, y, as a function of labor, x1; real
estate, x2; machinery, x3; and feed, fertilizer, and related expenses, x4. However,
because of the difficulties of measuring real estate and machinery variables,
he also tried an alternative specification that treated y as a function of x1,
x4, a current-expenditures item, x5, and fixed capital, x6. Regression results for
both specifications rejected the overall homogeneity hypothesis at the 5 percent
significance level. The least-squares estimates under three assumptions (αi =
λt = 0; αi = 0, λt �= 0; and αi �= 0, λt �= 0) are summarized in Table 3.1.
They exhibit an increase in the adjusted R2 from 0.75 to about 0.88 when
αi and λt are introduced. There are also some important changes in parameter
estimates when we move from the assumption of identicalαi’s to the assumption
that both αi and λt differ from zero. There is a significant drop in the sum of
the elasticities, with the drop concentrated mainly in the labor variable. If one
interprets αi as the firm scale effect, then this indicates that efficiency increases
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Table 3.1. Least-squares estimates of elasticity of Minnesota farm production
function based on alternative assumptions

Assumption

αi and λt are
Estimate of Elasticity: identically zero αi only is identically αi and λt different
βk for all i and t zero for all i from zero

Variable set 1a

β̂1, labor 0.256 0.166 0.043
β̂2, real estate 0.135 0.230 0.199
β̂3, machinery 0.163 0.261 0.194
β̂4, feed & fertilizer 0.349 0.311 0.289
Sum of β̂’s 0.904 0.967 0.726
Adjusted R2 0.721 0.813 0.884

Variable set 2
β̂1, labor 0.241 0.218 0.057
β̂5, current expenses 0.121 0.185 0.170
β̂6, fixed capital 0.278 0.304 0.317
β̂4, feed & fertilizer 0.315 0.285 0.288

Sum of β̂’s 0.954 0.991 0.832
Adjusted R2 0.752 0.823 0.879

a All output and input variables are in service units, measured in dollars.
Source: Hoch (1962).

with scale. As demonstrated in Figure 1.1, when the production hyperplane of
larger firms lies above the average production plane and the production plane
of smaller firm below the average plane, the pooled estimates, neglecting firm
differences, will have greater slope than the average plane. Some confirmation
of this argument was provided by Hoch (1962). Table 3.2 lists the characteristics
of firms grouped on the basis of firm-specific effects αi . The table suggests a
fairly pronounced association between scale and efficiency.

This example demonstrates that by introducing the unit- and/or time-specific
variables into the specification for panel data, it is possible to reduce or avoid the
omitted-variable bias. In this chapter we focus on the estimation and hypothesis
testing of models (1.3.1) and (1.3.2) under the assumption that all explanatory
variables, xkit , are nonstochastic (or exogenous). For ease of seeing the rela-
tions between fixed and random effects inference, we shall assume there are
no time-specific effects in Sections 3.2–3.5. In Section 3.2 we discuss esti-
mation methods when the specific effects are treated as fixed constants (FE).
Section 3.3 discusses estimation methods when they are treated as random
variables (effects) (RE). Section 3.4 discusses the pros and cons of treating
the specific effects as fixed or random. Tests for misspecification are dis-
cussed in Section 3.5. Section 3.6 discusses models with both individual- and
time-specific effects and models with specific variables. Section 3.7 discusses
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Table 3.2. Characteristics of firms grouped on the basis of the firm constant

Firms classified by value of exp(αi)a

Characteristics All firms <0.85 0.85–0.95 0.95–1.05 1.05–1.15 >1.15

Numbers of firms
in group 63 6 17 19 14 7

Average value of:
eαi , firm constant 1.00 0.81 0.92 1.00 1.11 1.26
Output (dollars) 15,602 10,000 15,570 14,690 16,500 24,140
Labor (dollars) 3,468 2,662 3,570 3,346 3,538 4,280
Feed & fertilizer

(dollars) 3,217 2,457 3,681 3,064 2,621 5,014
Current expenses

(dollars) 2,425 1,538 2,704 2,359 2,533 2,715
Fixed capital (dollars) 3,398 2,852 3,712 3,067 3,484 3,996
Profit (dollars) 3,094 491 1,903 2,854 4,324 8,135
Profit/output 0.20 0.05 0.12 0.19 0.26 0.33

a The mean of firm effects, αi , is zero is invoked.
Source: Hoch (1962).

heteroscedasticity and autocorrelation adjustment. In Section 3.8 we use a mul-
tivariate setup of a single-equation model to provide a synthesis of the issues
involved and to provide a link between the single equation model and the linear
simultaneous equations model (see Chapter 5).

3.2 FIXED-EFFECTS MODELS: LEAST-SQUARES
DUMMY VARIABLE APPROACH

The obvious generalization of the constant-intercept-and-slope model for panel
data is to introduce dummy variables to account for the effects of those omitted
variables that are specific to individual cross-sectional units but stay constant
over time, and the effects that are specific to each time period but are the same
for all cross-sectional units. For ease of highlighting the difference between
the FE and RE specifications in this section and the next three sections we
assume no time-specific effects and focus only on individual-specific effects.
Thus, the value of the dependent variable for the ith unit at time t , yit , depends
onK exogenous variables, (x1it , . . . , xKit ) = x′

it , that differ among individuals
in a cross section at a given point in time and also exhibit variation through
time, as well as on variables that are specific to the ith unit and that stay (more
or less) constant over time. This is model (1.3.1), which we can rewrite as

yit = α∗
i + x′

it � + uit , i = 1, . . . , N,
1×K K×1 t = 1, . . . , T ,

(3.2.1)

where � is a K × 1 vector of constants and α∗
i is a 1 × 1 scalar constant

representing the effects of those variables peculiar to the ith individual in more
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or less the same fashion over time. The error term, uit , represents the effects
of the omitted variables that are peculiar to both the individual units and time
periods. We assume that uit is uncorrelated with (xi1, . . . , xiT ) and can be
characterized by an independently identically distributed random variable with
mean 0 and variance σ 2

u .
The model (3.2.1) is also called the ANCOVA model. Without attempting

to make the boundaries between regression analysis, ANOVA, and ANCOVA
precise, we can say that regression model assumes that the expected value
of y is a function of exogenous factors, x, while the conventional ANOVA
model stipulates that the expected value of yit depends only on the class, i, to
which the observation considered belongs and that the value of the measured
quantity, y, assumes the relation that yit = α∗

i + uit , where the effects of all
other characteristics, uit , are random and are in no way dependent on the
individual-specific effects, α∗

i . But if y is also affected by other variables that
we are not able to control and standardize within classes, the simple within-
class sum of squares will be an overestimate of the stochastic component in y,
and the differences between class means will reflect not only any class effect
but also the effects of any differences in the values assumed by the uncontrolled
variables in different classes. It was for this kind of problem that the ANCOVA
model of the form (3.2.1) was first developed. The models are of a mixed
character, involving genuine exogenous variables, xit , as do regression models,
and at the same time allowing the true relation for each individual to depend on
the class to which the individual belongs, α∗

i , as do the usual ANOVA models.
The regression model enables us to assess the effects of quantitative factors and
the ANOVA model those of qualitative factors; the ANCOVA model covers
both quantitative and qualitative factors.

Stacking all NT observations of yit ((3.2.1)) in vector form, we have

Y =

⎡⎢⎣y1
...

yN

⎤⎥⎦ =

⎡⎢⎢⎢⎣
e
0
...
0

⎤⎥⎥⎥⎦α∗
1 +

⎡⎢⎢⎢⎣
0
e
...
0

⎤⎥⎥⎥⎦α∗
2 + · · · +

⎡⎢⎢⎢⎣
0
0
...
e

⎤⎥⎥⎥⎦α∗
N +

⎡⎢⎢⎢⎣
X1

X2
...

XN

⎤⎥⎥⎥⎦� +

⎡⎢⎣u1
...

uN

⎤⎥⎦ ,
(3.2.2)

where

yi =
T×1

⎡⎢⎢⎢⎣
yi1
yi2
...
yiT

⎤⎥⎥⎥⎦ , Xi =
T×K

⎡⎢⎢⎢⎣
x1i1 x2i1 · · · xKi1
x1i2 x2i2 · · · xKi2

...
...

...
x1iT x2iT xKiT

⎤⎥⎥⎥⎦ , X =

⎡⎢⎢⎢⎣
X1

X2
...

XN

⎤⎥⎥⎥⎦
e′ = (1, 1, . . . , 1), u′

i = (ui1, . . . , uiT ),
1×T 1×T

Eui = 0, Euiu′
i = σ 2

u IT , Euiu′
j = 0 if i �= j,
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IT denotes the T × T identity matrix. Let X̃ = (d1,d2, . . . ,dN,X), where di
is an NT × 1 vector dummy variable with the first (i − 1) × T elements equal
to 0, (i − 1)T + 1 to iT elements equal to 1, and 0 from iT + 1, . . . , NT , i =
1, . . . , N . Then y = X̃� + u, where � = (α∗

1 , . . . , α
∗
N,�

′)′.
Given the assumed properties of uit , we know that the ordinary least-squares

(OLS) estimator of (3.2.2) is the best linear unbiased estimator (BLUE). The
OLS estimators of α∗

i and � are obtained by minimizing

S = (y − X̃�)′(y − X̃�) =
N∑
i=1

u′
iui

=
N∑
i=1

(yi − eα∗
i −Xi�)′(yi − eα∗

i −Xi�). (3.2.3)

Taking partial derivatives of S with respect to α∗
i and setting them equal to 0,

we have

α̂∗
i = ȳi − x̄′

i�, i = 1, . . . , N, (3.2.4)

where

ȳi = 1

T

T∑
t=1

yit , x̄i = 1

T

T∑
t=1

xit .

Substituting (3.2.4) into (3.2.3) and taking the partial derivative of S with
respect to �, we have2

�̂cv =
[
N∑
i=1

T∑
t=1

(xit − x̄i)(xit − x̄i)′
]−1 [ N∑

i=1

T∑
t=1

(xit − x̄i)(yit − ȳi)
]
.

(3.2.5)

The OLS estimator (3.2.5) is called the least-squares dummy variable (LSDV)
estimator because the observed values to the coefficients α∗

i takes the form
of dummy variables. However, the computational procedure for estimating
the slope parameters in this model does not require the dummy variables
for the individual (and/or time) effects actually be included in the matrix of
explanatory variables. We need only find the means of time series observations
separately for each cross-sectional unit, transform the observed variables by
subtracting out the appropriate time series means, and then apply the least-
squares method to the transformed data. Hence, we need only invert a matrix of
order K ×K .

2 Although the notations are different, (3.2.5) is identical with (2.2.10).
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The foregoing procedure is equivalent to premultiplying the ith equation

yi = eα∗
i +Xi� + ui

by a T × T idempotent (covariance) transformation matrix

Q = IT − 1

T
ee′ (3.2.6)

to “sweep out” the individual effect α∗
i so that individual observations are

measured as deviations from individual means (over time):

Qyi = Qeα∗
i +QXi� +Qui

= QXi� +Qui , i = 1, . . . , N.
(3.2.7)

Applying the OLS procedure to (3.2.7) we have3

�̂cv =
[
N∑
i=1

X′
iQXi

]−1 [ N∑
i=1

X′
iQyi

]
, (3.2.8)

which is identical to (3.2.5). Because (3.2.2) is called the ANCOVA model, the
LSDV estimator of � is sometimes called the covariance (CV) estimator. It is
also called the within-group estimator, because only the variation within each
group is utilized in forming this estimator.4

The CV estimator of � can also be derived as a method of moment estimator.
The strict exogeneity of xit implies that

E(ui | Xi, α∗
i ) = E(ui | Xi) = 0. (3.2.9)

It follows that

E[(ui − eūi) = (yi − eȳi) − (Xi − ex̄′
i)� | Xi] = 0. (3.2.10)

3 Equation (3.2.7) can be viewed as a linear-regression model with singular-disturbance covariance
matrix σ 2

uQ. A generalization of Aitken’s theorem leads to the generalized least-squares estimator

�̂cv =
(
N∑
i=1

X′
iQ

′Q−QXi

)−1 ( N∑
i=1

X′
iQ

′Q−Qyi

)

=
[
N∑
i=1

X′
iQXi

]−1 [ N∑
i=1

X′
tQyi

]
,

whereQ− is the generalized inverse ofQ satisfying the conditionsQQ−Q = Q (Theil (1971),
their Sections 6.6 and 6.7).

4 Because the slope coefficients are assumed the same for all i and t , for simplicity we shall not
distinguish the individual mean corrected estimator and the within-group estimator as we did in
Chapter 2. We shall simply refer to (3.2.8) or its equivalent as the within-group estimator.
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Approximating the moment conditions (3.2.10) by their sample moments
yields

1

N

N∑
i=1

X′
i[(yi − eȳi) − (Xi − ex̄′

i)�̂]

= 1

N

N∑
i=1

X′
i[Qyi −QXi�̂] = 0.

(3.2.10′)

Solving (3.2.10′) yields the CV estimator (3.2.8).
The CV estimator β̂cv is unbiased. It is also consistent when either N or T

or both tend to infinity. Its variance–covariance matrix is

Var (�̂cv) = σ 2
u

[
N∑
t=1

X′
iQXi

]−1

. (3.2.11)

However, the estimator for the intercept, (3.2.4), although unbiased, is consis-
tent only when T → ∞.

It should be noted that an alternative and equivalent formulation of (3.2.1)
is to introduce a “mean intercept,” μ, so that

yit = μ+ x′
it� + αi + uit . (3.2.12)

Because both μ and αi are fixed constants, without additional restriction, they
are not separately identifiable or estimable. One way to identify μ and αi is
to introduce the restriction that

∑N
i=1 αi = 0. Then the individual effect αi

represents the deviation of the ith individual from the common mean μ.
Equations (3.2.12) and (3.2.1) lead to the same least-squares estimator for �

[equation (3.2.5)]. This easily can be seen by noting that the BLUEs for μ, αi ,
and � are obtained by minimizing

N∑
i=1

u′
iui =

N∑
i=1

T∑
t=1

u2
it

subject to the restriction
∑N
i=1 αi = 0. Utilizing the restriction

∑N
i=1 αi = 0 in

solving the marginal conditions, we have

μ̂ = ȳ − x̄′�, where ȳ = 1

NT

N∑
i=1

T∑
t=1

yit ,

x̄ = 1

NT

N∑
i=1

T∑
t=1

xit ,

(3.2.13)

α̂i = ȳi − μ̂− x̄′
i�. (3.2.14)

Substituting (3.2.13) and (3.2.14) into (3.2.12) and solving the marginal con-
dition for �, we obtain (3.2.5).
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When var (uit ) = σ 2
i , the LSDV estimator is no longer BLUE. However,

it remains consistent. An efficient estimator is to apply the weighted least-
squares estimator where each (yit , x′

it , 1) is weighted by the inverse of σi
before applying the LSDV estimator. An initial estimator of σi can be obtained
from

σ̂ 2
i = 1

T

T∑
t=1

(yit − α̂∗
i − x′

it �̂cv)
2. (3.2.15)

3.3 RANDOM EFFECTS MODELS: ESTIMATION OF
VARIANCE-COMPONENTS MODELS

In Section 3.2 we discussed the estimation of linear regression models when
the effects of omitted individual-specific variables (αi) are treated as fixed
constants over time. In this section we treat the individual-specific effects, αi ,
like uit , as random variables.

It is a standard practice in the regression analysis to assume that the large
number of factors that affect the value of the dependent variable, but that have
not been explicitly included as explanatory variables, can be appropriately
summarized by a random disturbance. When numerous individual units are
observed over time, it is sometimes assumed that some of the omitted variables
will represent factors peculiar to both the individual units and time periods for
which observations are obtained, whereas other variables will reflect individual
differences that tend to affect the observations for a given individual in more or
less the same fashion over time. Still other variables may reflect factors peculiar
to specific time periods, but affecting individual units more or less equally. Thus,
the residual, vit , is often assumed to consist of three components:5

vit = αi + λt + uit , (3.3.1)

However, the sample provides information only about the joint density of
(yit , x′

it ), f (yi , xi), not the joint density of f (yi, xi , αi,�), where xi denotes
the TK × 1 observed xit , and � denotes the T × 1 vector (λ1, . . . , λT ). Since

f (yi , xi) = f (yi | xi)f (xi)

=
[∫

f (yi | xi , αi,�)f (αi,� | xi)dαid�

]
· f (xi),

(3.3.2)

we need to knowf (αi,� t | xi) to derive the random-effects estimator. However,
αi and λt are unobserved. A common assumption for the random-effects model

5 Note that we follow the formulation of (3.2.10) by treating αi and λt as deviations from the
population mean. For ease of exposition we also restrict our attention to the homoscedastic
variances of αi and λt . For the heteroscedasticity generalization of the error-component model,
see Chapter 3, Section 3.7 or Mazodier and Trognon (1978) and Wansbeek and Kapteyn (1982).
For a test of individual heteroscedasticity, see Holly and Gardiol (2000).
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is to assume

f (αi, λt | xi) = f (αi, λt ) = f (αi)f (λt ). (3.3.3)

In other words, we assume that

Eαi = Eλt = Euit = 0, Eαiλt = Eαiuit = Eλtuit = 0,

Eαiαj =
{
σ 2
α if i = j,

0 if i �= j,

Eλtλs =
{
σ 2
λ if t = s,

0 if t �= s,

Euitujs =
{
σ 2
u if i = j, t = s,

0 otherwise,

(3.3.4)

and

Eαix′
it = Eλtx′

it = Euitx′
it = 0′.

The variance of yit conditional on xit is, from (3.3.1) and (3.3.4), σ 2
y =

σ 2
α + σ 2

λ + σ 2
u . The variances σ 2

α , σ
2
λ , and σ 2

u are accordingly called variance
components; each is a variance in its own right and is a component of σ 2

y .
Therefore, this kind of model is sometimes referred to as a variance-components
(or error-components) model.

For ease of exposition we assume λt = 0 for all t in this and the following
three sections. That is, we concentrate on models of the form (3.2.12).

Rewriting (3.2.12) in vector form, we have

yi
T×1

= X̃i
T×(K+1)

�
(K+1)×1

+ vi ,
T×1

i = 1, 2, . . . , N, (3.3.5)

where X̃i = (e, Xi),�′ = (μ,�′), v′
i = (vi1, . . . , viT ), and vit = αi + uit . The

presence of αi creates correlations of vit over time for a given individual,
although vit remains uncorrelated across individuals. The variance–covariance
matrix of vi takes the form,

Eviv′
i = σ 2

u IT + σ 2
αee′ = V. (3.3.6)

Its inverse is (see Graybill 1969; Nerlove 1971b; Wallace and Hussain 1969)

V −1 = 1

σ 2
u

[
IT − σ 2

α

σ 2
u + T σ 2

α

ee′
]
. (3.3.7)

3.3.1 Covariance Estimation

Regardless of whether the αi’s are treated as fixed or as random, the individual-
specific effects for a given sample can be swept out by the idempotent (covari-
ance) transformation matrix Q [equation (3.2.6)], because Qe = 0, and hence
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Qvi = Qui . Thus, premultiplying (3.3.5) byQ, we have

Qyi = Qeμ+QXi� +Qeαi +Qui

= QXi� +Qui .
(3.3.8)

Applying the least-squares method to (3.3.8), we obtain the CV estimator
(3.2.8) of �. We estimate μ by μ̂ = ȳ − x̄′�̂cv .

Whether αi are treated as fixed or random, the CV estimator of � is unbiased
and consistent either N or T or both tend to infinity. However, whereas the CV
estimator is the BLUE under the assumption that αi are fixed constants, the
CV estimator is not the BLUE in finite samples when αi are assumed random.
The BLUE in the latter case is the generalized least-squares (GLS) estimator.6

Moreover, if the explanatory variables contain some time-invariant variables,
zi , then ez′

i and e are perfectly correlated. Their coefficients cannot be estimated
by CV because the CV transformation eliminates zi from (3.3.8).

3.3.2 Generalized Least-Squares (GLS) Estimation

Under (3.3.4), E(vi | xi) = 0. The least-squares method can be applied. How-
ever, because vit and vis both contain αi , the residuals of (3.3.5) are serially
correlated. To get efficient estimates of �′ = (μ,�′) we have to use the GLS
method. The normal equations for the GLS estimators are[

N∑
i=1

X̃′
iV

−1X̃i

]
�̂GLS =

[
N∑
i=1

X̃′
iV

−1 yi

]
. (3.3.9)

Following Maddala (1971a), we write V −1 [equation (3.3.7)] as

V −1 = 1

σ 2
u

[(
IT − 1

T
ee′
)

+ ψ · 1

T
ee′
]

= 1

σ 2
u

[
Q+ ψ · 1

T
ee′
]
, (3.3.10)

where

ψ = σ 2
u

σ 2
u + T σ 2

α

. (3.3.11)

Hence, (3.3.9) can conveniently be written as

[Wx̃x̃ + ψBx̃x̃]
[
μ̂

�̂

]
GLS

= [Wx̃y + ψBx̃y], (3.3.12)

6 For details, see Section 3.3.2.
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where

Tx̃x̃ =
N∑
i=1

X̃′
i X̃i , Tx̃y =

N∑
i=1

X̃′
i yi ,

Bx̃x̃ = 1

T

N∑
i=1

(X̃′
iee′X̃i), Bx̃y = 1

T

N∑
i=1

(X̃′
iee′yi),

Wx̃x̃ = Tx̃x̃ − Bx̃x̃, Wx̃y = Tx̃y − Bx̃y.
The matrices Bx̃x̃ and Bx̃y contain the sums of squares and sums of cross
products between groups,Wx̃x̃ andWx̃y are the corresponding matrices within
groups, and Tx̃x̃ and Tx̃y are the corresponding matrices for total variation.

Solving (3.3.12), we have⎡⎢⎢⎣ ψNT ψT
N∑
i=1

x̄′
i

ψT
N∑
i=1

x̄i
N∑
i=1
X′
iQXi + ψT

N∑
i=1

x̄i x̄′
i

⎤⎥⎥⎦
[
μ̂

�̂

]
GLS

=

⎡⎢⎣ ψNT ȳ

N∑
i=1
X′
iQyi + ψT

N∑
i=1

x̄i ȳi

⎤⎥⎦
. (3.3.13)

Using the formula of the partitioned inverse, we obtain

�̂GLS =
[

1

T

N∑
i=1

X′
iQXi + ψ

N∑
i=1

(x̄i − x̄)(x̄i − x̄)′
]−1

·
[

1

T

N∑
i=1

X′
iQyi + ψ

N∑
i=1

(x̄i − x̄)(ȳi − ȳ)

]
= 
�̂b + (IK −
)�̂cv,

μ̂GLS = ȳ − x̄′�̂GLS,

(3.3.14)

where


 = ψT
[
N∑
i=1

X′
iQXi + ψT

N∑
i=1

(x̄i − x̄)(x̄i − x̄)′
]−1

·
[
N∑
i=1

(x̄i − x̄)(x̄i − x̄)′
]
,

�̂b =
[
N∑
i=1

(x̄i − x̄)(x̄i − x̄)′
]−1 [ N∑

i=1

(x̄i − x̄)(ȳi − ȳ)

]
.
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The estimator �̂b is called the between-group estimator because it ignores
variation within the group.

The GLS estimator (3.3.14) is a weighted average of the between-group
and within-group estimators. If ψ → 1, �̂GLS converges to the OLS estimator
T −1
x̃x̃ Tx̃y . Ifψ → 0, the GLS estimator for � becomes the CV estimator (LSDV)

[equation (3.2.5)]. In essence, ψ measures the weight given to the between-
group variation. In the LSDV (or fixed-effects model) procedure, this source
of variation is completely ignored. The OLS procedure corresponds to ψ = 1.
The between-group and within-group variations are just added up. Thus, one
can view the OLS and LSDV as somewhat all-or-nothing ways of utilizing the
between-group variation. The procedure of treating αi as random provides a
solution intermediate between treating them all as different and treating them
all as equal, as implied by the GLS estimator given in (3.3.14).

If [Wx̃x̃ + ψBx̃x̃] is nonsingular, the covariance matrix of GLS estimators
of � can be written as

Var

[
μ̂

�̂

]
GLS

= σ 2
u [Wx̃x̃ + ψBx̃x̃]−1 (3.3.15)

= σ 2
u

⎡⎢⎣
⎛⎜⎝0 0′

0
N∑
i=1
X′
iQXi

⎞⎟⎠

+ T ψ

⎛⎜⎜⎜⎝
N

N∑
i=1

x̄′
i

N∑
i=1

x̄i
N∑
i=1

x̄i x̄′
i

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦

−1

.

Using the formula for partitioned inversion (e.g., Rao 1973, Chapter 2; Theil
1971, Chapter 1), we obtain

Var (�̂GLS) = σ 2
u

[
N∑
i=1

X′
iQXi + T ψ

N∑
i=1

(x̄i − x̄)(x̄i − x̄)′
]−1

. (3.3.16)

Becauseψ > 0, we see immediately that the difference between the covariance
matrices of �̂cv and �̂GLS is a positive semidefinite matrix. However, for fixed
N , as T → ∞, ψ → 0. Thus, under the assumption that (1/NT )
Ni=1X

′
iXi

and (1/NT )
Ni=1X
′
iQXi , converge to finite positive definitive matrices, when

T → ∞, we have β̂GLS → β̂cv and Var(
√
T �̂GLS) → Var (

√
T �̂cv). This is

because when T → ∞, we have an infinite number of observations for each i.
Therefore, we can consider each αi as a random variable that has been drawn
once and forever so that for each i we can pretend that they are just like fixed
parameters.
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Computation of the GLS estimator can be simplified by noting the special
form of V −1 (3.3.10). Let P = [IT − (1 − ψ1/2)(1/T )ee′]; we have V −1 =
1
σ 2
u
P ′P . Premultiplying (3.3.5) by the transformation matrix, P , we obtain the

GLS estimator (3.3.12) by applying the least-squares method to the transformed
model (Theil 1971, Chapter 6). This is equivalent to first transforming the data
by subtracting a fraction (1 − ψ1/2) of individual means ȳi , and x̄i from their
corresponding yit and xit , then regressing [yit − (1 − ψ1/2)ȳi] on a constant
and [xit − (1 − ψ1/2)x̄i]. Since ψ1/2 �= 0, xit − (1 − ψ1/2)x̄i is different from
0 even xit is time-invariant. In other words, the random-effects model allows one
to estimate the coefficients of both time-varying and time-invariant variables
while the fixed-effects model only allows us to estimate the coefficients of
time-varying explanatory variables.

The GLS requires that of σ 2
u and σ 2

α be known. If the variance components,
σ 2
u and σ 2

α , are unknown, we can use two-step GLS estimation (feasible GLS,
FGLS). In the first step we estimate the variance components using some
consistent estimators. In the second step we substitute their estimated values
into (3.3.10) or its equivalent form. Noting that ȳi = μ+ �′ x̄i + αi + ūi and
(yit − ȳi) = �′(xit − x̄i) + (uit − ūi), we can use the within- and between-
group residuals to estimate σ 2

u and σ 2
α respectively, by7

σ̂ 2
u =

∑N
i=1

∑T
t=1[(yit − ȳi) − �̂

′
cv(xit − x̄i)]2

N (T − 1) −K , (3.3.17)

and

σ̂ 2
α =

∑N
i=1(ȳi − μ̃− �̃

′
x̄i)2

N − (K + 1)
− 1

T
σ̂ 2
u , (3.3.18)

where (μ̃, �̃
′
)′ = B−1

x̃x̃ Bx̃ỹ . When the sample size is large (in the sense of
N → ∞, T → ∞), the two-step GLS estimator will have the same asymp-
totic efficiency as the GLS procedure with known variance components (Fuller
and Battese 1974). Even for moderate sample size [for T ≥ 3, N − (K + 1) ≥
9; for T = 2, N − (K + 1) ≥ 10], the two-step procedure is still more effi-
cient than the CV (or within-group) estimator in the sense that the difference
between the covariance matrices of the CV estimator and the two-step estimator
is non-negative definite (Taylor 1980).

Amemiya (1971) has discussed efficient estimation of the variance compo-
nents. However, substituting more efficiently estimated variance components
into (3.3.12) need not lead to more efficient estimates of μ and � (Maddala and
Mount 1973; Taylor 1980).

7 Equation (3.3.18) may yield a negative estimate of σ 2
α . For additional discussion on this issue,

see Section 3.3.3.
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3.3.3 Maximum-Likelihood Estimation

When αi and uit are random and normally distributed, the logarithm of the
likelihood function is

log L = −NT
2

log 2π − N

2
log | V |

−1

2

N∑
i=1

(yi − eμ−Xi�)′V −1(yi − eμ−Xi�)

= −NT
2

log 2π − N (T − 1)

2
log σ 2

u − N

2
log
(
σ 2
u + T σ 2

α

)
− 1

2σ 2
u

N∑
i=1

(yi − eμ−Xi�)′Q(yi − eμ−Xi�)

− T

2(σ 2
u + T σ 2

α )

N∑
i=1

(ȳi − μ− �′ x̄i)2, (3.3.19)

where the second equality follows from (3.3.10) and

| V |= σ 2(T−1)
u

(
σ 2
u + T σ 2

α

)
. (3.3.20)

The maximum-likelihood estimator (MLE) of (μ,�′, σ 2
u , σ

2
α ) = �̃′ is obtained

by solving the following first-order conditions simultaneously:

∂ log L

∂μ
= T

(σ 2
u + T σ 2

α )

N∑
i=1

(
ȳi − μ− x̄′

i�
) = 0, (3.3.21)

∂logL

∂�′ = 1

σ 2
u

[ N∑
i=1

(yi − eμ−Xi�)′QXi

+ T σ 2
u(

σ 2
u + T σ 2

α

) N∑
i=1

(ȳi − μ− x̄′
i�)x̄′

i

]
= 0′, (3.3.22)

∂logL

∂σ 2
u

= −N (T − 1)

2σ 2
u

− N

2(σ 2
u + T σ 2

α )
+ 1

2σ 4
u

N∑
i=1

(yi − eμ

− Xi�)′Q(yi − eμ−Xi�)

+ T

2
(
σ 2
u + T σ 2

α

)2 N∑
i=1

(ȳi − μ− x̄′
i�)2 = 0, (3.3.23)

∂logL

∂σ 2
α

= − NT

2
(
σ 2
u + T σ 2

α

) + T 2

2
(
σ 2
u + T σ 2

α

)2 N∑
i=1

(ȳi − μ − x̄′
i�)2 = 0.

(3.3.24)
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Simultaneous solution of (3.3.21)–(3.3.24) is complicated. The Newton–
Raphson iterative procedure can be used to solve for the MLE. The procedure
uses an initial trial value of �̃, ˆ̃�(1), to start the iteration by substituting it into
the formula

ˆ̃�(j ) = ˆ̃�(j−1) −
[
∂2logL

∂�̃∂�̃
′

]−1

�̃= ˆ̃�(j−1)

∂logL

∂�̃

∣∣∣∣
�̃= ˆ̃�(j−1)

(3.3.25)

to obtain a revised estimate of �̃, ˆ̃�(2). The process is repeated until the j th
iterative solution ˆ̃�(j ) is close to the (j − 1)th iterative solution ˆ̃�(j−1).

Alternatively, we can use a sequential iterative procedure to obtain the MLE.
We note that from (3.3.21) and (3.3.22) we have⎡⎣μ̂

�̂

⎤⎦ =
[
N∑
i=1

X̃′
iV

−1X̃i

]−1 [ N∑
i=1

X̃′
iV

−1 yi

]

=
⎧⎨⎩

N∑
i=1

⎡⎣ e′

X′
i

⎤⎦[IT − σ 2
α

σ 2
u + T σ 2

α

ee′
]

(e, Xi)

⎫⎬⎭
−1

(3.3.26)

·
⎧⎨⎩

N∑
i=1

⎡⎣ e′

X′
i

⎤⎦[IT − σ 2
α

σ 2
u + T σ 2

α

ee′
]

yi

⎫⎬⎭ .
Substituting (3.3.24) into (3.3.23), we have

σ̂ 2
u = 1

N (T − 1)

N∑
i=1

(yi − eμ−Xi�)′Q(yi − eμ−Xi�). (3.3.27)

From (3.3.24) we have

σ̂ 2
α = 1

N

N∑
i=1

(ȳi − μ̂− x̄′
i�̂)2 − 1

T
σ̂ 2
u . (3.3.28)

Thus, we can obtain the MLE by first substituting an initial trial value of
σ 2
α /(σ

2
u + T σ 2

α ) into (3.3.26) to estimate μ and �, and then estimate σ 2
u by

(3.3.27) using the solution of (3.3.26). Substituting the solutions of (3.3.26)
and (3.3.27) into (3.3.28), we obtain an estimate of σ 2

α . Then we repeat the
process by substituting the new values of σ 2

u and σ 2
α into (3.3.26) to obtain new

estimates of μ and �, and so on until the solution converges.
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When T is fixed and N goes to infinity, the MLE is consistent and asymp-
totically normally distributed with variance–covariance matrix

Var
(√
N ˆ̃�MLE

)
= NE

[
−∂

2logL

∂�̃∂�̃
′

]−1

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T
σ 2

T
σ 2

1
N

N∑
i=1

x̄′
i 0 0

1
σ 2
u

1
N

N∑
i=1
X′
i

(
IT − σ 2

α

σ 2 ee′
)
Xi 0 0

T−1
2σ 2
u

+ 1
2σ 4

T
2σ 4

T 2

2σ 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

(3.3.29)

where σ 2 = σ 2
u + T σ 2

α . When N is fixed and T tends to infinity, the MLEs of
μ,� and σ 2

u converge to the CV estimator, and are consistent, but the MLE
of σ 2

α is inconsistent. This is because when N is fixed, there is not sufficient
variation in αi no matter how large T is; for details, see Anderson and Hsiao
(1981, 1982).

Although the MLE is asymptotically efficient, sometimes simultaneous solu-
tion of (3.3.21)–(3.3.24) yields an estimated value of σ 2

α that is negative.8

When there is a unique solution to the partial derivative equations (3.3.21)–
(3.3.24), with σ 2

u > 0, σ 2
α > 0, the solution is the MLE. However, when we

constrain σ 2
u ≥ 0 and σ 2

α ≥ 0, a boundary solution may occur. The solution,
then, no longer satisfies all the derivative equations (3.3.21)–(3.3.24). Mad-
dala (1971a) has shown that the boundary solution of σ 2

u = 0 cannot occur,
but the boundary solution of σ 2

α = 0 will occur when Tyy − T ′
x̃yT

−1
x̃x̃ Tx̃y >

T [Byy − 2T ′
x̃yT

−1
x̃x̃ Tx̃y + T ′

x̃yT
−1
x̃x̃ Bx̃x̃T

−1
x̃x̃ Tx̃y]. However, the probability of a

boundary solution tends to 0 when either T or N tends to infinity.

3.4 FIXED EFFECTS OR RANDOM EFFECTS

3.4.1 An Example

In previous sections we discussed the estimation of a linear regression model
(3.2.1) when the effects, αi , are treated either as fixed or as random. Whether
to treat the effects as fixed or random makes no difference when N is fixed and

8 The negative-variance-components problem also arises in the two-step GLS method. As one can
see from (3.3.17) and (3.3.18) that there is no guarantee that (3.3.18) necessarily yields a positive
estimate of σ 2

α . A practical guide in this situation is to replace a negative estimated variance
component by its boundary value, zero. See Baltagi (1981b) and Maddala and Mount (1973)
for a Monte Carlo studies of the desirable results of using this procedure in terms of the mean
square error of the estimate. For additional discussion of the MLE of random effects model, see
Breusch (1987).
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T is large because both the LSDV estimator (3.2.8) and the generalized least-
squares estimator (3.3.14) become the same estimator. When T is finite and N
is large, whether to treat the effects as fixed or random is not an easy question
to answer. It can make a surprising amount of difference in the estimates of the
parameters. In fact, when only a few observations are available for different
individuals over time, it is exceptionally important to make the best use of
the lesser amount of information over time for the efficient estimation of the
common behavioral relationship.

For example, Hausman (1978) found that using a fixed-effects specification
produced significantly different results from a random-effects specification
when estimating a wage equation using a sample of 629 high school grad-
uates followed over six years by the Michigan income dynamics study. The
explanatory variables in the Hausman wage equation include a piecewise-
linear representation of age, the presence of unemployment or poor health in
the previous year, and dummy variables for self-employment, living in the
South, or living in a rural area. The fixed-effects specification was estimated
using (3.2.5).9 The random-effects specification was estimated using (3.3.14).
The results are reproduced in Table 3.3. In comparing these two estimates, it is
apparent that the effects of unemployment, self-employment, and geographical
location differ widely (relative to their standard errors) in the two models.

3.4.2 Conditional Inference or Unconditional (Marginal) Inference

If the effects of omitted variables can be appropriately summarized by a random
variable and the individual (or time) effects represent the ignorance of the
investigator, it does not seem reasonable to treat one source of ignorance (αi)
as fixed and the other source of ignorance (uit ) as random. It appears that one
way to unify the fixed-effects and random-effects models is to assume from
the outset that the effects are random. The fixed-effects model is viewed as one
in which investigators make inferences conditional on the effects that are in
the sample. The random-effects model is viewed as one in which investigators
make unconditional or marginal inferences with respect to the population of all
effects. There is really no distinction in the “nature (of the effect).” It is up to the
investigator to decide whether to make inference with respect to the population
characteristics or only with respect to the effects that are in the sample.

In general, whether one wishes to consider the conditional likelihood func-
tion or the marginal likelihood function depends on the context of the data, the
manner in which they were gathered, and the environment from which they
came. For instance, consider an example in which several technicians provide
maintenance for machines. The effects of technicians can be assumed random
if the technicians are all randomly drawn from a common population. However,
if the situation were one of analyzing just a few individuals, say five or six,

9 We note that the fixed-effects estimator, although not efficient, is consistent under the random-
effects formulation (Chapter 3, Section 3.3.1).
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Table 3.3. Wage equations (dependent variable: log wagea)

Variable Fixed effects Random effects

1. Age 1 (20–35) 0.0557 0.0393
(0.0042) (0.0033)

2. Age 2 (35–45) 0.0351 0.0092
(0.0051) (0.0036)

3. Age 3 (45–55) 0.0209 −0.0007
(0.0055) (0.0042)

4. Age 4 (55–65) 0.0209 −0.0097
(0.0078) (0.0060)

5. Age 5 (65–) −0.0171 −0.0423
(0.0155) (0.0121)

6. Unemployed previous year −0.0042 −0.0277
(0.0153) (0.0151)

7. Poor health previous year −0.0204 −0.0250
(0.0221) (0.0215)

8. Self-employment −0.2190 −0.2670
(0.0297) (0.0263)

9. South −0.1569 −0.0324
(0.0656) (0.0333)

10. Rural −0.0101 −0.1215
(0.0317) (0.0237)

11. Constant — 0.8499
— (0.0433)

s2 0.0567 0.0694
Degrees of freedom 3,135 3,763

a 3,774 observations; standard errors are in parentheses.
Source: Hausman (1978).

and the sole interest lay in just these individuals, and if we want to assess
differences between those specific technicians, then the fixed-effects model is
more appropriate. On the other hand, if an experiment involves hundreds of
individuals who are considered a random sample from some larger population,
random effects would be more appropriate. The situation to which a model
applies and the inferences based on it are the deciding factors in determining
whether we should treat effects as random or fixed. When inferences are going
to be confined to the effects in the model, the effects are more appropriately
considered fixed. When inferences will be made about a population of effects
from which those in the data are considered to be a random sample, then the
effects should be considered random.10

If one accepts this view, then why do the fixed-effects and random-effects
approaches sometimes yield vastly different estimates of the common slope
coefficients that are not supposed to vary across individuals? It appears that

10 In this sense, if N becomes large, one would not be interested in the specific effect of each
individual but rather in the characteristics of the population. A random-effects framework would
be more appropriate.
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in addition to the efficiency issue discussed earlier, there is also a different
but important issue of whether or not the model is properly specified, that is,
whether the differences in individual effects can be attributed to the chance
mechanism.

In the random effects framework of (3.3.3)–(3.3.5), there are two fundamen-
tal assumptions. One is that the unobserved individual effects, αi , are random
draws from a common population. The other is that the explanatory variables are
strictly exogenous. That is, the error terms are uncorrelated with (or orthogonal
to) the past, current, and future values of the regressors,

E(uit | xi1, . . . , xiT ) = E(αi | xi1, . . . , xiT )

= E(vit | xi1, . . . , xiT ) = 0 for t = 1, . . . , T .
(3.4.1)

In the aforementioned example if there are fundamental differences in the
technicians, for instance, in the ability, age, years of experiences, etc., then
the difference in technician cannot be attributed to a pure chance mechanism.
It is more appropriate to view the technicians as drawn from heterogeneous
populations and the individual effects α∗

i = αi + μ representing the funda-
mental difference among the heterogeneous populations. If the difference in
technicians, captured by α∗

i is ignored, the least-squares estimator of (3.3.5)
yields

�̂LS =
[
N∑
i=1

T∑
t=1

(xit − x̄)(xit − x̄)′
]−1 [ N∑

i=1

T∑
t=1

(xit − x̄)(yit − ȳ)

]

= �+
[
N∑
i=1

T∑
t=1

(xit − x̄)(xit − x̄)′
]−1 {

T

N∑
i=1

(x̄i − x̄)(α∗
i − ᾱ)

}
+ o(1)

(3.4.2)

where ᾱ = 1
N

∑N
i=1 α

∗
i . However, if the fundamental characteristics that drive

α∗
i , say, ability, age, and years of experience in the example of technicians,

are correlated with xi , then it is clear that 1
N

∑N
i=1(x̄i − x̄)(α∗

i − ᾱ) will not
converge to 0 asN → ∞. The least-squares estimator of � is inconsistent. The
bias of �̂LS depends on the correlation between xit and α∗

i .
On the other hand, if α∗

i (or αi) are treated as fixed constants, then the
regressors for yit are (x′

it , 1). As long as (x′
it , 1) are uncorrelated with uit , the

least-squares estimators for � and α∗
i (or αi) are unbiased. The issue of whether

α∗
i are correlated with xit is no longer relevant under the fixed-effects formula-

tion. Thus, unless the distribution of α∗
i conditional on xi can be appropriately

formulated, it would be more appropriate to treat α∗
i as fixed and different

(Hsiao and Sun 2000).

3.4.2.1 Mundlak’s Formulation

Mundlak (1978a) criticized the random-effects formulation (3.3.4) on the
grounds that it neglects the correlation that may exist between the effects,



3.4 Fixed Effects or Random Effects 51

αi , and the explanatory variables, xit . There are reasons to believe that in many
circumstances αi and xit are indeed correlated. For instance, consider the esti-
mation of production function using firm data. The output of each firm, yit , may
be affected by unobservable managerial ability, αi . Firms with more efficient
management tend to produce more and use more inputs,Xi . Less efficient firms
tend to produce less and use fewer inputs. In this situation, αi and Xi cannot
be independent. Ignoring this correlation can lead to biased estimation.

The properties of various estimators we have discussed thus far depend on the
existence and extent of the relations between theX’s and the effects. Therefore,
we have to consider the joint distribution of these variables. However, αi are
unobservable. Mundlak (1978a) suggested that we approximate E(αi | Xi) by
a linear function. He introduced the auxiliary regression

αi =
∑
t

x′
itat + ωi, ωi ∼ N(0, σ 2

ω

)
. (3.4.3a)

A simple approximation to (3.4.3a) is to let

αi = x̄′
ia + ωi, ωi ∼ N(0, σ 2

ω

)
. (3.4.3b)

Clearly, a will be equal to 0 (and σ 2
ω = σ 2

α ) if (and only if) the explanatory
variables are uncorrelated with the effects.

Substituting (3.4.3b) into (3.3.5), and stacking equations over t and i, we
have ⎡⎢⎢⎢⎢⎣

y1

y2

...

yN

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
X̃1

X̃2

...

X̃N

⎤⎥⎥⎥⎥⎦ � +

⎡⎢⎢⎢⎢⎣
ex̄′

1

ex̄′
2

...

ex̄′
N

⎤⎥⎥⎥⎥⎦ a +

⎡⎢⎢⎢⎢⎣
e
0
...

0

⎤⎥⎥⎥⎥⎦ω1

+

⎡⎢⎢⎢⎢⎣
0
e
...

0

⎤⎥⎥⎥⎥⎦ω2 + · · · +

⎡⎢⎢⎢⎢⎣
0
0
...

eN

⎤⎥⎥⎥⎥⎦ωN +

⎡⎢⎢⎢⎢⎣
u1

u2

...

uN

⎤⎥⎥⎥⎥⎦ ,
(3.4.4)

where

E(ui + eωi) = 0,

E(ui + eωi)(uj + eωj )′ =
{
σ 2
u IT + σ 2

ωee′ = Ṽ , if i = j,
0, if i �= j,

Ṽ −1 = 1

σ 2
u

[
IT − σ 2

ω

σ 2
u + T σ 2

ω

ee′
]
.
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Utilizing the expression for the inverse of a partitioned matrix (Theil 1971,
Chapter 1), we obtain the GLS of (μ,�′, a′) as

μ̂∗
GLS = ȳ − x̄′�̂b, (3.4.5)

�̂
∗
GLS = �̂cv, (3.4.6)

â∗
GLS = �̂b − �̂cv. (3.4.7)

Thus, in the present framework, the BLUE of � is the CV estimator of
(3.2.1) or (3.2.10′). It does not depend on knowledge of the variance compo-
nents. Therefore, Mundlak (1978a) maintained that the imaginary difference
between the fixed-effects and random-effects approaches is based on an incor-
rect specification. In fact, applying GLS to (3.2.12) yields a biased estimator.
This can be seen by noting that the GLS estimate of � for (3.3.5), that is,
(3.3.12), can be viewed as the GLS estimate of (3.4.4) after imposing the
restriction a = 0. As shown in (3.3.12),

�̂GLS = 
�̂b + (IK −
)�̂CV . (3.4.8)

If (3.4.4) is the correct specification, E�̂b is equal to � + a, and E�̂cv = �, so
that

E�̂GLS = � +
a. (3.4.9)

This is a biased estimator if a �= 0. However, whenT tends to infinity,
 tends to
0, and �̂GLS tends to �̂cv and is asymptotically unbiased. But in the more relevant
situation in which T is fixed and N tends to infinity, plimN→∞�̂GLS �= � in
Mundlak’s formulation.

Though it is important to recognize the possible correlation between the
effects and the explanatory variables, Mundlak’s (1978a) claim that there is
only one estimator and that efficiency is not a consideration in distinguishing
between the random-effects and fixed-effects approaches is perhaps a bit strong.
Mandlak derived (3.4.6) from the assumption that f (αi | xi) has mean x̄′a
and variance σ 2

ω for the linear model (3.2.12) only. In the dynamic, random-
coefficient, and discrete-choice models to be discussed later, one can show that
the two approaches do not lead to the same estimator even when one allows
for the correlation between αi and Xi following the formulation of Mundlak
(1978a). Moreover, in the linear static model, if a = 0, the efficient estimator
is (3.3.14), not the CV estimator (3.2.8).

3.4.2.2 Conditional and Unconditional Inferences in the Presence or
Absence of Correlation between Individual Effects and Attributes

To gain further intuitive notions about the differences between models (3.3.5)
and (3.4.4) within the conditional and unconditional inference frameworks, we
consider the following two experiments. Let a population be made up of a
certain composition of red and black balls. The first experiment consists of N
individuals, each picking a fixed number of balls randomly from this population
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to form his person-specific jar. Each individual then makes T independent trials
of drawing a ball from his specific jar and putting it back. The second experiment
assumes that individuals have different preferences for the compositions of
red and black balls for their specific jars and allows personal attributes to
affect the compositions. Specifically, before making T independent trials with
replacement from their respective jars, individuals are allowed to take any
number of balls from the population until their compositions reach the desired
proportions.

If one is interested in making inferences regarding an individual jar’s com-
position of red and black balls, a fixed-effects model should be used, whether
the sample comes from the first or the second experiment. On the other hand,
if one is interested in the population composition, a marginal or unconditional
inference should be used. However, the marginal distributions are different for
these two cases. In the first experiment, differences in individual jars are out-
comes of random sampling. The subscript i is purely a labeling device, with no
substantive content. A conventional random-effects model assuming indepen-
dence between αi and xit would be appropriate. In the second experiment, the
differences in individual jars reflect differences in personal attributes. A proper
marginal inference has to allow for these nonrandom effects. In other words,
individuals are not random draws from a common population, but from hetero-
geneous populations. In Mundlek’s formulation, this heterogeneity is captured
by the observed attributes xi . For the Mundlak’s formulation a marginal infer-
ence that properly allows for the correlation between individual effects (αi) and
the attributes (xi) in the data-generating process gives rise to the same estima-
tor as when the individual effects are treated as fixed. It is not that in making
inferences about population characteristics, we should assume a fixed-effects
model.

Formally, let uit and αi be independent normal processes that are mutually
independent. In the case of the first experiment, αi are independently distributed
and independent of individual attributes, xi , so the distribution of αi must
be expressible as random sampling from a univerate distribution (Box and
Tiao 1968; Chamberlain 1980). Thus, the conditional distribution of {(ui +
eαi)′, αi | Xi} is identical with the marginal distribution of {(ui + eαi)′, αi},⎡⎢⎢⎢⎢⎢⎣

ui1 + αi
...

uiT + αi
. . .

αi

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
ui1 + αi |

... |
uiT + αi | Xi
. . . |
αi |

⎤⎥⎥⎥⎥⎥⎦

∼ N

⎡⎢⎢⎢⎣
⎡⎣ 0
. . .

0

⎤⎦ ,
⎡⎢⎢⎢⎣
σ 2
u IT + σ 2

αee′ ... σ 2
αe

. . .
... . . .

σ 2
αe′ ... σ 2

α

⎤⎥⎥⎥⎦
⎤⎥⎥⎥⎦ .

(3.4.10a)



54 Simple Regression with Variable Intercepts

In the second experiment, αi may be viewed as a random draw from
a heterogeneous population with mean a∗

i and variance σ 2
ωi

(Mundlak’s
(1978a) formulation may be viewed as a special case of this in which E(αi |
Xi) = a∗

i = a′ x̄i and σ 2
ωi

= σ 2
ω for all i). Then the conditional distribution of

{(ui + eαi)′
...αi | Xi} is⎡⎢⎢⎢⎢⎢⎣

ui1 + αi |
... |

uiT + αi | Xi
. . . |
αi |

⎤⎥⎥⎥⎥⎥⎦ ∼ N

⎡⎢⎢⎣
⎡⎣ea∗

i

. . .

a∗
i

⎤⎦ ,
⎡⎢⎢⎣σ

2
u IT + σ 2

ωiee′ ... σ 2
ωie

. . .

σ 2
ωie

′ ... σ 2
ωi

⎤⎥⎥⎦
⎤⎥⎥⎦ . (3.4.10b)

In both cases, the conditional density of ui + eαi , given αi , is11

(
2πσ 2

u

)T/2
exp

{
− 1

2σ 2
u

u′
iui

}
. (3.4.11)

But the marginal densities of ui + eαi , given Xi , are different [(3.4.10a) and
(3.4.10b), respectively]. Under the independence assumption, {ui + eαi | Xi}
has a common mean of 0 for i = 1, . . . , N . Under the assumption that αi andXi
are correlated or αi is a draw from a heterogeneous population, {ui + eαi | Xi}
has a different mean ea∗

i for different i.
In the linear regression model, conditional on αi the Jacobian of transforma-

tion from ui + eαi to yi is 1. Maximizing the conditional likelihood function
of (y1 | α1, X1), . . . , (yN | αN,XN ), treating αi as unknown parameters, yields
the CV (or within-group) estimators for both cases. Maximizing the marginal
likelihood function of (y1, . . . , yN | X1, . . . , XN ) yields the GLS estimator for
model (3.3.12) under (3.4.10a) if σ 2

u and σ 2
α are known, and it happens to yield

the CV estimator for model (3.2.12) under (3.4.10b). In other words, there is
no loss of information using a conditional approach for the case of (3.4.10b).
However, there is a loss in efficiency in maximizing the conditional likelihood
function for the former case [i.e., (3.4.10a)] because of the loss of degrees
of freedom in estimating additional (α1, . . . , αN ) unknown parameters, which
leads to ignoring the information contained in the between-group variation.

The advantage of the unconditional inference is that the likelihood function
may depend on only a finite number of parameters, and hence can often lead
to efficient inference. The disadvantage is that the correct specification of the

11 If (Y (1)′ , Y (2)′ )′ is normally distributed with mean (�(1)′ ,�(2)′ )′ and variance–covariance matrix[

11 
12


21 
22

]
,

the conditional distribution of Y (1) given Y (2) = y(2) is normal, with mean �(1) +
12

−1
22

(y(2) − �(2)) and covariance matrix 
11 −
12

−1
22 
21 (e.g., Anderson 1985, Section 2.5).
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conditional density of yi given Xi ,

f (yi | Xi) =
∫
f (yi | Xi, αi)f (αi | Xi) dαi (3.4.12)

depends on the correct specification of f (αi | Xi). A misspecified f (αi | Xi)
can lead to a misspecifiedf (yi | Xi). Maximizing the wrongf (yi | Xi) can lead
to biased and inconsistent estimators. The bias of the GLS estimator (3.3.12)
in the case that αi ∼ N (a∗

i , σ
2
ωi) is not due to any fallacy of the unconditional

inference, but due to the misspecification of f (αi | Xi).
The advantage of the conditional inference is that there is no need to specify

f (αi | Xi). Therefore, if the distribution of effects cannot be represented by
a simple parametric functional form (say bimodal), or one is not sure of the
correlation pattern between the effects and Xi , there may be an advantage to
base one’s inference conditionally. For instance, in the situation that there are
fundamental differences between the effects, if there are fundamental differ-
ences in the ability, years of experiences, etc. as in the previous example of
technicians, then it is more appropriate to treat the technicians’ effects as fixed.

The disadvantage of the conditional inference is that not only there is a loss
of efficiency due to the loss of degrees of freedom of estimating the effects,
but there is also an issue of incidental parameters if T is finite (Neyman–Scott
1948). A typical panel contains a large number of individuals observed over
a short time period, and the number of individual effects parameters (α∗

i )
increases with the number of cross-sectional dimension,N . Because an increase
in N provides no information on a particular α∗

i apart from those already
contained in yi ,α

∗
i cannot be consistently estimated with finite T . The condition

that

E(uit | xit ) = 0 (3.4.13)

is not informative about the common parameters, �, in the absence of any
knowledge about α∗

i . If the estimation of the incidental parameters, α∗
i , is

not asymptotically independent of the estimation of the common parameters
(called structural parameters in statistical literature), the conditional inference
of the common parameter, �, conditional on the inconsistently estimated α∗

i ,
in general, will be inconsistent.

In the case of linear static model (3.2.1) or (3.2.12), the strict exogeneity of
xit to uit ,

E(uit | xi) = 0, t = 1, 2, . . . , T , (3.4.14)

where x′
i = (x′

i1, . . . , x′
iT ), implies that

E(uit − ūi | xi) = 0,
t = 1, 2, . . . , T ,
i = 1, . . . , N.

(3.4.15)

Since � can be identified from the moment conditions of the form (3.4.15) in
the linear static model and (3.4.15) no longer involves α∗

i , consistent estimators
of � can be proposed by making use of these moment conditions (e.g., (3.2.8)).
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Unfortunately, for nonlinear panel data models, it is in general not possible
to find moment conditions that are independent of α∗

i to provide consistent
estimators of common parameters.

The advantage of fixed-effects inference is that there is no need to assume
that the effects are independent of xi . The disadvantage is that it introduces the
issue of incidental parameters. Moreover, in the case of linear regression model,
condition (3.4.15) implies that the coefficients of time-invariant variables can-
not be estimated and the estimation of � makes use of only within-group
variation, which is usually much smaller than between-group variation. The
advantage of random-effects inference is that the number of parameters is fixed
when sample size increases. It also allows the derivation of efficient estimators
that make use of both within- and between-group variation. The impact of
time-invariant variables can also be estimated. The disadvantage is that one has
to make specific assumption about the pattern of correlation (or no correlation)
between the effects and the included explanatory variables. A common assump-
tion is that f (αi | xi) is identical to the marginal density f (αi). However, if
the effects are correlated with xit or if there is a fundamental difference among
individual units, that is, conditional on xit , yit cannot be viewed as a random
draw from a common distribution, common random-effects model (3.3.4) is
misspecified and the resulting estimator is biased. In short, the advantages of
random-effects specification are the disadvantages of fixed-effects specifica-
tion and the disadvantages of random-effects specification are the advantages
of fixed-effects specification. Unfortunately, there is no universally accepted
way to make explicit assumptions about the way in which observables and
unobservables interact in all contexts.

Finally, it should be noted that the assumption of randomness does not carry
with it the assumption of normality. Often this assumption is made for random
effects, but it is a separate assumption made subsequent to the randomness
assumption. Most estimation procedures do not require normality, although if
distributional properties of the resulting estimators are to be investigated, then
normality is often assumed.

3.5 TESTS FOR MISSPECIFICATION

As discussed in Section 3.4, the fundamental issue is not whether αi should
be treated fixed or random. The issue is whether or not f (αi | xi) ≡ f (αi),
or whether αi can be viewed as random draws from a common population.
In the linear regression framework, treating αi as fixed in (3.2.12) leads to the
identical estimator of � whether αi is correlated with xi as in (3.4.3a) or is from
a heterogeneous population. Hence, for ease of reference, when αi is correlated
with xi , we shall follow the convention and call (3.2.12) a fixed-effects model,
and when αi is uncorrelated with xi , we shall call it a random-effects model.

Thus, one way to decide whether to use a fixed-effects or random-effects
model is to test for misspecification of (3.3.4), where αi is assumed random
and uncorrelated with xi . Using Mundlak’s formulation, (3.4.3a) or (3.4.3b),
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this test can be reduced to a test of

H0 : a = 0,

against

H1 : a �= 0.

If the alternative hypothesis, H1, holds, we use the fixed-effects model (3.2.1).
If the null hypothesis,H0, holds, we use the random-effects model (3.3.4). The
ratio[

Ni=1(yi − X̃i �̂GLS)′V ∗−1(yi − X̃i �̂GLS)

F =
−
Ni=1(yi − X̃i �̂

∗
GLS − ex̄′

i â
∗
GLS)′V ∗−1 · (yi − X̃i �̂

∗
GLS − ex̄′

i â
∗
GLS)

]
/K


Ni=1(yi − X̃i �̂
∗
GLS − ex̄′

i â
∗
GLS)′V ∗−1(yi − X̃i �̂

∗
GLS − ex̄′

i â
∗
GLS)/[NT

− (2K + 1)] (3.5.1)

under H0 has a central F distribution with K and NT − (2K + 1) degrees of
freedom, where �̂

∗
GLS = (μ̂GLS, �̂

′
GLS)′, and â∗

GLS are given by (3.4.5)–(3.4.7),
V ∗−1 = (1/σ 2

u )[Q+ ψ∗(1/T )ee′], and ψ∗ = σ 2
u /(σ

2
u + T σ 2

ω). Hence, (3.5.1)
can be used to test H0 against H1.12

An alternative testing procedure suggested by Hausman (1978) notes that
under H0 the GLS for (3.3.5) achieves the Cramer–Rao lower bounds, but
under H1, the GLS is a biased estimator. In contrast, the CV estimator of � is
consistent under bothH0 andH1. Hence, the Hausman test basically asks if the
CV and GLS estimates of � are significantly different.

To derive the asymptotic distribution of the differences of the two estimates,
Hausman makes use of the following lemma:13

Lemma 3.5.1: Based on a sample ofN observations, consider two estimates �̂0
and �̂1 that are both consistent and asymptotically normally distributed, with β̂0

attaining the asymptotic Cramer–Rao bound so that
√
N (�̂0 − �) is asymptot-

ically normally distributed with variance–covariance matrix V0.
√
N (�̂1 − �)

is asymptotically normally distributed, with mean 0 and variance–covariance
matrix V1. Let q̂ = �̂1 − �̂0. Then the limiting distribution of

√
N (�̂0 − �)

and
√
N q̂ has 0 covariance: Cov (�̂0, q̂) = 0, a zero matrix.

12 When ψ∗ is unknown, we substitute it by an estimated value and treat (3.5.1) as having an
approximate F distribution.

13 For proof, see Hausman (1978) or Rao (1973, p. 317).



58 Simple Regression with Variable Intercepts

From this lemma, it follows that Var(q̂) = Var(�̂1) − Var(�̂0). Thus, Haus-
man suggests using the statistic14

m = q̂′Var(q̂)−1q̂, (3.5.2)

where q̂ = �̂CV − �̂GLS,Var(q̂) = Var(�̂CV) − Var(�̂GLS), to test the null
hypothesis E(αi | Xi) = 0 against the alternative E(αi | Xi) �= 0. Under the
null hypothesis, this statistic is distributed asymptotically as central χ2, with
K degrees of freedom. Under the alternative, it has a noncentral χ2 distribution
with noncentrality parameter q̄′ Var(q̂)−1q̄, where q̄ = plim(�̂CV − �̂GLS).

When N is fixed and T tends to infinity, �̂CV and �̂GLS become identical.
However, it was shown by Ahn and Moon (2001) that the numerator and denom-
inator of (3.5.2) approach 0 at the same speed. Therefore the ratio remains χ2

distributed, although in this situation the fixed-effects and random-effects mod-
els become indistinguishable for all practical purposes. The more typical case
in practice is that N is large relative to T , so that differences between the two
estimators or two approaches are important problems.

We can use either (3.5.1) or (3.5.2) to test whether a fixed-effects or random-
effects formulation is more appropriate for the wage equation cited at the begin-
ning of Section 3.4 (Table 3.3). The advantage of the Hausman approach is that
no f (αi | xi) needs to be postulated. The χ2 statistic for (3.5.2) computed by
Hausman (1978) is 129.9. The critical value for the 1 percent significance level
at 10 degrees of freedom is 23.2, a very strong indication of misspecification
in the conventional random-effects model (3.3.3). Similar conclusions are also
obtained by using (3.5.1). The F value computed by Hausman (1978) is 139.7,
which well exceeds the 1 percent critical value. These tests imply that in the
Michigan survey, important individual effects are present that are correlated
with the right-hand variables. Because the random-effects estimates appear to
be significantly biased with high probability, it may well be important to take
account of permanent unobserved differences across individuals in estimating
earnings equations using panel data.

3.6 MODELS WITH TIME- AND/OR
INDIVIDUAL-INVARIANT EXPLANATORY
VARIABLES AND BOTH INDIVIDUAL- AND
TIME-SPECIFIC EFFECTS

3.6.1 Estimation of Models with Individual-Specific Variables

Model (3.2.12) can be generalized to a number of different directions with
no fundamental change in the analysis. For instance, we can include a 1 × p
vector z′

i of individual-specific variables (such as sex, race, socioeconomic

14 Strictly speaking, the Hausman test is more general than a test of
t x′
itat = 0 versus
t x′

itat �=
0. The null of f (αi | xi ) = f (αi ) implies that 
t x′

itat = 0, but not necessarily the converse.
For a discussion of the general relationship between Hausman’s specification testing and con-
ventional testing procedures, see Holly (1982).
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background variables, which vary across individual units but do not vary over
time) in the specification of the equation for yit and consider

yi = e μ + Zi � + Xi �
T ×1 T ×1 1×1 T ×p p×1 T ×K K×1

+ e αi + ui
T ×1 1×1 T ×1

, i = 1, . . . , N,

(3.6.1)

where

Zi = e z′
i

T × 1 1 × p.
If we assume that the αi are fixed constants, model (3.6.1) is subject to

perfect multicollinearity becauseZ = (Z′
1, . . . , Z

′
N )′ and (IN ⊗ e) are perfectly

correlated.15 Hence, �, μ, and αi are not separately estimable. However, �
may still be estimated by the covariance method (provided 
Ni=1X

′
iQXi is of

full rank). Premultiplying (3.6.1) by the (covariance) transformation matrixQ
[(3.2.6)], we sweep out Zi, eμ, and eαi from (3.6.1), so that

Qyi = QXi� +Qui , i = 1, . . . , N. (3.6.2)

Applying OLS to (3.6.2), we obtain the CV estimate of �, (3.2.8).
There is no way one can separately identify � and α∗

i under a fixed-effects
formulation. However, if zi and α∗

i are uncorrelated across i, one can treat
αi = α∗

i − μ as a random variable, where μ = lim 1
N

∑N
i=1 α

∗
i . When the αi

are assumed random and uncorrelated with Xi and Zi , CV uses the same
method to estimate � (3.2.8). To estimate �, we note that the individual mean
over time can be written in the form

ȳi − x̄′
i� = μ+ z′

i� + αi + ūi , i = 1, . . . , N. (3.6.3)

Treating (αi + ūi) as the error term and minimizing 
Ni=1(αi + ūi)2, we obtain

�̂ =
[
N∑
i=1

(zi − z̄)(zi − z̄)′
]−1 { N∑

i=1

(zi − z̄)[(ȳi − ȳ) − (x̄i − x̄)′�]

}
, (3.6.4)

μ̂ = ȳ − x̄′� − z̄′�̂, (3.6.5)

where

z̄ = 1

N

N∑
i=1

zi , x̄ = 1

N

N∑
i=1

x̄i , ȳ = 1

N

N∑
i=1

ȳi .

15 We use ⊗ to denote the Kronecker product of two matrices (Theil 1971, their Chapter 7).
Suppose that A = (aij ) is an m× n matrix and B is a p × q matrix; A⊗ B is defined as an
mp × nq matrix of⎡⎢⎢⎣

a11B a12B . . . a1nB

...
...

am1B am2B . . . amnB

⎤⎥⎥⎦ .
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Substituting the CV estimate of � into (3.6.4) and (3.6.5), we obtain estimators
of � and μ. When N tends to infinity, this two-step procedure is consistent.
When N is fixed and T tends to infinity, � can still be consistently estimated
by (3.2.8). But � can no longer be consistently estimated, because when N is
fixed, we have a limited amount of information on αi and zi . To see this, note
that the OLS estimate of (3.6.3) after substituting plimT→∞�̂cv = � converges
to

�̂OLS = � +
[
N∑
i=1

(zi − z̄)(zi − z̄)′
]−1 [ N∑

i=1

(zi − z̄)(αi − ᾱ)

]

+
[
T

N∑
i=1

(zi − z̄)(zi − z̄)′
]−1 [ N∑

i=1

T∑
t=1

(zi − z̄)(uit − ū)

]
,

(3.6.6)

where

ū = 1

NT

N∑
i=1

T∑
t=1

uit , ᾱ = 1

N

N∑
i=1

αi.

It is clear that

plim 1
N

N∑
i=1

(zi − z̄) 1
T

T∑
t=1

(uit − ū) = 0,
T → ∞

but (1/N )
Ni=1(zi − z̄)(αi − ᾱ) is a random variable, with mean 0 and covari-
ance σ 2

α [
Ni=1(zi − z̄)(zi − z̄)′/N2] �= 0 for finite N , so that the second term in
(3.6.6) does not have zero plim.

When αi are random and uncorrelated with Xi and Zi , the CV is not the
BLUE. The BLUE of (3.6.1) is the GLS estimator

⎡⎣μ̂�̂
�̂

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣

NTψ NTψ z̄′ NTψ x̄′

NTψ z̄ T ψ
N∑
i=1

ziz′
i T ψ

N∑
i=1

zi x̄′
i

NT ψ x̄ T ψ
N∑
i=1

x̄iz′
i

N∑
i=1
X′
iQXi + ψT

N∑
i=1

x̄i x̄′
i

⎤⎥⎥⎥⎥⎥⎥⎦

−1

·

⎡⎢⎢⎢⎢⎢⎢⎣
NTψȳ

ψT
N∑
i=1

zi ȳi

N∑
i=1
X′
iQyi + ψT

N∑
i=1

x̄i ȳi

⎤⎥⎥⎥⎥⎥⎥⎦ (3.6.7)

If ψ in (3.6.7) is unknown, we can substitute a consistent estimate for it. When
T is fixed, the GLS is more efficient than the CV. When N is fixed and T tends
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to infinity, the GLS estimator of � converges to the CV estimator because V −1

(3.3.7) converges to 1
σ 2
u
Q; for details, see Lee (1978b).

One way to view (3.6.1) is that by explicitly incorporating time-invariant
explanatory variables, zi , we can eliminate or reduce the correlation between
αi and xit . However, if αi remains correlated with xit or zi , the GLS will be
a biased estimator. The CV will produce an unbiased estimate of �, but the
OLS estimates of � and μ in (3.6.3) are inconsistent even when N tends to
infinity ifαi is correlated with zi .16 Thus, Hausman and Taylor (1981) suggested
estimating � in (3.6.3) by two-stage least squares, using those elements of x̄i
that are uncorrelated with αi as instruments for zi . A necessary condition to
implement this method is that the number of elements of x̄i that are uncorrelated
with αi must be greater than the number of elements of zi that are correlated
with αi .

3.6.2 Estimation of Models with Both Individual and Time Effects

We can further generalize model (3.6.1) to include time-specific variables and
effects. Let

yit =μ + z′
i � + r′

t � + x′
it � + αi+λt +uit ,

1×p p×1 1× l l×1 1×K K×1
i = 1, . . . , N,
t = 1. . . . , T ,

(3.6.8)

where rt and λt denote l × 1 and 1 × 1 time-specific variables and effects.
Stacking (3.6.8) over i and t , we have

Y =
NT×1

⎡⎢⎢⎢⎣
y1
y2
...

yN

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
e Z1 R X1

e Z2 R X2
...

...
...

...
e ZN R XN

⎤⎥⎥⎥⎦
⎡⎢⎢⎣
μ

�
�
�

⎤⎥⎥⎦

(IN ⊗ e)	 + (eN ⊗ IT )� +

⎡⎢⎢⎢⎣
u1

u2
...

uN

⎤⎥⎥⎥⎦ ,
(3.6.9)

where 	 ′ = (α1, . . . , αN ),� ′ = (λ1. . . . , λT ), R′ = (r1, r2, . . . , rT ), eN is an
N × 1 vector of ones, and ⊗ denotes the Kronecker product.

When both αi and λt are present, estimators ignoring the presence of λt
could be inconsistent no matter how large N is if T is finite. Take the simple
case where zi ≡ 0 and rt ≡ 0, then the CV estimator of � ignoring the presence

16 This is becauseQ sweeps out αi from (3.6.1).
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of λt (3.2.8) leads to

�̂cv =
[
N∑
i=1

T∑
t=1

(xit − x̄i)(xit − x̄i)′
]−1 [ N∑

i=1

T∑
t=1

(xit − x̄i)(yit − ȳi)
]

= � +
[

1

NT

N∑
i=1

T∑
t=1

(xit − x̄i)(xit − x̄i)′
]−1

·
{

1

NT

[
N∑
i=1

T∑
t=1

(xit − x̄i)(λt − λ̄) +
N∑
i=1

T∑
t=1

(xit − x̄i)(uit − ūi)
]}
,

(3.6.10)

where λ̄ = 1
T

∑T
t=1 λt . Under the assumption that xit and uit are uncorrelated,

the last term after the second equality converges to 0. But

1

NT

N∑
i=1

T∑
t=1

(xit − x̄i)(λt − λ̄) = 1

T

T∑
t=1

(x̄t − x̄)(λt − λ̄), (3.6.11)

where x̄t = 1
N

∑N
i=1 xit , x̄ = 1

N

∑N
i=1 x̄i = 1

NT

∑N
i=1

∑T
t=1 xit , will converge

to 0 only if λt are uncorrelated with x̄t and T −→ ∞. If λt is correlated with
x̄t or even E(λtx′

it ) = 0, if T is finite, (3.6.11) will not converge to 0 no matter
how large N is. To obtain a consistent estimator of �, both αi and λt need to
be considered.

If 	 and � are treated as fixed constants, there is a multi-collinearity problem,
for the same reasons stated for model (3.6.1). The coefficients 	,�,�,�, and
μ cannot be separately estimated. The coefficient � can still be estimated by the
covariance method. Using the NT ×NT (covariance) transformation matrix

Q̃ = INT − IN ⊗ 1

T
ee′ − 1

N
eNe′

N ⊗ IT + 1

NT
J, (3.6.12)

where J is an NT ×NT matrix of ones, we can sweep out μ, zi , rt , αi , and
λt and estimate � by

�̃cv = [(X′
1, . . . , X

′
N )Q̃(X′

1, . . . , X
′
N )′]−1[(X′

1, . . . , X
′
N )Q̃Y ]. (3.6.13)

In other words, �̃ is obtained by applying the least-squares regression to the
model

(yit − ȳi − ȳt + ȳ) = (xit − x̄i − x̄t + x̄)′�

+ (uit − ūi − ūt + ū),
(3.6.14)

where ȳt = 1
N

∑N
i=1 yit , ȳ = 1

N

∑N
i=1 ȳi = 1

T

∑T
t=1 ȳt = 1

NT

∑N
i=1

∑T
t=1 yit ,

and ūi , ūt , ū are similarly defined.
When uit is independently, identically distributed with constant variance,

the variance–covariance matrix of the CV estimator (3.6.13) is equal to

Cov (�̂cv) = σ 2
u

[
(X′

1, . . . , X
′
N )Q̃(X′

1, . . . , X
′
N )′
]−1
. (3.6.15)
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To estimate μ,�, and �, we note that the individual-mean (over time) and
time-mean (over individuals) equations are of the form

ȳi − x̄′
i� = μ∗

c + z′
i� + αi + ūi , i = 1, . . . , N, (3.6.16)

ȳt − x̄′
t� = μ∗

T + r′
t� + λt + ūt , t = 1. . . . , T , (3.6.17)

where

μ∗
c = μ+ r̄′� + λ̄, (3.6.18)

μ∗
T = μ+ z̄′� + ᾱ, (3.6.19)

and

r̄ = 1

T

T∑
t=1

rt , z̄ = 1

N

N∑
i=1

zi , λ̄ = 1

T

T∑
t=1

λt , ᾱ = 1

N

N∑
i=1

αi,

ȳt = 1

N

N∑
i=1

yit , x̄t = 1

N

N∑
i=1

xit , ūt = 1

N

N∑
i=1

uit .

Replacing � by �̂cv , we can estimate (μ∗
c ,�

′) and (μ∗
T ,�

′) by applying OLS
to (3.6.16) and (3.6.17) over i and t , respectively, if αi and λt are uncorrelated
with zi , rt , and xit . To estimate μ, we can substitute estimated values of �,�,
and � into any of

μ̂ = μ̂∗
c − r̄′�̂, (3.6.20)

μ̂ = μ̂∗
T − z̄′�̂, (3.6.21)

μ̂ = ȳ − z̄′�̂ − r̄′�̂ − x̄′�̂, (3.6.22)

or apply the least-squares method to the combined equations (3.6.20)–(3.6.22).
When both N and T go to infinity, μ̂ is consistent.

If αi and λt are random, we can still estimate � by the CV estimator (3.6.13).
However, if αi and λt are uncorrelated with zi, rt , and xit , the BLUE is the
GLS estimator. Assuming αi and λt satisfy (3.3.4), the NT ×NT variance–
covariance matrix of the error term, u + (IN ⊗ e)	 + (eN ⊗ IT )�, is

Ṽ = σ 2
u INT + σ 2

α IN ⊗ ee′ + σ 2
λ eNe′

N ⊗ IT . (3.6.23)

Its inverse (Henderson 1971; Nerlove 1971b; Wallace and Hussain 1969) (see
Appendix 3B) is

Ṽ −1 = 1

σ 2
u

[INT − η1IN ⊗ ee′ − η2eNe′
N ⊗ IT + η3J ], (3.6.24)
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where

η1 = σ 2
α

σ 2
u + T σ 2

α

, η2 = σ 2
λ

σ 2
u +Nσ 2

λ

,

η3 = σ 2
ασ

2
λ

(σ 2
u + T σ 2

α )(σ 2
u +Nσ 2

λ )

(
2σ 2
u + T σ 2

α +Nσ 2
λ

σ 2
u + T σ 2

α +Nσ 2
λ

)
.

WhenN → ∞, T → ∞, and the ratioN over T tends to a nonzero constant,
Wallace and Hussain (1969) have shown that the GLS estimator converges to
the CV estimator. It should also be noted that, contrary to the conventional
linear regression model without specific effects, the speed of convergence of
�GLS to � is (NT )1/2, whereas the speed of convergence for μ̂ is N1/2. This
is because the effect of a random component can be averaged out only in the
direction of that random component. For details, see Kelejian and Stephan
(1983).

For the discussion of the MLE of the two-way error components models,
see Baltagi (1995) and Baltagi and Li (1992).

3.7 HETEROSCEDASTICITY AND
AUTOCORRELATION

3.7.1 Heteroscedasticity

So far we have confined our discussion to the assumption that the variances
of the errors across individuals are identical. However, many panel studies
involve cross-sectional units of varying size. In an error-components setup,
heteroscedasticity can arise because the variance of αi, σ 2

αi , varies with i (e.g.,
Baltagi and Griffin 1983; Mazodier and Trognon 1978) or the variance of
uit , σ

2
ui , varies with i, or both σ 2

αi and σ 2
ui vary with i. Then

Eviv′
i = σ 2

uiIT + σ 2
αiee′ = Vi. (3.7.1)

The V −1
i is of the same form as equation (3.3.5) with σ 2

ui and σ 2
αi in place of σ 2

u

and σ 2
α . The GLS estimator of � is obtained by replacing V by Vi in (3.3.7).

When σ 2
ui and σ 2

αi are unknown, substituting the unknown true values by
their estimates, a feasible (or two-step) GLS estimator can be implemented.
Unfortunately, with a single realization of αi , there is no way one can get a
consistent estimator for σ 2

αi even when T → ∞. The conventional formula

σ̂ 2
αi = ˆ̄v2

i − 1

T
σ̂ 2
ui, i = 1, . . . , N, (3.7.2)

where v̂it is the initial estimate of vit , say, the least-squares or CV estimated
residual of (3.3.3), converges to α2

i , not σ 2
αi . However, σ 2

ui can be consistently
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estimated by

σ̂ 2
ui = 1

T − 1

T∑
t=1

(v̂it − ˆ̄vi)
2, (3.7.3)

as T tends to infinity. In the event that σ 2
αi = σ 2

α for all i, we can estimate σ 2
α

by taking the average of (3.7.2) across i as their estimates.
It should be noted that when T is finite, there is no way we can get consistent

estimates of σ 2
ui and σ 2

αi even when N tends to infinity. This is the classical
incidental parameter problem of Neyman and Scott (1948). However, if σ 2

αi =
σ 2
α for all i, then we can get consistent estimates of σ 2

ui and σ 2
α when both N

and T tend to infinity. Substituting σ̂ 2
ui and σ̂ 2

α for σ 2
ui and σ 2

α in Vi , we obtain
its estimation V̂i . Alternatively, one may assume that the conditional variance
of αi conditional on xi has the same functional form across individuals, var
(αi | xi) = σ 2(xi), to allow for the consistent estimation of heteroscadastic
variance, σ 2

αi . The feasible GLS estimator of �,

�̂FGLS =
[
N∑
i=1

X̃′
i V̂

−1
i X̃i

]−1 [ N∑
i=1

X̃′
i V̂

−1
i yi

]
(3.7.4)

is asymptotically equivalent to the GLS estimator when bothN and T approach
infinity. The asymptotic variance–covariance matrix of the �̂FGLS can be approx-
imated by (

∑N
i=1 X̃

′
i V̂

−1
i X̃i)

−1.
In the case that both σ 2

αi and σ 2
ui vary across i, another way to estimate the

model is to treat αi as fixed by taking the covariance transformation to eliminate
the effect of αi , then apply the feasible weighted least-squares method. That
is, we first weigh each individual observation by the inverse of σui , y∗

i =
1
σui

yi , X
∗
i = 1

σui
Xi and then apply the CV estimator to the transformed data

�̂cv =
[
N∑
i=1

X∗′
i QX

∗
i

]−1 [ N∑
i=1

X∗′
i Qy∗

i

]
. (3.7.5)

3.7.2 Models with Serially Correlated Errors

The fundamental assumption we made with regard to the variable-intercept
model was that the error term is serially uncorrelated conditional on the indi-
vidual effectsαi . But there are cases in which the effects of unobserved variables
vary systematically over time, such as the effect of serially correlated omitted
variables or the effects of transitory variables whose effects last more than one
period. The existence of these variables is not well described by an error term
that is either constant or independently distributed over time periods. To provide
for a more general autocorrelation scheme, one can relax the restriction that
uit are serially uncorrelated (e.g., Lillard and Weiss 1979; Lillard and Willis
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1978).17 Anderson and Hsiao (1982) have considered the MLE of the model
(3.3.5) with uit following a first-order autoregressive process,

uit = ρui,t−1 + εit , (3.7.6)

where εit are independently, identically distributed, with 0 mean and variance
σ 2
ε . However, computation of the MLE is complicated. But if we know ρ, we

can transform the model into a standard variance–components model,

yit − ρyi,t−1 = μ(1 − ρ) + �′(xit − ρxi,t−1) + (1 − ρ)αi + εit . (3.7.7)

Therefore, we can obtain an asymptotically efficient estimator of � by the
following multistep procedure:

Step 1. Eliminate the individual effect αi by subtracting the individual mean
from (3.3.5). We have

yit − ȳi = �′(xit − x̄i) + (uit − ūi). (3.7.8)

Step 2. Use the least-squares residual of (3.7.8) to estimate the serial
correlation coefficient ρ, or use the Durbin (1960) method by regressing
(yit − ȳi) on (yi,t−1 − ȳi,−1), and (xi,t−1 − x̄i,−1), and treat the coefficient of
(yi,t−1 − ȳi,−1) as the estimated value of ρ, where ȳi,−1 = (1/T )
Tt=1yi,t−1

and x̄i,−1 = (1/T )
Tt=1xi,t−1. (For simplicity, we assume that yi0 and xi0 are
observable.)

Step 3. Estimate σ 2
ε and σ 2

α by

σ̂ 2
ε = 1

NT

N∑
i=1

T∑
t=1

{(yit − ȳi)

− ρ̂(yi,t−1 − ȳi,−1)

− �̂
′
[(xit − x̄i) − (xi,t−1 − x̄i,−1)ρ̂]}2

(3.7.9)

and

σ̂ 2
α = 1

(1 − ρ̂)2

{
1

N

N∑
i=1

[ȳi − μ̂(1 − ρ̂)

−ρ̂ȳi,−1 − �̂
′
(x̄i − x̄i,−1ρ̂)]2 − 1

T
σ̂ 2
ε

}
.

(3.7.10)

Step 4. Substituting ρ̂, (3.7.9), and (3.7.10) for ρ, σ 2
ε , and σ 2

α in the variance–
covariance matrix of εit + (1 − ρ)αi , we estimate (3.7.7) by the feasible GLS
method.

The above multistep or feasible generalized least-squares procedure treats
the initial ui1 as fixed constants. A more efficient, but computationally more

17 See Li and Hsiao (1998) for a test of whether the serial correlation in the error is caused by an
individual-specific time invariant component or by the inertia in the shock and Hong and Kao
(2004) for testing of serial correlation of unknown form.
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burdensome feasible GLS is to treat initial ui1 as random variables with mean
0 and variance σ 2

ε

1−ρ2 (e.g., Baltagi and Li 1991). Premultiplying (3.3.5) by the
T × T transformation matrix

R =

⎛⎜⎜⎜⎜⎜⎜⎝
(1 − ρ2)1/2 0 0 · · 0

−ρ 1 0 · · ·
0 −ρ 1 · · ·
· · · · · ·
0 · · · −ρ 1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

transforms ui into serially uncorrelated homoscedastic error terms, but also
transforms eT αi into (1 − ρ)�T αi , where �T = [( 1+ρ

1−ρ )1/2, 1, . . . , 1]′. Therefore,
the transformed error terms will have covariance matrix

V ∗ = σ 2
ε IT + (1 − ρ)2σ 2

α�T �
′
T , (3.7.11)

with inverse

V ∗−1 = 1

σ 2
ε

[IT − (1 − ρ)2σ 2
α

[T − (T − 1)ρ − ρ2]σ 2
α + σ 2

ε

�T �
′
T ]. (3.7.12)

Substituting initial estimates of ρ, σ 2
α , and σ 2

ε into (3.7.12), one can apply the
GLS procedure using (3.7.12) to estimate �.

When T tends to infinity, the GLS estimator of � converges to the covariance
estimator of the transformed model (3.7.7). In other words, an asymptotically
efficient estimator of � is obtained by finding a consistent estimate of ρ,
transforming the model to eliminate the serial correlation, and then applying
the covariance method to the transformed model (3.7.7).

MaCurdy (1982) has considered a similar estimation procedure for (3.3.5)
with a more general time series process ofuit . His procedure essentially involves
eliminating αi by first differencing and treating yit − yi,t−1 as the dependent
variable. He then modeled the variance–covariance matrix of ui by using a
standard Box–Jenkins (1970) type of procedure to model the least-squares
predictor of uit − ui,t−1, and estimated the parameters by an efficient algorithm.

Kiefer (1980) considered estimation of fixed-effects models of (3.2.1) with
arbitrary intertemporal correlations for uit . When T is fixed, the individual
effects cannot be estimated consistently. He suggested that we first eliminate
the individual effects by transforming the model to the form (3.7.8) using the
transformation matrix Q = IT − (1/T )ee′. Then estimate the intertemporal
variance–covariance matrix ofQui by


̂∗ = 1

N

N∑
i=1

[Q(yi −Xi�̂)][Q(yi −Xi�̂)]′, (3.7.13)
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where �̂ is any arbitrary consistent estimator of � (e.g., CV of �). Given an
estimate of 
̂∗ one can estimate � by the GLS method,

�∗ =
[
N∑
i=1

X′
iQ
̂

∗−QXi

]−1 [ N∑
i=1

X′
iQ
̂

∗−Qyi

]
, (3.7.14)

where 
̂∗− is a generalized inverse of 
∗, because 
∗ has only rank T − 1.
The asymptotic variance–covariance matrix of �̂

∗
is

Var (�̂
∗
) =

[
N∑
i=1

X′
iQ
̂

∗−QXi

]−1

. (3.7.15)

Although any generalized inverse can be used for 
̂∗, a particularly attractive
choice is


̂∗− =
[

̂∗−1
T−1 0

0′ 0

]
, (3.7.16)

where 
̂∗
T−1 is the (T − 1) × (T − 1) full-rank submatrix of 
̂∗ obtained by

deleting the last row and column from 
̂∗. Using this generalized inverse simply
amounts to deleting the T th observation from the transformed observations
Qyi and QXi , and then applying GLS to the remaining subsample. However,
it should be noted that this is not the GLS estimator that would be used if the
variance–covariance matrix of ui were known.

3.7.3 Heteroscedasticity Autocorrelation Consistent Estimator for
the Covariance Matrix of the CV Estimator

The previous two subsections discuss the estimation procedures when the pat-
terns of heteroscedasticity or serial correlations are known. In the case that
the errors uit have unknown heteroscedasticity (across individuals and over
time) and/or autocorrelation patterns, one may still use the covariance esti-
mator (3.2.5) or (3.6.13) to obtain a consistent estimate of �. However, the
covariance matrix of the CV estimator of � no longer has the form (3.2.11)
or σ 2

u (X′Q̃X)−1, where X′ = (X′
1, . . . , X

′
N ). For instance, when uit has het-

eroscedasticity of unknown form,
√
NT (�̂cv − �) is asymptotically normally

distributed with mean 0 and covariance matrix of the form (e.g., Arellano 2003)(
1

NT

N∑
i=1

T∑
t=1

x̃it x̃′
it

)−1

�

(
1

NT

N∑
i=1

T∑
t=1

x̃it x̃′
it

)−1

, (3.7.17)

where

x̃it = xit − x̄i , (3.7.18)
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for model (3.2.1) and

x̃it = xit − x̄i − x̄t + x̄ (3.7.19)

for model (3.6.8), and

� = 1

T

T∑
t=1

E
(
x̃it x̃′

itu
2
it

)
. (3.7.20)

It is shown by Stock and Watson (2008) that

�̂ =
(
T − 1

T − 2

){
1

NT −N −K
N∑
i=1

T∑
t=1

x̃it x̃′
it

ˆ̃u2
it

− 1

N

N∑
i=1

(
1

T

T∑
t=1

x̃it x̃′
it

)(
1

T − 1

T∑
s=1

ˆ̃u2
is

)}
, (3.7.21)

is a consistent estimator of � for any sequence of N or T −→ ∞. Where
ˆ̃uit = ỹit − x̃′

it �̂cv , and ỹit − ȳi or ỹit = yit − ȳi − ȳt + ȳ.
When bothN and T are large, Vogelsang (2012) suggests a robust estimator

of the variance–covariance matrix of the CV estimator of � as

T

(
N∑
i=1

T∑
t=1

x̃it x̃′
it

)−1 ( N∑
i=1

�̂i

)(
N∑
i=1

T∑
t=1

x̃it x̃′
it

)−1

, (3.7.22)

where

�̂i = 1

T

⎡⎣ T∑
t=1

û2
it x̃it x̃

′
it +

T∑
t=2

t−1∑
j=1

k

(
j

m

)
ûit ûi,t−j

(
x̃it x̃′

i,t−j + x̃i,t−j x̃′
it

)⎤⎦ ,
(3.7.23)

where k( j
m

) denotes the kernel such that k( j
m

) = 1 − j
m

if | j
m

|≤ 1 and k( j
m

) =
0 if | j

m
|≥ 1. If M = T , then all the sample autocorrelations are used for

(3.7.23). IfM < T , a truncated kernel is used.

3.8 MODELS WITH ARBITRARY ERROR
STRUCTURE – CHAMBERLAIN π -APPROACH

The focus of this chapter is formulation and estimation of linear regression
models when there exist time-invariant and/or individual-invariant omitted
(latent) variables. In Sections 3.1–3.7 we have been assuming that the variance–
covariance matrix of the error term possesses a known structure. In fact, when
N tends to infinity, the characteristics of short panels allow us to exploit the
unknown structure of the error process. Chamberlain (1982, 1984) has proposed
treating each period as an equation in a multivariate setup to transform the
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problems of estimating a single-equation model involving two dimensions
(cross sections and time series) into a one-dimensional problem of estimat-
ing a T -variate regression model with cross-sectional data. This formulation
avoids imposing restrictions a priori on the variance–covariance matrix, so that
serial correlation and certain forms of heteroscedasticity in the error process,
which covers certain kinds of random-coefficient models (see Chapter 6), can
be incorporated. The multivariate setup also provides a link between the single-
equation and simultaneous-equations models (see Chapter 5). Moreover, the
extended view of the Chamberlain method can also be reinterpreted in terms
of the generalized method of moments (GMM) to be discussed in Chapter 4
(Crépon and Mairesse 1996).

For simplicity, consider the following model:

yit = α∗
i + �′xit + uit , i = 1, . . . , N,

t = 1, . . . , T ,
(3.8.1)

and

E(uit | xi1. . . . , xiT , α∗
i ) = 0. (3.8.2)

When T is fixed and N tends to infinity, we can stack the T time period
observations of the ith individual’s characteristics into a vector (y′

i , x′
i), where

y′
i = (yi1, . . . , yiT ) and x′

i = (x′
i1. . . . , x′

iT ) are 1 × T and 1 ×KT vectors,
respectively. We assume that (y′

i , x′
i) is an independent draw from a common

(unknown) multivariate distribution function with finite fourth-order moments
and with Exix′

i = 
xx positive definite. Then each individual observation
vector corresponds to a T -variate regression

yi = eα∗
i + (IT ⊗ �′)xi + ui , i = 1. . . . , N.

T × 1
(3.8.3)

To allow for the possible correlation between α∗
i and xi , Chamberlain,

following the idea of Mundlak (1978), assumes that

E(α∗
i | xi) = μ+

T∑
t=1

a′
txit = μ+ a′xi , (3.8.4)

where a′ = (a′
1. . . . , a

′
T ). While E(yi | xi , α∗

i ) is assumed linear, it is possi-
ble to relax the assumption of E(α∗

i | xi) being linear for the linear model.
In the case in which E(α∗

i | xi) is not linear, Chamberlain (1984) replaces
(3.8.4) by

E∗(α∗
i | xi) = μ+ a′xi , (3.8.5)



3.8 Models with Arbitrary Error Structure – Chamberlain 71

where E∗(α∗
i | xi) refers to the (minimum mean square error) linear predictor

(or the projection) of α∗
i onto xi . Then,18

E∗(yi | xi) = E∗{E∗(yi | xi , α∗
i ) | xi}

= E∗{eα∗
i + (IT ⊗ �′)xi | xi}

= eμ+�xi ,

(3.8.6)

where

� = IT ⊗ �′ + ea′.
T×KT (3.8.7)

Rewrite equations (3.8.3) and (3.8.6) as

yi = eμ+ [IT ⊗ x′
i]
 + � i , i = 1. . . . , N, (3.8.8)

where � i = yi − E∗(yi | xi) and 
′ = vec (�)′ = [
′
1, . . . ,


′
T ] is a 1 ×KT 2

vector with 
′
t denoting the t th row of �′. Treating the coefficients of (3.8.8)

as if they were unconstrained, we regress (yi − ȳ∗) on [IT ⊗ (xi − x̄∗)′] and
obtain the least-squares estimate of 
 as19


̂ =
{
N∑
i=1

[IT ⊗ (xi − x̄∗)][IT ⊗ (xi − x̄∗)′]

}−1

·
{
N∑
i=1

[IT ⊗ (xi − x̄∗)](yi − ȳ∗)

}
(3.8.9)

= 
 +
{

1

N

N∑
i=1

[IT ⊗ (xi − x̄∗)][IT ⊗ (xi − x̄∗)′]
}−1

·
{

1

N

N∑
i=1

[IT ⊗ (xi − x̄∗)]� i

}
,

where ȳ∗ = (1/N )
Ni=1 yi and x̄∗ = (1/N )
Ni=1xi .
By construction,E(� i | xi) = 0, andE(� i ⊗ xi) = 0. The law of large num-

bers implies that 
̂ is a consistent estimator of 
 when T is fixed and N tends
to infinity (Rao 1973, Chapter 2). Moreover, because

plim 1
N

N∑
i=1

(xi − x̄∗)(xi − x̄∗)′ = E[xi − Exi][xi − Exi]′

N → ∞ = 
xx − (Ex)(Ex)′ = �xx,

18 If E(α∗
i | xi ) is linear, E∗(yi | xi ) = E(yi | xi ).

19 Of course, we can obtain the least-squares estimate of π by imposing the restriction that all T
equations have identical intercepts μ. But this only complicates the algebraic equation of the
least-squares estimate without a corresponding gain in insight.
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we have
√
N (
̂ − 
) converging in distribution to (Rao 1973, Chapter 2)

[
IT ⊗�−1

xx

] { 1√
N

N∑
i=1

[IT ⊗ (xi − x̄∗)]� i

}

= [IT ⊗�−1
xx

] { 1√
N

N∑
i=1

[� i ⊗ (xi − x̄∗)]

}
.

(3.8.10)

So the central-limit theorem implies that
√
N (
̂ − 
) is asymptotically nor-

mally distributed, with mean 0 and variance–covariance matrix �, where20

� =E[(yi − eμ−�xi)(yi − eμ−�xi)′

⊗�−1
xx (xi − Ex)(xi − Ex)′�−1

xx ].
(3.8.11)

A consistent estimator of � is readily available from the corresponding
sample moments,

�̂ = 1

N

N∑
i=1

{ [
(yi − ȳ∗) − �̂(xi − x̄∗)

]
[(yi − ȳ∗)

− �̂(xi − x̄∗)]′ ⊗ S−1
xx (xi − x̄∗)(xi − x̄∗)′S−1

xx

}
,

(3.8.12)

where

Sxx = 1

N

N∑
i=1

(xi − x̄∗)(xi − x̄∗)′.

Equation (3.8.7) implies that � is subject to restrictions. Let � = (�′, a′).
We specify the restrictions on � [equation (3.8.7)] by the conditions that


 = f (�). (3.8.13)

We can impose these restrictions by using a minimum-distance estimator.
Namely, choose � to minimize

[
̂ − f (�)]′�̂−1[
̂ − f (�)]. (3.8.14)

Under the assumptions that f possesses continuous second partial deriva-
tives and the matrix of first partial derivatives

F = ∂ f
∂�′ (3.8.15)

has full column rank in an open neighborhood containing the true parameter �,
the minimum-distance estimator of (3.8.14), �̂, is consistent, and

√
N (�̂ − �),

20 For details, see White (1980) or Chamberlain (1982).
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is asymptotically normally distributed, with mean 0 and variance–covariance
matrix

(F ′�−1F )−1. (3.8.16)

The quadratic form

N [
̂ − f (�)]′�̂−1[
̂ − f (�)] (3.8.17)

converges to a χ2 distribution, with KT 2 −K(1 + T ) degrees of freedom.21

The advantage of the multivariate setup is that we need only to assume
that the T period observations of the characteristics of the ith individual are
independently distributed across cross-sectional units with finite fourth-order
moments. We do not need to make specific assumptions about the error process.
Nor do we need to assume that E(α∗

i | xi) is linear.22 In the more restrictive
case that E(α∗

i | xi) is indeed linear, [then the regression function is linear, that
is,E(yi | xi) = eμ+�xi], and Var(yi | xi) is uncorrelated with xix′

i , (3.8.12)
will converge to

E[Var(yi | xi)] ⊗�−1
xx . (3.8.18)

If the conditional variance–covariance matrix is homoscedastic, so that Var(yi |
xi) = 
 does not depend on xi , then (3.8.12) will converge to


 ⊗�−1
xx . (3.8.19)

The Chamberlain procedure of combining all T equations for a single indi-
vidual into one system, obtaining the matrix of unconstrained linear-predictor
coefficients and then imposing restrictions by using a minimum-distance esti-
mator, also has a direct analog in the linear simultaneous-equations model, in
which an efficient estimator is provided by applying a minimum-distance pro-
cedure to the reduce form (Malinvaud 1970, Chapter 19). We demonstrate this
by considering the standard simultaneous-equations model for the time series
data,23

�yt + Bxt = ut , t = 1. . . . , T , (3.8.20)

and its reduced form

yt = �xt + vt , � = −�−1B, vt = �−1ut , (3.8.21)

where �,B, and � are G×G,G×K , and G×K matrices of coefficients,
yt and ut areG× 1 vectors of observed endogenous variables and unobserved
disturbances, respectively, and xt is a K × 1 vector of observed exogenous
variables. The ut is assumed to be serially independent, with bounded variances
and covariances.

21 For proof, see Appendix 3A, Chamberlain (1982), Chiang (1956), or Malinvaud (1970).
22 If E(α∗

i | xi ) �= E∗(α∗
i | xi ), then there will be heteroscedasticity, because the residual will

contain E(α∗
i | xi ) − E∗(α∗

i | xi ).
23 For fitting model (3.8.20) to panel data, see Chapter 5.
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In general, there are restrictions on � and B. We assume that the model
(3.8.20) is identified by zero restrictions (e.g., Hsiao 1983) so that the gth
structural equation is of the form

ygt = w′
gt�g + vgt , (3.8.22)

where the components of wgt are the variables in yt and xt that appear in the
gth equation with unknown coefficients. Let �(�) and B(�) be parametric rep-
resentations of � and B that satisfy the zero restrictions and the normalization
rule, where �′ = (�′

1, . . . ,�
′
G). Then 
 = f (�) = vec{[−�−1(�)B(�)]′}.

Let �̂ be the least-squares estimator of �, and

�̃ = 1

T

T∑
t=1

[
(yt − �̂xt )(yt − �̂xt )′ ⊗ S∗−1

x (xtx′
t )S

∗−1
x

]
, (3.8.23)

where S∗
x = (1/T )
Tt=1xtx′

t . The generalization of the Malinvaud (1970)
minimum-distance estimator is to choose �̂ to

min [
̂ − f (�)]′�̃−1[
̂ − f (�)]. (3.8.24)

Then we have
√
T (�̂ − �) being asymptotically normally distributed, with

mean 0 and variance–covariance matrix (F ′�̃−1F )−1, where F = ∂ f (�)/∂�′.
The formula for ∂
/∂�′ is given in Rothenberg (1973, p. 69):

F = ∂


∂�′ = −(�−1 ⊗ IK )
[

wx

(
IG ⊗
−1

xx

)]′
, (3.8.25)

where 
wx is block-diagonal: 
wx = diag{E(w1tx′
t ), . . . , E(wGtx′

t )} and

xx = E(xtx′

t ). So we have

(F ′�̃−1F )−1 = {
wx[E(utu′
t ⊗ xtx′

t )]
−1
′

wx}−1, (3.8.26)

If utu′
t is uncorrelated with xtx′

t , then (3.8.26) reduces to

{
wx
[
[E(utu′

t )]
−1 ⊗
−1

xx

]

′
xw}−1, (3.8.27)

which is the conventional asymptotic covariance matrix for the three-stage least-
squares (3SLS) estimator (Zellner and Theil 1962). If utu′

t is correlated with
xtx′

t , then the minimum-distance estimator of �̂ is asymptotically equivalent to
the Chamberlain (1982) generalized 3SLS estimator,

�̂G3SLS = (Swx�̂
−1S ′

wx)
−1(Swx�̂

−1sxy), (3.8.28)

where

Swx = diag

{
1

T

T∑
t=1

w1tx′
t , . . . ,

1

T

T∑
t=1

wGtx′
t

}
,

�̂ = 1

T

T∑
t=1

{ût û′
t ⊗ xtx′

t }, sxy = 1

T

T∑
t=1

yt ⊗ xt ,



Appendix 3A 75

and

ût = �̂yt + B̂xt ,

where �̂ and B̂ are any consistent estimators for � and B. When certain
equations are exactly identified, then just as in the conventional 3SLS case,
applying the generalized 3SLS estimator to the system of equations, excluding
the exactly identified equations, yields the same asymptotic covariance matrix
as the estimator obtained by applying the generalized 3SLS estimator to the
full set of G equations.24

However, as with any generalization, there is a cost associated with it. The
minimum-distance estimator is efficient only relative to the class of estimators
that do not impose a priori restrictions on the variance–covariance matrix of
the error process. If the error process is known to have an error-component
structure, as assumed in previous sections, the least-squares estimate of �
is not efficient (see Section 5.2), and hence the minimum-distance estimator,
ignoring the specific structure of the error process, cannot be efficient, although
it remains consistent.25 The efficient estimator is the GLS estimator. Moreover,
computation of the minimum-distance estimator can be quite tedious, whereas
the two-step GLS estimation procedure is fairly easy to implement.

APPENDIX 3A: CONSISTENCY AND ASYMPTOTIC
NORMALITY OF THE MINIMUM-DISTANCE
ESTIMATOR

In this appendix we briefly sketch the proof of consistency and asymptotic
normality of the minimum-distance estimator.26 For completeness we shall
state the set of conditions and properties that they imply in general forms.

Let

SN = [
̂N − f (�)]′AN [
̂N − f (�)]. (3A.1)

Assumption 3A.1: The vector 
̂N converges to 
 = f (�) in probability.27

The matrix AN converges to � in probability, where � is positive definite.

24 This follows from examining the partitioned inverse of (3.8.26).
25 If 
̂∗ is another estimator of 
 with asymptotic variance–covariance matrix �∗, then the

minimum-distance estimator of � by choosing �̂
∗

to minimize [
̂∗ − f (�)]′�∗−1[
̂∗ − f (�)]
has asymptotic variance–covariance matrix (F ′�∗−1F )−1. Suppose�−�∗ is positive semidef-
inite; then F ′�∗−1F − F ′�−1F = F ′(�∗−1 −�−1)F is positive semidefinite. Thus, the effi-
ciency of the minimum-distance estimator depends crucially on the efficiency of the (uncon-
strained) estimator of 
.

26 For a comprehensive discussion of the Chamberlain π -approach and the GMM method, see
Crépon and Mairesse (1996).

27 In fact, a stronger result can be established for the proposition that 
̂ converges to 
 almost
surely. In this monograph we do not attempt to distinguish the concept of convergence in
probability and convergence almost surely (Rao 1973, their Section 2.c), because the stronger
result requires a lot more rigor in assumptions and derivations without much gain in intuition.
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Assumption 3A.2: The vector � belongs to a compact subset ofp-dimensional
space. The functions f (�) possess continuous second partial derivatives, and
the matrix of the first partial derivatives [equation (3.8.15)] has full column
rank p in an open neighborhood containing the true parameter �.

Assumption 3A.3:
√
N [
̂N − f (�)] is asymptotically normally distributed

with mean zero and variance–covariance matrix 
.
The minimum-distance estimator chooses �̂ to minimize SN .

Proposition 3A.1: If assumptions 3A.1 and 3A.2 are satisfied, �̂ converges to
� in probability.

Proof : Assumption 3.A.1 implies that SN converges to S = [ f (�) −
f (�̂)]′�[ f (�) − f (�̂)] = h ≥ 0. Because min S = 0 and the rank condition
[assumption 3A.2 or (3.8.15)] implies that in the neighborhood of the true
�, f (�) = f (�∗) if and only if � = �∗ (Hsiao 1983, p. 256), �̂ must converge
to � in probability. Q.E.D.

Proposition 3A.2: If assumptions 3A.1–3A.3 are satisfied,
√
N (�̂ − �) is

asymptotically normally distributed, with mean 0 and variance–covariance
matrix

(F ′�F )−1F ′�
�F (F ′�F )−1. (3A.2)

Proof : �̂ is the solution of

dN (�̂) = ∂SN

∂�
|�̂= −2

(
∂ f ′

∂�̂

)
AN [
̂N − f (�̂)] = 0. (3A.3)

The mean-value theorem implies that

dN (�̂) = dN (�) +
(
∂dN (�∗)

∂�′

)
(�̂ − �), (3A.4)

where �∗ is on the line segment connecting �̂ and �. Because �̂ converges to
�, direct evaluation shows that ∂dN (�∗)/∂�′ converges to

∂dN (�)

∂�′ = 2

(
∂ f (�)

∂�′

)′
�

(
∂ f (�)

∂�′

)
= 2F ′�F.

Hence,
√
N (�̂ − �) has the same limiting distribution as

−
[
∂dN (�)

∂�′

]−1

·
√
NdN (�) = (F ′�F )−1F ′� ·

√
N [
̂N − f (�)]. (3A.5)

Assumption 3A.3 says that
√
N [
̂N − f (�)] is asymptotically normally dis-

tributed, with mean 0 and variance–covariance 
. Therefore,
√
N (�̂ − �) is

asymptotically normally distributed, with mean 0 and variance–covariance
matrix given by (3A.2). Q.E.D.



Appendix 3B 77

Proposition 3A.3: If 
 is positive definite, then

(F ′�F )−1F ′�
�F (F ′�F )−1 − (F ′
−1F )−1 (3A.6)

is positive semidefinite; hence, an optimal choice for � is 
−1.

Proof : Because
 is positive definite, there is a nonsingular matrix C̃ such that

 = C̃C̃ ′. Let F̃ = C̃−1F and B̃ = (F ′�F )−1F ′�C̃. Then (3A.6) becomes
B̃[I − F̃ (F̃ ′F̃ )−1F̃ ′]B̃ ′, which is positive semidefinite. Q.E.D.

Proposition 3A.4: Assumptions 3A.1–3A.3 are satisfied, if 
 is positive defi-
nite, and if AN converges to 
−1 in probability, then

N [
̂N − f (�̂)]′AN [
̂N − f (�̂)] (3A.7)

converges to χ2 distribution, with KT 2 − p degrees of freedom.

Proof : Taking Taylor-series expansion of f (�̂) around �, we have

f (�̂) � f (�) + ∂ f (�)

∂�′ (�̂ − �). (3A.8)

Therefore, for sufficiently large N,
√
N [ f (�̂) − f (�)] has the same limiting

distribution as F · √
N (�̂ − �). Thus,

√
N [
̂N − f (�̂)] =

√
N [
̂N − f (�)] −

√
N [ f (�̂) − f (�)] (3A.9)

converges in distribution to Q∗C̃u∗, where Q∗ = IKT 2 − F (F ′
−1F )−1

F ′
−1, C̃ is a nonsingular matrix such that C̃C̃ ′ = 
, and u∗ is normally dis-
tributed, with mean 0 and variance–covariance matrix IKT 2 . Then the quadratic
form, (3A.7), converges in distribution of u∗′

C̃ ′Q∗′

−1Q∗C̃u∗. Let F̃ = C̃−1F

andM = IKT 2 − F̃ (F̃ ′F̃ )−1F̃ ′; thenM is a symmetric idempotent matrix with
rank KT 2 − p, and C̃ ′Q∗′


−1Q∗C̃ = M2 = M; hence, (3A.7) converges in
distribution to u∗′

Mu∗, which is χ2, withKT 2 − p degrees of freedom. Q.E.D.

APPENDIX 3B: CHARACTERISTIC VECTORS AND
THE INVERSE OF THE VARIANCE–COVARIANCE
MATRIX OF A THREE-COMPONENT MODEL

In this appendix we derive the inverse of the variance–covariance matrix
(3.6.23) for a three-component model (3.6.8) by means of its characteristic
roots and vectors. The material is drawn from the work of Nerlove (1971b).

The matrix Ṽ (3.6.23) has three terms, one in INT , one in IN ⊗ ee′, and one
in eNe′

N ⊗ IT . Thus, the vector (eN/
√
N ) ⊗ (e/

√
T ) is a characteristic vector,

with the associated root σ 2
u + T σ 2

α +Nσ 2
λ . To findNT − 1 other characteristic

vectors, we note that we can always findN − 1 vectors, �j , j = 1, . . . , N − 1,
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each N × 1 that are orthonormal and orthogonal to eN :

e′
N�j = 0,

� ′
j�j ′ =

{
1, if j = j ′,
0, if j �= j ′, j = 1. . . . , N − 1,

(3B.1)

and T − 1 vectors�k, k = 1, . . . , T − 1, each T × 1, that are orthonormal and
orthogonal to e:

e′�k = 0

�′
k�k′ =

{
1 if k = k′,
0, if k �= k′, k = 1, . . . , T − 1,

(3B.2)

Then the (N − 1)(T − 1) vectors �j ⊗�k, j = 1, . . . , N − 1, k = 1, . . . ,

T − 1, the N − 1 vectors �j ⊗ (e/
√
T ), j = 1, . . . , N − 1, and the T − 1

vectors eN/
√
N ⊗�k, k = 1, . . . , T − 1, are also characteristic vectors of Ṽ ,

with the associated roots σ 2
u , σ

2
u + T σ 2

α , and σ 2
u +Nσ 2

λ , which are of multi-
plicity (N − 1)(T − 1), (N − 1), and (T − 1), respectively.

Let

C1 = 1√
T

[�1 ⊗ e, . . . ,�N−1 ⊗ e],

C2 = 1√
N

[eN ⊗�1, . . . , eN ⊗�T−1],

C3 = [�1 ⊗�1,�1 ⊗�2, . . . ,�N−1 ⊗�T−1],

C4 =
(

eN/
√
N
)

⊗
(

e/
√
T
)

= 1√
NT

eNT ,

(3B.3)

and

C = [C1 C2 C3 C4]. (3B.4)

Then

CC ′ = C1C
′
1 + C2C

′
2 + C3C

′
3 + C4C

′
4 = INT , (3B.5)

CṼ C ′ =⎡⎢⎢⎢⎢⎢⎣
(σ 2
u + T σ 2

α )IN−1 0 0 0

0 σ 2
u +Nσ 2

λ IT−1 0 0

0 0 σ 2
u I(N−1)(T−1) 0

0 0 0 σ 2
u + T σ 2

α +Nσ 2
λ

⎤⎥⎥⎥⎥⎥⎦= �,

(3B.6)

and

Ṽ = C�C ′.
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Let A = IN ⊗ ee′,D = eNe′
N ⊗ IT , and J = eNT e′

NT . From

C4C
′
4 = 1

NT
J, (3B.7)

Nerlove (1971b) showed that by premultiplying (3B.5) by A, we have

C1C
′
1 = 1

T
A− 1

NT
J, (3B.8)

and premultiplying (3B.5) by D,

C2C
′
2 = 1

N
D − 1

NT
J. (3B.9)

Premultiplying (3B.5) by A and D and using the relations (3B.5), (3B.7),
(3B.8), and (3B.9), we have

C3C
′
3 = INT − 1

T
A− 1

N
D + 1

NT
J = Q̃. (3B.10)

Because Ṽ −1 = C�−1C ′, it follows that

Ṽ −1 = 1

σ 2
u + T σ 2

α

(
1

T
A− 1

NT
J

)
+ 1

σ 2
u +Nσ 2

λ

(
1

N
D − 1

NT
J

)

+ 1

σ 2
u

Q̃+ 1

σ 2
u + T σ 2

α +Nσ 2
λ

(
1

NT
J

)
.

(3B.11)



CHAPTER 4

Dynamic Models with Variable Intercepts

4.1 INTRODUCTION

In Chapter 3 we discussed the implications of treating the specific effects as
fixed or random and the associated estimation methods for the linear static
model

yit = x′
it� + α∗

i + λt + uit , i = 1, . . . , N,

t = 1, . . . , T ,
(4.1.1)

where xit is a K × 1 vector of explanatory variables, including the con-
stant term; � is a K × 1 vector of constants; α∗

i and λt are the (unobserved)
individual- and time-specific effects, which are assumed to stay constant for
given i over t and for given t over i, respectively; and let uit represent the
effects of those unobserved variables that vary over i and t . Very often we also
wish to use panel data to estimate behavioral relationships that are dynamic in
character, namely, models containing lagged dependent variables such as1

yit = γyi,t−1 + x′
it� + α∗

i + λt + uit , i = 1, . . . , N,

t = 1, . . . , T ,
(4.1.2)

where Euit = 0, and Euitujs = σ 2
u if i = j and t = s and Euitujs = 0 other-

wise. It turns out that in this circumstance the choice between a fixed-effects
formulation and a random-effects formulation has implications for estimation
that are of a different nature than those associated with the static model.

Roughly speaking, two issues have been raised in the literature regarding
whether the effects, αi and λt , should be treated as random or as fixed for
a linear static model, namely, the efficiency of the estimates and the inde-
pendence between the effects and the regressors (i.e., the validity of the strict
exogeneity assumption of the regressors (3.4.1); e.g., Maddala 1971a; Mundlak
1978a (see Chapter 3)). When all the explanatory variables are fixed constants
or strictly exogenous relative to u, the covariance estimator is the best linear

1 We defer the discussion of estimating distributed-lag models to Chapter 11.
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unbiased estimator under the fixed-effects assumption and a consistent and
unbiased estimator under the random-effects assumption, even though it is
not efficient. However, when there exist omitted individual attributes that are
correlated with the included exogenous variables, the covariance (CV) esti-
mator does not suffer from bias due to omission of these relevant individual
attributes because their impacts have been differenced out, but a generalized
least-squares estimator for the random-effects model under the assumption of
independence between the effects and explanatory variables is biased. Further-
more, in a linear static model if the effects are correlated with the mean of the
explanatory variables, a correctly formulated random-effects model leads to
the same CV estimator as the fixed-effects model (Mundlak (1978a); see also
Section 3.4 in Chapter 3). Thus, the fixed-effects model has assumed paramount
importance in empirical studies (e.g., Ashenfelter 1978; Hausman 1978; Kiefer
1979).

However, if lagged dependent variables also appear as explanatory variables,
strict exogeneity of the regressors no longer holds. The initial values of a
dynamic process raise another problem. It turns out that with a random-effects
formulation, the interpretation of a model depends on the assumption of initial
observation. In the case of fixed-effects formulation, the maximum-likelihood
estimator (MLE) or the CV estimator is no longer consistent in the typical
situation in which a panel involves a large number of individuals, but over
only a short period of time. The consistency and asymptotic properties of
various fixed-effects estimators to be discussed in this chapter depend on the
way in which the number of time series observations T and the number of
cross-sectional units N tend to infinity.

For ease of exposition, we shall first assume that the time-specific effects, λt ,
do not appear. In Section 4.2 we discuss the properties of the CV (or the least
squares dummy variable) estimator. Section 4.3 discusses the random-effects
model. We discuss the implications of various formulation and methods of
estimation. We show that the ordinary least-squares estimator is inconsistent
but the MLE, the instrumental variable (IV), and the generalized method of
moments (GMM) estimator are consistent. Procedures to test initial conditions
are also discussed. In Section 4.4 we use Balestra and Nerlove’s (1966) model
of demand for natural gas to illustrate the consequences of various assumptions
for the estimated coefficients. Section 4.5 discusses the estimation of the fixed-
effects dynamic model. We show that although the conventional MLE and
CV estimator are inconsistent when T is fixed and N tends to infinity, there
exists a transformed likelihood approach that does not involve the incidental
parameter and is consistent and efficient under proper formulation of initial
conditions. We also discuss the IV and GMM estimator that does not need the
formulation of initial conditions. Procedures to test fixed versus random effects
are also suggested. In Section 4.6 we relax the assumption on the specific
serial-correlation structure of the error term and propose a system approach
to estimating dynamic models. Models with both individual- and time-specific
effects are discussed in Section 7.
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4.2 THE CV ESTIMATOR

The CV transformation removes the individual-specific effects from the speci-
fication; hence the issue of random- versus fixed-effects specification does not
arise. The CV estimator is consistent for the static model when eitherN or T or
both are large. In the case of dynamic model, the properties of CV (or LDSV)
depend on the way in which N and T goes to infinity.

Consider2

yit = γyi,t−1 + α∗
i + uit , | γ |< 1, i = 1, . . . , N,

t = 1, . . . , T ,
(4.2.1)

where for simplicity we let α∗
i = αi + μ to avoid imposing the restriction that∑N

i=1 αi = 0. We also assume that yi0 are observable,Euit = 0, andEuitujs =
σ 2
u if i = j and t = s, and Euitujs = 0 otherwise.

Let yi =∑T
t=1 yit /T , yi,−1 =∑T

t=1 yi,t−1/T , and ui =∑T
t=1 uit/T . The

LSDV (CV) estimators for α∗
i and γ are

α̂∗
i = yi − γ̂cvyi,−1, i = 1, . . . , N, (4.2.2)

γ̂cv =
∑N
i=1

∑T
t=1(yit − yi)(yi,t−1 − yi,−1)∑N

i=1

∑T
t=1(yi,t−1 − yi,−1)2

= γ +
∑N
i=1

∑T
t=1(yi,t−1 − yi,−1)(uit − ui)/NT∑N

i=1

∑T
t=1(yi,t−1 − yi,−1)2/NT

.

(4.2.3)

The CV estimator exists if the denominator of the second term of (4.2.3) is
nonzero. It is consistent if the numerator of the second term of (4.2.3) converges
to 0 as sample size increases.

By continuous substitution, we have

yit = uit + γ ui,t−1 + · · · + γ t−1ui1 + 1 − γ t
1 − γ α

∗
i + γ tyi0. (4.2.4)

2 The assumption that | γ |< 1 is made to establish the (weak) stationarity of an autoregressive
process (Anderson 1971, Chapters 5 and 7). A stochastic process {ξt } is stationary if its probability
structure does not change with time. A stochastic process is weakly stationary if its mean
Eξt = m is a constant, independent of its time, and if the covariance of any two variables
E(ξt − Eξt )(ξs − Eξs ) = σξ (t − s) depends only on their distance apart in time. The statistical
properties of a least-squares estimator for the dynamic model vary with whether or not | γ |< 1
when T → ∞ (Anderson 1959). When T is fixed andN → ∞, it is not necessary to assume that
| γ |< 1 to establish the asymptotic normality of the least-squares estimator (Anderson 1978;
Goodrich and Caines 1979). We keep this conventional assumption for simplicity of exposition
and also because it allows us to provide a unified approach toward various assumptions about
the initial conditions discussed in Chapter 4, Section 4.3.
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Summing yi,t−1 over t , we have

T∑
t=1

yi,t−1 = 1 − γ T
1 − γ yi0 + (T − 1) − T γ + γ T

(1 − γ )2
α∗
i

+ 1 − γ T−1

1 − γ ui1 + 1 − γ T−2

1 − γ ui2 + · · · + ui,T−1.

(4.2.5)

Under the assumption that uit are uncorrelated with α∗
i and are independently

identically distributed, by a law of large numbers (Rao 1973), and using (4.2.5),
we can show that when N tends to infinity,

plim
N→∞

1

NT

N∑
i=1

T∑
t=1

(yi,t−1 − yi,−1)(uit − ui)

= − plim
N→∞

1

N

N∑
i=1

yi,−1ui

= −σ
2
u

T 2
· (T − 1) − T γ + γ T

(1 − γ )2
.

(4.2.6)

By similar manipulations we can show that the denominator of (4.2.3) converges
to

σ 2
u

1 − γ 2

{
1 − 1

T
− 2γ

(1 − γ )2
· (T − 1) − T γ + γ T

T 2

}
. (4.2.7)

as N → ∞. If T is fixed, (4.2.6) is a nonzero constant, and (4.2.2) and (4.2.3)
are inconsistent estimators no matter how large N is. The asymptotic bias of
the CV of γ is

plim
N→∞

(γ̂cv − γ ) = − 1 + γ
T − 1

(
1 − 1

T

1 − γ T
1 − γ

)

·
{

1 − 2γ

(1 − γ )(T − 1)

[
1 − 1 − γ T

T (1 − γ )

]}−1

. (4.2.8)

The bias of γ̂cv is caused by having to eliminate the unknown individual effects
α∗
i from each observation, which creates the correlation of the order (1/T )

between the regressors and the residuals in the transformed model (yit − yi) =
γ (yi,t−1 − yi,−1) + (uit − ui). For smallT , this bias is always negative if γ > 0.
Nor does the bias go to 0 as γ goes to 0. Because a typical panel usually contains
a small number of time series observations, this bias can hardly be ignored. For
instance, when T = 2, the asymptotic bias is equal to −(1 + γ )/2, and when
T = 3, it is equal to −(2 + γ )(1 + γ )/2. Even with T = 10 and γ = 0.5, the
asymptotic bias is −0.167. The CV estimator for the dynamic fixed-effects
model remains biased with the introduction of exogenous variables if T is
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small; for details of the derivation, see Anderson and Hsiao (1982) and Nickell
(1981); for Monte Carlo studies, see Nerlove (1971a).

The process of eliminating the individual-specific effects αi introduces an
estimation error of order T −1. When T is large, (yi,t−1 − ȳi,−1) and (uit − ūi)
become asymptotically uncorrelated, (4.2.6) converges to zero, and (4.2.7)
converges to a nonzero constant σ 2

u /(1 − γ 2). Hence when T −→ ∞, the CV
estimator becomes consistent. It can be shown that when N is fixed and T is
large,

√
T (γ̂cv − γ ) is asymptotically normally distributed with mean 0 and

variance 1 − γ 2. When both N and T are large, the CV estimator remains
consistent. However, the standard error of the CV is now of order ( 1√

NT
).

The t-statistic

(γ̂CV − γ )

standard error of γ̂CV
(4.2.9)

is no longer centered at 0 because the order
(

1
T

)
correlation between

(yi,t−1 − ȳi) and (uit − ūi) gets magnified by large N . The scale factor√
NT = √

cT if N
T

= c �= 0 <∞ as T −→ ∞, (γ̂cv − γ ) divided by its stan-
dard error is equivalent to multiplying (γ̂cv − γ ) by a scale factor T . Equation
(4.2.6) multiplied by T will not go to 0 no matter how large T is. Hahn and
Kuersteiner (2002) have shown that

√
NT (γ̂cv − γ ) is asymptotically normally

distributed with mean −√
c(1 + γ ) and variance 1 − γ 2. In other words, the

usual t-statistic based on γ̂cv is not centered at 0, and hence could be sub-
ject to severe size distortion when N also increases as T increases such that
N
T

→ c �= 0 as T → ∞ (e.g., Hsiao and Zhang 2013).

4.3 RANDOM-EFFECTS MODELS

When the specific effects are treated as random, they can be considered to be
either correlated or not correlated with the explanatory variables. In the case
in which the effects are correlated with the explanatory variables, ignoring this
correlation and simply using the CV estimator no longer yields the desirable
properties as in the case of static regression models. Thus, a more appealing
approach here would be to take explicit account of the linear dependence
between the effects and the exogenous variables by letting αi = a′xi +ωi
(Mundlak 1978a) (see Section 3.4) and use a random-effects framework of the
model

yi = yi,−1γ +Xi� + ex′
ia + eωi + ui, (4.3.1)

where now E(xitωi) = 0 and E(xituit ) = 0. However, because xi is time-
invariant and the (residual) individual effect ωi possesses the same property as
αi when the assumptionEαix′

it = 0′ holds, the estimation of (4.3.1) is formally
equivalent to the estimation of the model

yi = yi,−1γ +Xi� + ez′
i� + eαi + ui, (4.3.2)
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withXi now denoting the T ×K1 time-varying explanatory variables, z′
i being

the 1 ×K2 time-invariant explanatory variables including the intercept term,
and Eαi = 0, Eαiz′

i = 0′, and Eαix′
it = 0′. So, for ease of exposition, we

assume in this section that the effects are uncorrelated with the exogenous
variables.3

We first show that the ordinary least-squares (OLS) estimator for dynamic
error-component models is biased. We then discuss how the assumption about
the initial observations affects interpretation of a model. Finally we discuss
estimation methods and their asymptotic properties under various assumptions
about initial conditions and sampling schemes.

4.3.1 Bias in the OLS Estimator

In the static case in which all the explanatory variables are exogenous and
are uncorrelated with the effects, we can ignore the error-component structure
and apply the OLS method. The OLS estimator, although less efficient, is still
unbiased and consistent. But this is no longer true for dynamic error-component
models. The correlation between the lagged dependent variable and individual-
specific effects would seriously bias the OLS estimator. We use the following
simple model to illustrate the extent of bias. Let

yit = γyi,t−1 + αi + uit , | γ |< 1, i = 1, . . . , N,

t = 1, . . . T ,
(4.3.3)

where uit is independently, identically distributed over i and t . The OLS esti-
mator of γ is

γ̂LS =
∑N
i=1

∑T
t=1 yit · yi,t−1∑N

i=1

∑T
t=1 y

2
i,t−1

= γ +
∑N
i=1

∑T
t=1(αi + uit )yi,t−1∑N
i=1

∑T
t=1 y

2
i,t−1

. (4.3.4)

The asymptotic bias of the OLS estimator is given by the probability limit of
the second term on the right-hand side of (4.3.4). Using a manipulation similar
to that in Section 4.2, we can show that

plim
N→∞

1

NT

N∑
i=1

T∑
t=1

(αi + uit )yi,t−1

= 1

T

1 − γ T
1 − γ Cov(yi0, αi) + 1

T

σ 2
α

(1 − γ )2

[
(T − 1) − T γ + γ T ] ,

(4.3.5)

3 This does not mean that we have resolved the issue of whether or not the effects are correlated
with the exogenous variables. It only means that for estimation purposes we can let αi stand for
ωi and treat (4.3.1) as a special case of (4.3.2).
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plim
N→∞

1

NT

N∑
i=1

T∑
t=1

y2
i,t−1 = 1 − γ 2T

T (1 − γ 2)
· plim

∑N
i=1 y

2
i0

N

+ σ 2
α

(1 − γ )2
· 1

T

(
T − 2

1 − γ T
1 − γ + 1 − γ 2T

1 − γ 2

)
+ 2

T (1 − γ )

(
1 − γ T
1 − γ − 1 − γ 2T

1 − γ 2

)
Cov(αi, yi0)

+ σ 2
u

T (1 − γ 2)2

[
(T − 1) − T γ 2 + γ 2T

]
.

(4.3.6)

Usually, yi0 are assumed either to be arbitrary constants or to be generated
by the same process as any other yit , so that Cov(yi0, αi) is either 0 or posi-
tive.4 Under the assumption that the initial values are bounded, namely, that
plimN→∞

∑N
i=1 y

2
i0/N is finite, the OLS method overestimates the true autocor-

relation coefficient γ when N or T or both tend to infinity. The overestimation
is more pronounced the greater the variance of the individual effects, σ 2

α . This
asymptotic result also tends to hold in finite samples according to the Monte
Carlo studies conducted by Nerlove (1967) (N = 25, T = 10).

The addition of exogenous variables to a first-order autoregressive process
does not alter the direction of bias of the estimator of the coefficient of the
lagged dependent variable, although its magnitude is somewhat reduced. The
estimator of the coefficient of the lagged dependent variable remains biased
upward, and the estimated coefficients of the exogenous variables are biased
downward.

Formulas for the asymptotic bias of the OLS estimator for a pth-order
autoregressive process and for a model also containing exogenous variables
were given by Trognon (1978). The direction of the asymptotic bias for a
higher-order autoregressive process is difficult to identify a priori.

4.3.2 Model Formulation

Consider a model of the form5

yit = γyi,t−1 + �′zi + �′xit + vit , i = 1, . . . , N,

t = 1, . . . , T ,
(4.3.7)

4 For details, see Chapter 4, Section 4.3.2 or Sevestre and Trognon (1982).
5 The presence of the term x′

it� shows that the process {yit } is not generally stationary. But the
statistical properties of the process {yit } vary fundamentally when T → ∞ according to whether
or not {yit } converges to a stationary process when the sequence of xit is identically 0. As stated
in footnote 2, we shall adopt the first position by letting | γ |< 1.
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where | γ |< 1, vit = αi + uit ,
Eαi = Euit = 0,

Eαiz′
i = 0′, Eαix′

it = 0′,

Eαiuit = 0,

Eαiαj =
{
σ 2
α if i = j,

0 otherwise,

Euitujs =
{
σ 2
u if i = j, t = s,

0 otherwise,

(4.3.8)

and where zi is a K2 × 1 vector of time-invariant exogenous variables such as
the constant term or an individual’s sex or race, xit is a K1 × 1 vector of time-
varying exogenous variables, γ is 1 × 1, and � and � are K2 × 1 and K1 × 1
vectors of parameters, respectively. Equation (4.3.7) can also be written in the
form

wit = γwi,t−1 + �′zi + �′xit + uit , (4.3.9)

yit = wit + ηi, (4.3.10)

where

αi = (1 − γ )ηi, Eηi = 0, Var(ηi) = σ 2
η = σ 2

α /(1 − γ )2. (4.3.11)

Algebraically, (4.3.7) is identical to (4.3.9) and (4.3.10). However, the inter-
pretation of how yit is generated is not the same. Equation (4.3.7) implies that
apart from a common response to its own lagged value and the exogenous vari-
ables, each individual process is also driven by the unobserved characteristics,
αi , which are different for different individuals. Equations (4.3.9) and (4.3.10)
imply that the dynamic process {wit } is independent of the individual effect ηi .
Conditional on the exogenous variables, individuals are driven by an identical
stochastic process with independent (and different) shocks that are random
draws from a common population [equation (4.3.9)]. It is the observed value
of the latent variable wit , yit , that is shifted by the individual time-invariant
random variable ηi [equation (4.3.10)]. This difference in means can be inter-
preted as a difference in individual endowments or a common measurement
error for the ith process.

If we observe wit , we can distinguish (4.3.7) from (4.3.9) and (4.3.10).
Unfortunately, wit are unobservable. However, knowledge of initial observa-
tions can provide information to distinguish these two processes. Standard
assumptions about initial observations are either that they are fixed or that they
are random. If (4.3.7) is viewed as the model, we have two fundamental cases:
(I) yi0 fixed and (II) yi0 random. If (4.3.9) and (4.3.10) are viewed as the basic
model, we have (III) wi0 fixed and (IV) wi0 random.

Case I: yi0 fixed. A cross-sectional unit may start at some arbitrary position yi0
and gradually move toward a level (αi + �′zi)/(1 − γ ) + �′∑

j=0 xi,t−j γ j .
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This level is determined jointly by the unobservable effect (characteristic) αi ,
observable time-invariant characteristics zi , and time-varying variables xit .
The individual effect, αi , is a random draw from a population with mean 0
and variance σ 2

α . This appears to be a reasonable model. But if the decision
about when to start sampling is arbitrary and independent of the values of yi0,
treating yi0 as fixed might be questionable because the assumption Eαiyi0 = 0
implies that the individual effects, αi , are not brought into the model at time 0,
but affect the process at time 1 and later. If the process has been going on for
some time, there is no particular reason to believe that yi0 should be viewed
differently than yit .

Case II: yi0 random. We can assume that the initial observations are random,
with a common mean μy0 and variance σ 2

y0. Namely, let

yi0 = μy0 + εi . (4.3.12)

A rationalization of this assumption is that we can treat yit as a state. We do
not care how the initial state, yi0, is reached as long as we know that it has a
distribution with finite mean and variance. Or, alternatively, we can view εi as
representing the effect of initial individual endowments (after correction for the
mean). Depending on the assumption with regard to the correlation between
yi0 and αi , we can divide this case into two subcases:

Case IIa: yi0 independent of αi ; that is, Cov(εi, αi) = 0. In this case the
impact of initial endowments gradually diminishes over time and eventually
vanishes. The model is somewhat like case I, in which the starting value and
the effect αi are independent, except that now the starting observable value is
not a fixed constant but a random draw from a population with mean μy0 and
variance σ 2

y0.

Case IIb: yi0 correlated with αi . We denote the covariance between yi0 and αi
by φσ 2

y0. Then, as time goes on, the impact of initial endowments (εi) affects
all future values of yit through its correlation with αi and eventually reaches
a level φεi/(1 − γ ) = limt→∞ E[yit − �′zi/(1 − γ ) − �′∑t−1

j=0 xi,t−j γ j | εi].
In the special case that φσ 2

y0 = σ 2
α , namely, εi = αi , the individual effect can be

viewed as completely characterized by the differences in initial endowments.
The eventual impact of this initial endowment equals αi/(1 − γ ) = ηi .
Case III: wi0 fixed. Here the unobserved individual process {wit } has an
arbitrary starting value. In this sense, this case is similar to case I. How-
ever, the observed cross-sectional units, yit , are correlated with the individual
effects, ηi . That is, each of the observed cross-sectional units may start at some
arbitrary position yi0 and gradually move toward a level ηi + �′zi/(1 − γ )
+�′∑t−1

j=0 xi,t−j γ j . Nevertheless, we allow for the possibility that the starting
period of the sample observations need not coincide with the beginning of a
stochastic process by letting the individual effect ηi affect all sample observa-
tions, including yi0.
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Case IV: wi0 random. Depending on whether or not the wi0 are viewed as
having common mean, we have four subcases:

Case IVa: wi0 random, with common mean μw and variance σ 2
u /(1 − γ 2)

Case IVb: wi0 random, with common mean μw and arbitrary variance σ 2
w0

Case IVc: wi0 random, with mean θi0 and variance σ 2
u /(1 − γ 2)

Case IVd: wi0 random, with mean θi0 and arbitrary variance σ 2
w0

In each of these four subcases we allow correlation between yi0 and ηi .
In other words, ηi affects yit in all periods, including yi0. Cases IVa and IVb
are similar to the state-space representation discussed in case IIa, in which
the initial states are random draws from a distribution with finite mean. Case
IVa assumes that the initial state has the same variance as the latter states.
Case IVb allows the initial state to be nonstationary (with arbitrary variance).
Cases IVc and IVd take a different view in that they assume that the individual
states are random draws from different populations with different means. A
rationalization for this can be seen through successive substitution of (4.3.9),
yielding

wi0 = 1

1 − γ �′zi + �′
∞∑
j=0

xi,−j γ j + ui0 + γ ui,−1 + γ 2ui,−2 + . . . (4.3.13)

Because xi0, xi,−1, . . . are not observable, we can treat the combined cumulative
effects of nonrandom variables for the ith individual as an unknown parameter
and let

θi0 = 1

1 − γ �′zi + �′
∞∑
j=0

xi,−j γ j (4.3.14)

Case IVc assumes that the process {wit } was generated from the infinite past
and has achieved stationarity of its second moments after conditioning on the
exogenous variables (i.e., wi0 has the same variance as any other wit ). Case
IVd relaxes this assumption by allowing the variance of wi0 to be arbitrary.

4.3.3 Estimation of Random-Effects Models

There are various ways to estimate the unknown parameters. Here we discuss
four methods: the MLE, the GLS, the instrumental-variable (IV), and the GMM
methods.

4.3.3.1 Maximum-Likelihood Estimator

Different assumptions about the initial conditions imply different forms of
the likelihood functions. Under the assumption that αi and uit are normally
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distributed, the likelihood function for case I is6

L1 = (2π )−
NT

2 | V |− N
2 exp

{
− 1

2

N∑
i=1

(yi − yi,−1γ

− Zi� −Xi�)′ · V −1(yi − yi,−1γ − Zi� −Xi�)

}
,

(4.3.15)

where yi = (yi1, . . . , yiT )′, yi,−1 = (yi0, . . . , yi,T−1)′, Zi = ez′
i , e =

(1, . . . , 1)′, Xi = (xi1, . . . , xiT )′, and V = σ 2
u IT + σ 2

αee′. The likelihood
function for case IIa is

L2a = L1 · (2π )−
N
2
(
σ 2
y0

)− N
2 exp

{
− 1

2σ 2
y0

N∑
i=1

(yi0 − μy0)2

}
. (4.3.16)

For case IIb, it is of the form

L2b = (2π )−
NT

2
(
σ 2
u

)− N (T−1)
2
(
σ 2
u + T a)− N

2 exp

{
− 1

2σ 2
u

N∑
i=1

T∑
t=1

· [yit − γyi,t−1 − �′zi − �′xit − φ(yi0 − μy0)]2

+ a

2σ 2
u

(
σ 2
u + T a)

N∑
i=1

{ T∑
t=1

[yit − γyi,t−1 − �′zi − �′xit − φ

· (yi0 − μy0)]

}2}
· (2π )−

N
2
(
σ 2
y0

)− N
2

· exp

{
− 1

2σ 2
y0

N∑
i=1

(yi0 − μy0)2

}
,

(4.3.17)

where a = σ 2
α − φ2σ 2

y0. The likelihood function for case III is

L3 = (2π )−
NT

2
(
σ 2
u

)− NT
2 exp

{
− 1

2σ 2
u

N∑
i=1

T∑
t=1

[(yit − yi0 + wi0)

− γ (yi,t−1 − yi0 + wi0) − �′zi − �′xit ]2

}
· (2π )−

N
2
(
σ 2
η

)− N
2

· exp

{
− 1

2σ 2
η

N∑
i=1

(yi0 − wi0)2

}
,

(4.3.18)

6 V is the same as (3.3.4).
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and for Case IVa it is

L4a = (2π )−
N (T+1)

2 | � |− N
2

· exp

{
− 1

2

N∑
i=1

(yi0 − μw, yi1 − γyi0 − �′zi − �′xi1, . . . ,

yiT − γyi,T−1 − �′zi − �′xiT )

�−1(yi0 − μw, . . . , yiT − γyi,T−1 − �′zi − �′xiT )′
}
,

(4.3.19)

where

�
(T+1)×(T+1)

= σ 2
u

[ 1
1−γ 2 0′

0 IT

]
+ σ 2

α

[ 1
1−γ
e

] (
1

1−γ , e
′
)

| � | = σ 2T
u

1 − γ 2

(
σ 2
u + T σ 2

α + 1 + γ
1 − γ σ

2
α

)
,

�−1 = 1

σ 2
u

[ [
1 − γ 2 0′

0 IT

]

−
(
σ 2
u

σ 2
α

+ T + 1 + γ
1 − γ

)−1 [
1 + γ

e

]
(1 + γ, e′)

]
.

(4.3.20)

The likelihood function for case IVb, L4b, is of the form (4.3.19), except that
� is replaced by�, where� differs from� only in that the upper left element
of the first term, 1/(1 − γ 2), is replaced by σ 2

w0/σ
2
u . The likelihood function

for case IVc, L4c, is similar to that for case IVa, except that the mean of yi0 in
the exponential term is replaced by θi0. The likelihood function for case IVd,
L4d, is of the form (4.3.17), with θi0, (1 − γ )σ 2

η /(σ
2
η + σ 2

w0), and σ 2
η + σ 2

w0

replacing μy0, φ, and σ 2
y0, respectively.

Maximizing the likelihood function with respect to unknown parameters
yields the MLE. The consistency of the MLE depends on the initial conditions
and on the way in which the number of time series observations T and the cross-
sectional unitsN tends to infinity. For cases III and IVd, the MLEs do not exist.
By letting yi0 equal to wi0 or θi0, the exponential term of the second function
of their respective likelihood function becomes 1. If we let the variances σ 2

η or
σ 2
η + σ 2

w0 approach 0, the likelihood functions become unbounded. However,
we can still take partial derivatives of these likelihood functions and solve for
the first-order conditions. For simplicity of exposition, we shall refer to these
interior solutions as the MLEs and examine their consistency properties in the
same way as in other cases in which the MLEs exist.

When N is fixed, a necessary condition for � being identifiable is that
N ≥ K2. Otherwise, the model is subject to strict multicollinearity. However,
when T tends to infinity, even with N greater than K2, the MLEs for � and
σ 2
α remain inconsistent because of insufficient variation across individuals. On
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Table 4.1. Consistency properties of the MLEs for dynamic random-effects
modelsa

N fixed, T fixed,
Case T → ∞ N → ∞
Case I: yi0 fixed γ,�, σ 2

u Consistent Consistent
�, σ 2

α Inconsistent Consistent

Case II: yi0 random
IIa: yi0 independent of αi γ,�, σ 2

u Consistent Consistent
μy0, �, σ

2
α , σ

2
y0 Inconsistent Consistent

IIb: yi0 correlated γ,�, σ 2
u Consistent Consistent

with αi μy0, �, σ
2
α , σ

2
y0, φ Inconsistent Consistent

Case III: wi0 fixed γ,�, σ 2
u Consistent Inconsistent

wi0,�, σ
2
η Inconsistent Inconsistent

Case IV: wi0 random
IVa: mean μw
and variance γ,�, σ 2

u Consistent Consistent
σ 2
u /(1 − γ 2) μw, �, σ

2
η Inconsistent Consistent

IVb: mean μw γ,�, σ 2
u Consistent Consistent

and variance σ 2
w0 σ 2

w0, �, σ
2
η , μw Inconsistent Consistent

IVc: mean θi0 γ,�, σ 2
u Consistent Inconsistent

and variance σ 2
u /(1 − γ 2) θi0,�, σ

2
η Inconsistent Inconsistent

IVd: mean θi0 γ,�, σ 2
u Consistent Inconsistent

and variance σ 2
w0 θi0,


2
η, σ

2
w0 Inconsistent Inconsistent

a If an MLE does not exist, we replace it by the interior solution.
Source: Anderson and Hsiao (1982, Table 1).

the other hand, the MLEs of γ , �, and σ 2
u are consistent for all these different

cases. When T becomes large, the weight of the initial observations becomes
increasingly negligible, and the MLEs for different cases all converge to the
same CV estimator.

For cases IVc and IVd, wi0 have means θi0, which introduces incidental
parameter problems. The MLE in the presence of incidental parameters is
inconsistent. Bhargava and Sargan (1983) suggest predicting θi0 by all the
observed xit and zi as a means to get around the incidental-parameters prob-
lem.7 If xit is generated by a homogeneous stochastic process

xit = c +
∞∑
j=0

bj�i,t−j , (4.3.21)

7 Bhargava and Sargan (1983) get around the issue of incidental parameter associated with ini-
tial value, yi0, by projecting yi0 on xi under the assumption that αi and xi are uncorrelated.
Chamberlain (1984) and Mundlak (1978a) assume that the effects, αi , are correlated with xi and
get around the issue of incidental parameters by projecting αi on xi under the assumption that
(αi, x′

i ) are independently, identically distributed over i.



4.3 Random-Effects Models 93

where �it is independently, identically distributed, then the minimum mean
square error predictor of xi,−j by xit is the same for all i. Substituting these
predictive formulae into (4.3.14) yields

yi0 =
T∑
t=1


′
0txit + �∗′zi + vi0, (4.3.22)

and

vi0 = εi0 + u∗
i0 + ηi. i = 1, . . . , N. (4.3.23)

The coefficients 
0t are identical across i (Hsiao, Pesaran, and Tahmiscioglu
2002). The error term vi0 is the sum of three components: the prediction error
of θi0, εi0; the cumulative shocks before time 0, u∗

i0 = ui0 + γ ui,−1 + γ 2ui,−2

+ . . .; and the individual effects, ηi . The prediction error εi0 is independent of
uit and ηi , with mean 0 and variance σ 2

ε0. Depending on whether or not the error
process ofwi0 conditional on the exogenous variables has achieved stationarity
(i.e., whether or not the variance of wi0 is the same as any other wit ), we have8

case IVc′,

Var(vi0) = σ 2
ε0 + σ 2

u

1 − γ 2
+ σ 2

α

(1 − γ )2
and

Cov(vi0, vit ) = σ 2
α

(1 − γ )
, t = 1, . . . , T ,

(4.3.24)

or case IVd′,

Var(vi0) = σ 2
w0 and Cov(vi0, vit ) = σ 2

τ , t = 1, . . . , T . (4.3.25)

Cases IVc′ and IVd′ transform cases IVc and IVd, in which the number of
parameters increases with the number of observations, into a situation in which
N independently distributed (T + 1)-component vectors depend only on a
fixed number of parameters. Therefore, the MLE is consistent when N → ∞
or T → ∞ or both N, T → ∞. Moreover, the MLE multiplied by the scale
factor

√
NT is centered at the true values independent of the way N or T goes

to infinity (for details, see Hsiao and Zhang 2013).
The MLE is obtained by solving the first-order conditions of the likelihood

function with respect to unknown parameters. If there is a unique solution to
these partial derivative equations with σ 2

α > 0, the solution is the MLE. How-
ever, just as in the static case discussed in Section 3.3, a boundary solution

8 Strictly speaking, from (4.3.21), the nonstationary analogue of case IVd would imply that

Var(vi0) = σ 2
ω0 + σ 2

α

(1 − γ )2
and

Cov(vi0, vit ) = σ 2
α

(1 − γ )
, t = 1. . . . , T .

However, given the existence of the prediction-error term εi0, it is not possible to distinguish
this case from case IVc’ based on the information of yi0 alone. So we shall follow Bhargava and
Sargan (1983) in treating case IVd′ as the nonstationary analogue of case IVd.
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with σ 2
α = 0 may occur for dynamic error-components models as well. Ander-

son and Hsiao (1981) have derived the conditions under which the boundary
solution will occur for various cases. Trognon (1978) has provided analytic
explanations based on asymptotic approximations where the number of time
periods tends to infinity. Nerlove (1967, 1971a) has conducted Monte Carlo
experiments to explore the properties of the MLE. These results show that the
autocorrelation structure of the exogenous variables is a determinant of the
existence of boundary solutions. In general, the more autocorrelated the exoge-
nous variables or the more important the weight of the exogenous variables,
the less likely it is that a boundary solution will occur.

The solution for the MLE is complicated. We can apply the Newton–
Raphson type iterative procedure or the sequential iterative procedure suggested
by Anderson and Hsiao (1982) to obtain a solution. Alternatively, because we
have a cross section of size N repeated successively in T time periods, we
can regard the problems of estimation (and testing) of (4.3.7) as akin to those
for a simultaneous-equations system with T or T + 1 structural equations with
N observations available on each of the equations. That is, the dynamic rela-
tionship (4.3.7) in a given time period is written as an equation in a system of
simultaneous equations,

�Y ′ + BX′ + PZ′ = U ′, (4.3.26)

where we now let9

Y
N×(T+1)

=

⎡⎢⎢⎢⎣
y10 y11 . . . y1T

y20 y21 . . . y2T
...
yN0 yN1 . . . yNT

⎤⎥⎥⎥⎦ ,

X
N×TK1

=

⎡⎢⎢⎢⎣
x′

11 x′
12 . . . x′

1T
x′

21 x′
22 . . . x′

2T
...

x′
N1 x′

N2 . . . x′
NT

⎤⎥⎥⎥⎦ ,

Z
N×K2

=

⎡⎢⎢⎢⎣
z′

1
z′

2
...

z′
N

⎤⎥⎥⎥⎦ , i = 1 . . . , N,

and U is the N × T matrix of errors if the initial values, yi0, are treated
as constants, or the N × (T + 1) matrix of errors if the initial values are
treated as stochastic. The structural form coefficient matrix A = [� B P ] is

9 Previously we combined the intercept term and the time-varying exogenous variables into the
xit vector because the property of the MLE for the constant is the same as that of the MLE for
the coefficients of time-varying exogenous variables. Now we separate x′

it as (1, x̃′
it ), because

we wish to avoid having the constant term appearing more than once in (4.3.22).
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T × [(T + 1) + TK1 +K2] or (T + 1) × [(T + 1) + TK1 +K2], depending
on whether the initial values are treated as fixed or random. The earlier serial
covariance matrix [e.g., (3.3.4), (4.3.20), (4.3.24), or (4.3.25)] now becomes the
variance–covariance matrix of the errors on T or (T + 1) structural equations.
We can then use the algorithm for solving the full-information maximum-
likelihood estimator to obtain the MLE.

There are cross-equation linear restrictions on the structural form coefficient
matrix and restrictions on the variance–covariance matrix. For instances, in case
I, where yi0 are treated as fixed constants, we have

A =

⎡⎢⎢⎢⎢⎢⎢⎣
−γ 1 0 . . 0 �′ 0′ . . . . 0′ �′

0 −γ 1 . . . 0′ �′ . . . . . �′

. . . . . . . . . . . . .

. . . . . . . . . . . . . �′

. . . . . 0 . . . . . . .

0 0 0 . −γ 1 0′ 0′ . . . . �′ �′

⎤⎥⎥⎥⎥⎥⎥⎦ ,

(4.3.27)

The variance–covariance matrix ofU is block-diagonal, with the diagonal block
equal to V [equation (3.3.4)]. In case IVd′, where yi0 are treated as stochastic,
the structural form coefficient matrix A is a (T + 1) × [(T + 1) + TK1 +K2]
matrix of the form

A =

⎡⎢⎢⎢⎢⎣
1 0 . . . 0 
′

01 
′
02 . . . 
′

0T �∗′

−γ 1 . . . . �′ 0′ . . . 0′ �′

0 −γ . . . . 0′ �′ . . . 0′

. . . . . . . . . . . .

0 . . . −γ 1 0′ 0′ . . . �′ �′

⎤⎥⎥⎥⎥⎦ ,
(4.3.28)

and the variance–covariance matrix of U is block-diagonal, with the diagonal
block a (T + 1) × (T + 1) matrix of the form

Ṽ =
[
σ 2
w0 σ 2

τ e′

σ 2
τ e V

]
. (4.3.29)

Bhargava and Sargan (1983) suggest maximizing the likelihood function of
(4.3.26) by directly substituting the restrictions into the structural form coeffi-
cient matrix A and the variance–covariance matrix of U ′.

Alternatively, we can ignore the restrictions on the variance–covariance
matrix of U ′ and use three-stage least-squares (3SLS) methods. Because the
restrictions on A are linear, it is easy to obtain the constrained 3SLS estimator
of γ , �,�, and �∗ from the unconstrained 3SLS estimator.10 Or we can use the
Chamberlain (1982, 1984) minimum-distance estimator by first obtaining the

10 For the formula of the constrained estimator, see Theil 1971, p. 285, equation (8.5).
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unconstrained reduced form coefficients matrix �, then solving for the struc-
tural form parameters (see Section 3.9). The Chamberlain minimum-distance
estimator has the same limiting distribution as the constrained generalized 3SLS
estimator (see Chapter 5). However, because the maintained hypothesis in the
model implies that the covariance matrix ofU ′ is constrained and in some cases
dependent on the parameter γ occurring in the structural form, the constrained
3SLS or the constrained generalized 3SLS is inefficient in comparison with the
(full-information) MLE.11 But if the restrictions on the variance–covariance
matrix are not true, the (full information) MLE imposing the wrong restrictions
will in general be inconsistent. But the (constrained) 3SLS or the Chamberlain
minimum-distance estimator, because it does not impose any restriction on the
covariance matrix of U′, remains consistent and is efficient within the class of
estimators that do not impose restrictions on the variance–covariance matrix.

4.3.3.2 Generalized Least-Squares Estimator

We note that except for Cases III, IVc, and IVd, the likelihood function depends
only on a fixed number of parameters. Furthermore, conditional on � or σ 2

u ,
σ 2
α , σ

2
y0, and φ, the MLE is equivalent to the generalized least-squares estimator.

For instance, under Case I, the covariance matrix of (yi1, . . . , yiT ) is the usual
error-components form (3.3.4). Under Case IIa, b and Case IVa, b or Case
IVc and IVd when the conditional mean of θi0 can be represented in the form
of (4.3.22), the covariance matrix of vi = (vi0, vi1, . . . , viT ), Ṽ , is of similar
form to (4.3.29). Therefore, a GLS estimator of �′ = (
′,�∗′, γ,�′,�′), can
be applied,

�̂GLS =
(
N∑
i=1

X̃′
i Ṽ

−1X̃i

)−1 ( N∑
i=1

X̃′
i Ṽ

−1 ỹi

)
, (4.3.30)

where ỹ′
i = (yio, . . . , yiT ),

X̃i =

⎛⎜⎜⎜⎜⎜⎜⎝

x′
i1 x′

i2 . . . x′
iT z′

i 0 0′ 0
0′ . . . . . . . . . 0′ yi0 x′

i1 z′
i

...
... yi1 x′

i2 z′
i

...
...

...
...

...
0′ 0′ yi,T−1 x′

iT z′
i

⎞⎟⎟⎟⎟⎟⎟⎠ .

The estimator is consistent and asymptotically normally distributed asN → ∞.

11 See Chapter 5.
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Blundell and Smith (1991) suggest a conditional GLS procedure by condi-
tioning (yi1, . . . , yiT ) on vi0 = yi0 − E(yi0 | x′

i , zi),12

yi = yi,−1γ + Zi� +Xi� + � vi0 + v∗
i , (4.3.31)

where v∗
i = (v∗

i1, . . . , v
∗
iT )′, and � is a T × 1 vector of constants with the values

depending on the correlation pattern between yi0 and αi . For Case IIa, � = 0,
Case IIb, � = eT · φ. When the covariances between yi0 and (yi1, . . . , yiT ) are
arbitrary, � is a T × 1 vector of unrestricted constants. Application of the GLS
to (4.3.31) is consistent as N → ∞.

When the covariance matrix of vi or v∗
i is unknown, a feasible GLS estimator

can be applied. In the first step, we obtain some consistent estimates of the
covariance matrix from the estimated vi or v∗

i . For instance, we can use the IV
estimator to be discussed in Section 4.3.3.3 to obtain consistent estimators of γ
and �, then substitute them into yit − γyi,t−1 − �′xit , and regress the resulting
value on zi across individuals to obtain a consistent estimate of �. Substituting
estimated γ,� and � into (4.3.2), we obtain estimates of vit for t = 1, . . . , T .
The estimates of vi0 can be obtained as the residuals of the cross-section
regression of (4.3.22). The covariance matrix of vi can then be estimated using
the procedures discussed in Chapter 3. The estimated v∗

i can also be obtained
as the residuals of the cross-sectional regression of yi − yi,−1γ −Xi� on Zi
and ev̂i0. In the second step, we treat the estimated covariance matrix of vi or
v∗
i as if they were known, apply the GLS to the system composed of (4.3.2)

and (4.3.22) or the conditional system (4.3.31).
It should be noted that if Cov (yi0, αi) �= 0, the GLS applied to the system

(4.3.2) is inconsistent whenT is fixed andN → ∞. This is easily seen by noting
that conditional on yi0, the system is of the form (4.3.31). Applying GLS to
(4.3.2) is therefore subject to omitted variable bias. However, the asymptotic
bias of the GLS of (4.3.2) is still smaller than that of the OLS or the within
estimator of (4.3.2) (Sevestre and Trognon 1982). When T tends to infinity,
GLS of (4.3.2) is again consistent because GLS converges to the within (or
LSDV) estimator, which becomes consistent.

It should also be noted that contrary to the static case, the feasible GLS is
asymptotically less efficient than the GLS knowing the true covariance matrix
because when a lagged dependent variable appears as one of the regressors,
the estimation of slope coefficients is no longer asymptotically independent of
the estimation of the parameters of the covariance matrix (Amemiya and Fuller
1967; Hsiao, Pesaran, and Tahmiscioglu (2002); or Appendix 4A).

12 It should be noted that yit conditional on yi,t−1 and yi0 will not give a consistent estimator
becauseE(yi0) = θi0. In other words, the residual will have mean different from 0 and the mean
varies with i will give rise the incidental parameters problem.
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4.3.3.3 Instrumental–Variable Estimator

Because the likelihood functions under different initial conditions are different
when dealing with panels involving large numbers of individuals over a short
period of time, erroneous choices of initial conditions will yield estimators
that are not asymptotically equivalent to the correct one, and hence may not
be consistent. Sometimes we have little information to rely on in making a
correct choice about the initial conditions. A simple consistent estimator that
is independent of the initial conditions is appealing in its own right and in
addition can be used to obtain initial values for the iterative process that yields
the MLE. One estimation method consists of the following procedure.13

Step 1: Taking the first difference of (4.3.7), we obtain

yit − yi,t−1 = γ (yi,t−1 − yi,t−2) + �′(xit − xi,t−1) + uit − ui,t−1. (4.3.32)

Because yi,t−2 or (yi,t−2 − yi,t−3) are correlated with (yi,t−1 − yi,t−2) but are
uncorrelated with (uit − ui,t−1) they can be used as an instrument for (yi,t−1 −
yi,t−2) and estimate γ and � by the instrumental-variable method. Both(
γ̂iv
�̂iv

)
=
[
N∑
i=1

T∑
t=3

·
(

(yi,t−1 − yi,t−2)(yi,t−2 − yi,t−3) (yi,t−2 − yit−3)(xit − xi,t−1)′

(xit − xi,t−1)(yi,t−1 − yi,t−2) (xit − xi,t−1)(xit − xi,t−1)′

)]−1

·
[
N∑
i=1

T∑
t=3

(
yi,t−2 − yi,t−3

xit − xi,t−1

)
(yit − yi,t−1)

]
, (4.3.33)

and(
�̃iv
�iv

)
=
[
N∑
i=1

T∑
t=2

·
(

yi,t−2(yi,t−1 − yi,t−2) yi,t−2(xit − xi,t−1)′

(xit − xi,t−1)(yi,t−1 − yi,t−2) (xit − xi,t−1)(xit − xi,t−1)′

)]−1

·
[
N∑
i=1

T∑
t=2

(
yi,t−2

xit − xi,t−1

)
(yit − yi,t−1)

]
, (4.3.34)

are consistent.
Both (4.3.33) and (4.3.34) are derived using the sample moments
1

N(T−1)

∑N
i=1

∑T
t=2 qit (uit − ui,t−1) = 0 to approximate the population

moments E[qit (uit − ui,t−1)] = 0, where qit = [(yi,t−2 − yi,t−3), (xit −
xi,t−1)′]′ for (4.3.33) and qit = [yi,t−2, (xit − xi,t−1)′] for (4.3.34). Therefore

13 See Chapter 3, Section 3.5 for another approach.
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(4.3.33) or (4.3.34) is a consistent estimator and
√
NT [(γ̂iv − γ ), (�̂iv − �)′]′

is asymptotically normally distributed with mean 0, either N or T or both tend
to infinity (in other words, there is no asymptotic bias).

Estimator (4.3.34) has an advantage over (4.3.33) in the sense that the
minimum number of time periods required is 2, whereas (4.3.33) requires
T ≥ 3. In practice, if T ≥ 3, the choice between (4.3.34) and (4.3.33) depends
on the correlations between (yi,t−1 − yi,t−2) and yi,t−2 or (yi,t−2 − yi,t−3). For
a comparison of asymptotic efficiencies of the instruments yi,t−2 or (yi,t−2 −
yi,t−3), see Anderson and Hsiao (1981).

Step 2: Substitute the estimated � and γ into the equation

yi − γ yi,−1 − �′xi = �′zi + αi + ui i = 1, . . . , N, (4.3.35)

where yi =∑T
t=1 yit /T , yi,−1 =∑T

t=1 yi,t−1/T , xi =∑T
t=1 xit /T , and ui =∑T

t=1 uit/T . Estimate � by the OLS method.

Step 3: Estimate σ 2
u and σ 2

α by

σ̂ 2
u =

∑N
i=1

∑T
t=2

[
(yit − yi,t−1) − γ̂ (yi,t−1 − yi,t−2) − �̂

′
(xit − xi,t−1)

]2

2N (T − 1)
,

(4.3.36)

σ̂ 2
α =

∑N
i=1

(
yi − γ̂ yi,−1 − �̂′zi − �̂

′
xi
)2

N
− 1

T
σ̂ 2
u . (4.3.37)

The consistency of these estimators is independent of initial conditions. The
instrumental-variable estimators of γ , �, and σ 2

u are consistent when N or T
or both tend to infinity. The estimators of � and σ 2

α are consistent only when N
goes to infinity. They are inconsistent if N is fixed and T tends to infinity. The
instrumental-variable method is simple to implement. But if we also wish to test
the maintained hypothesis on initial conditions in the random-effects model, it
would seem more appropriate to rely on maximum-likelihood methods.

4.3.3.4 Generalized Method of Moments Estimator

We note that yi,t−2 or (yi,t−2 − yi,t−3) is not the only instrument for (yi,t−1 −
yi,t−2). In fact, as noted by Amemiya and MaCurdy (1986); Arellano–Bond
(1991); Breusch, Mizon, and Schmidt (1989), etc. all yi,t−2−j , j = 0, 1, . . .
satisfy the conditions thatE[yi,t−2−j (yi,t−1 − yi,t−2)] �= 0 andE[yi,t−2−j (uit −
ui,t−1)] = 0. Therefore, they all are legitimate instruments for (yi,t−1 − yi,t−2).
Letting qit = (yi0, yi1, . . . , yi,t−2, x′

i)
′, where x′

i = (x′
i1, . . . , x′

iT ), we have

Eqit
uit = 0, t = 2, . . . , T . (4.3.38)
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Stacking the (T − 1) first differenced equation of (4.3.32) in matrix form
we have


yi = 
yi,−1γ +
Xi� +
ui , i = 1, . . . , N (4.3.39)

where
yi , 
yi,−1 and
ui are (T − 1) × 1 vectors of the form (yi2 − yi1, . . . ,
yiT − yi,T−1)′, (yi1 − yi0, . . . , yi,T−1− yi,T−2)′, (ui2 − ui1, . . . , uiT − ui,T−1)′,
respectively, and 
Xi is the (T − 1) ×K1 matrix of (xi2 − xi1, . . . , xiT −
xi,T−1)′. The T (T − 1)[K1 + 1

2 ] orthogonality (or moment) conditions of
(4.3.38) can be represented as

EWi
ui = 0, (4.3.40)

where

Wi =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

qi2 0 0

0 qi3 . . . 0

...
...

0 0 . . . qiT

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.3.41)

is of dimension [T (T − 1)(K1 + 1
2 )] × (T − 1). The dimension of (4.3.41) in

general is much larger than K1 + 1. Thus, Arellano–Bond (1991) suggest a
generalized method of moments estimator (GMM).

The standard method of moments estimator consists of solving the unknown
parameter vector � by equating the theoretical moments with their empirical
counterparts or estimates. For instance, suppose that m(y, x; �) denote some
population moments of y and/or x, say the first and second moments of y and/or
x, which are functions of the unknown parameter vector � and are supposed to
equal some known constants, say 0. Let m̂(y, x; �) = 1

N

∑N
i=1 m(yi , xi ; �) be

their sample estimates based on N independent samples of (yi , xi). Then the
method of moments estimator � is the �̂mm, such that

m(y, x; �) = m̂(y, x; �̂mm) = 0. (4.3.42)

For instance, the orthogonality conditions betweenQXi andQui for the fixed-
effects linear static model (3.2.2), E(X′

iQui) = E[X′
iQ(yi − eα∗

i −Xi�)] =
0, lead to the LSDV estimator (3.2.8). In this sense, the IV method is a method
of moments estimator.

If the number of equations in (4.3.42) is equal to the dimension of �, it is in
general possible to solve for �̂mm uniquely. If the number of equations is greater
than the dimension of �, (4.3.42) in general has no solution. It is then necessary
to minimize some norm (or distance measure) of m̂(y, x; �) − m(y, x; �), say

[m̂(y, x; �) − m(y, x; �)]′A[m̂(y, x; �) − m(y, x; �)], (4.3.43)

where A is some positive definite matrix.
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The property of the estimator thus obtained depends on A. The optimal
choice of A turns out to be

A∗ = {E[m̂(y, x; �) − m(y, x; �)][m̂(y, x; �) − m(y, x; �)]′
}−1

(4.3.44)

(Hansen 1982). The GMM estimator of � is to choose �̂GMM such that it
minimizes (4.3.43) when A = A∗.

The Arellano–Bond (1991) GMM estimator of � = (γ,�′)′ is obtained by
minimizing(

1

N

N∑
i=1


u′
iW

′
i

)
�−1

(
1

N

N∑
i=1

Wi
ui

)
, (4.3.45)

with respect to �, where � = E[ 1
N2

∑N
i=1Wi
ui
u′

iW
′
i ]. Under the assump-

tion that uit is i.i.d. with mean 0 and variance σ 2
u ,� can be approximated by

σ 2
u

N2

∑N
i=1WiÃW

′
i , where

Ã
(T−1)×(T−1)

=

⎡⎢⎢⎢⎢⎢⎢⎣

2 −1 0 . 0
−1 2 −1 . 0

0
. . .

. . .

0
. . .

. . . . −1
0 . −1 2

⎤⎥⎥⎥⎥⎥⎥⎦ . (4.3.46)

Thus, the Arellano and Bond GMM estimator takes the form

�̂GMM,AB

=
⎧⎨⎩
[
N∑
i=1

(

y′

i,−1

X′

i

)
W ′
i

][
N∑
i=1

WiÃW
′
i

]−1 [ N∑
i=1

Wi(
yi,−1,
Xi)

]⎫⎬⎭
−1

·
⎧⎨⎩
[
N∑
i=1

(

y′

i,−1

X′

i

)
W ′
i

][
N∑
i=1

WiÃW
′
i

]−1 [ N∑
i=1

Wi
yi

]⎫⎬⎭ , (4.3.47)

with asymptotic covariance matrix

Cov(�̂GMM,AB)

= σ 2
u

⎧⎨⎩
[
N∑
i=1

(

y′

i,−1

X′

i

)
W ′
i

][
N∑
i=1

WiÃW
′
i

]−1 [ N∑
i=1

Wi(
yi,−1,
Xi)

]⎫⎬⎭
−1

.

(4.3.48)
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In addition to the moment conditions (4.3.38), Arellano and Bover (1995)
also note that Ev̄i = 0, where v̄i = ȳi − ȳi,−1γ − x̄′

i� − �′zi .14 Therefore, if
instruments q̃i exist (for instance, the constant 1 is a valid instrument) such that

Eq̃i v̄i = 0, (4.3.49)

then a more efficient GMM estimator can be derived by incorporating this
additional moment condition.

Apart from the linear moment conditions (4.3.40), and (4.3.49), Ahn and
Schmidt (1995) note that the homoscedasticity condition of E(v2

it ) implies the
following T − 2 linear conditions:

E(yit
ui,t+1 − yi,t+1
ui,t+2) = 0, t = 1, . . . , T − 2. (4.3.50)

Combining (4.3.40), (4.3.49), and (4.3.50), a more efficient GMM estimator
can be derived by minimizing15(

1

N

N∑
i=1

u+′
i W

+′
i

)
�+−1

(
1

N

N∑
i=1

W+
i u+

i

)
(4.3.51)

with respect to �, where u+
i = (
u′

i , v̄i)
′, �+ = E

(
1
N2

∑N
i=1W

+
i u+

i u+′
i W

+′
i

)
,

and

W+′
i =

(
W ′
i W ∗′

i 0
0′ 0′ q̃′

i

)
where

W ∗
i

(T−2)×(T−1)
=

⎛⎜⎜⎜⎜⎜⎜⎝
yi1 −yi2 0 0 . . . 0
0 yi2 −yi3 0 . . . .

0
0 yi,T−2 −yi,T−1

⎞⎟⎟⎟⎟⎟⎟⎠ .

However, because the covariance matrix (4.3.50) depends on the unknown �,
it is impractical to implement the GMM. A less efficient but computationally
feasible GMM estimator is to ignore the information that �+ also depends on
� and simply substitute �+ by its consistent estimator

�̂+ =
(

1

N2

N∑
i=1

W+
i û+

i û+′
i W

+′
i

)
(4.3.52)

14 Note that we let zi = 0 for ease of exposition. When zi is present, the first differencing step
of (4.3.38) eliminates zi from the specification; hence the moment conditions (4.3.39) remain
valid. However, forEvi = 0 to hold, it requires the assumption of stationarity in mean (Blundell
and Bond 1998).

15 For ease of notation, we again assume that zi = 0.
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into the objective function (4.3.51) to derive a linear estimator of form (4.3.47)
where û+

i is derived by using some simple consistent estimator of γ and �, say
the IV discussed in Section 4.3.3.3, into (4.3.39) and the v̄i equation.

In principle, one can improve the asymptotic efficiency of the GMM type
estimator by adding more moment conditions. For instance, Ahn and Schmidt
(1995) note that in addition to the linear moment conditions of (4.3.40), (4.3.49),
and (4.3.50), there exist (T − 1) nonlinear moment conditions of the form
E((ȳi − �′ x̄i)
uit ) = 0, t = 2, . . . , T , implied by the homoscedasticity con-
ditions of Ev2

it . Under the additional assumption that E(αiyit ) is the same for
all t , this condition and condition (4.3.50) can be transformed into the (2T − 2)
linear moment conditions

E[(yiT − �′xiT )
yit ] = 0, t = 1, . . . , T − 1, (4.3.53)

and

E[(yit − �′xit )yit − (yi,t−1 − �′xi,t−1)yi,t−1] = 0, t = 2, . . . , T . (4.3.54)

Though theoretically it is possible to add additional moment conditions to
improve the asymptotic efficiency of GMM, it is doubtful how much efficiency
gain one can achieve by using a huge number of moment conditions in a
finite sample. Moreover, if higher moment conditions are used, the estimator
can be very sensitive to outlying observations. Through a simulation study,
Ziliak (1997) has found that the downward bias in GMM is quite severe as the
number of moment conditions expands, outweighing the gains in efficiency.
The strategy of exploiting all the moment conditions for estimation is actually
not recommended for panel-data applications in finite sample, owing mainly to
bias. The bias is proportional to the number of instruments for each equation.
In addition, when γ is close to 1, the lagged instruments yi,t−2−j , j ≥ 0 are
weak instruments. There is also a bias-variance tradeoff in the number of
moment conditions used for estimation. Koenken and Machado (1999) show
that the usual asymptotic theory holds only if the number of moments used is
less than the cubic root of the sample size. Okui (2009) proposes a moment
selection method based on minimizing (Nagar 1959) the approximate mean
square error. In general, when T is small, it is optimal to use all moment
conditions. When T is not very small ( T 2

N log T −→ ∞), the optimal number of

moment conditions chosen is O((NT )1/3) assuming there exists a natural rank
ordering of instruments for each (yi,t−1 − yi,t−2), say (yi0, yi1, . . . , yi,t−2) in
increasing order. (Actually, Okui (2009) derives his selection method using the
forward orthogonal deviation operator of Arellano and Bover (1995), 
u∗

it =√
T−t
T−t+1

[
uit − 1

T−t (ui,t+1 + . . .+ uiT )
]
.) When σ 2

α is large relative to σ 2
u , it is

also advisable to use many moment conditions. For further discussions, see
Judson and Owen (1999), Kiviet (1995), and Wansbeek and Bekker (1996).
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To improve the efficiency of GMM when γ is close to 1, Hahn, Hausman,
and Kuersteiner (2007) suggest not using the first difference equation as in
(4.3.32), but to use the long difference yiT − yi1. In the case of first-order
autoregressive process (4.3.3),

yiT − yi1 = γ (yi,T−1 − yio) + (uiT − ui1). (4.3.55)

Then yio, yi,T−1 − γyi,T−2, . . . , yi2 − γyi1 are valid instruments. Their long
difference (LD) estimator is equivalent to applying the GMM based on the
“reduced set” of moment conditions

E

⎛⎜⎜⎜⎜⎜⎜⎝
yio

yiT−1 − γyi,T−2

·
·
·

yi2 − γyi1

⎞⎟⎟⎟⎟⎟⎟⎠ [(yiT − yi1) − γ (yi,T−1 − yio)] = 0. (4.3.56)

The instruments yit − γyi,t−1 for t = 2, . . . , T − 1 require knowledge of
γ . A feasible LD estimator could be to use the Arellano–Bond GMM esti-
mator (4.3.47) to obtain a preliminary consistent estimator γ̂GMM,AB, then use
(yio, yi,T−1 − yi,T−2γ̂GMM,AB, . . . , yi2 − yi1γ̂GMM,AB) as instruments.

The reason that the LD estimator can improve the efficiency of the GMM
based on the first difference equation of (4.3.3) is because GMM can be viewed
as the two-stage least-squares method (Theil 1958). As shown by Donald and
Newey (2001), the bias of 2SLS (GMM) depends on four factors: “explained”
variance of the first stage reduced form equation, “covariance” between the
stochastic disturbance of the structural equation and the reduced form equation,
the number of instruments, and the sample size,

E [γ̂2SLS − γ ] � 1

n
a, (4.3.57)

where n denotes the sample size and

a = (number of instruments) × (“covariance”)

“Explained” variance of the first stage reduced form equation
(4.3.58)

Based on this formula, Hahn, Hausman, and Kuersteiner (2007) show that
a = − 1+γ

1−γ for the Arellano–Bond (1991) GMM estimator when T = 3. When
γ = .9, a = −19. ForN = 100, this implies a percentage bias of −105.56. On
the other hand, using the LD estimator, a = −.37, which is much smaller than
−19 in absolute magnitude.

Remark 4.3.1: We derive the MLE (or GLS) or the GMM estimator (4.3.47)
assuming that uit is independently distributed across i and over t . If uit is
serially correlated, E(yi,t−2
uit ) �= 0 for j ≥ 2. Then neither (4.3.30) nor
(4.3.47) is a consistent estimator. On the other hand, the estimator �̂

∗
that

replaces Wi in (4.3.47) by the block diagonal instrument matrix W̃ ∗
i whose
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t th block is given by xi if xit is strictly exogenous (i.e., Exituis = 0 for all s)
or (x′

it , x′
i,t−1, . . . , x′

i1)′ if xit is weakly exogenous (i.e.,E(xi,t+j+1uit ) �= 0 and
E(uitxi,t−j ) = 0 for j ≥ 0)) remains consistent. Therefore, a Hausman (1978)
type test statistic can be constructed to test if uit are serially uncorrelated by
comparing the difference of (�̂GMM,AB − �̂

∗
).

Arellano–Bond (1991) note that if uit is not serially correlated,
E(
uit
ui,t−2) = 0. They show that the statistic

N∑
i=1

T∑
t=4

ûit
ûi,t−2

ŝ
(4.3.59)

is asymptotically normally distributed with mean 0 and variance 1 when T ≥ 5
and N −→ ∞, where

ŝ2 =
N∑
i=1

(
T∑
t=4


ûit
ûi,t−2

)2

− 2

(
N∑
i=1

T∑
t=4


ûi,t−2
x′
it

)

·
⎧⎨⎩
[
N∑
i=1

(

y′

i,−1

X′

i

)
W ′
i

](
1

N

N∑
i=1

WiÃW
′
i

)−1 [ N∑
i=1

Wi(
yi,−1,
Xi)

]⎫⎬⎭
−1

·
[
N∑
i=1

(

y′

i,−1

X′

i

)
W ′
i

](
1

N

N∑
i=1

WiÃW
′
i

)−1 [ N∑
i=1

Wi
ûi

(
T∑
t=4


ûit
ûi,t−2

)]

+
(
N∑
i=1

T∑
t=4


ûi,t−2
x′
it

)
(Cov (�̂GMM,AB))

(
N∑
i=1

T∑
t=1


xit
ûi−t−2

)
,

(4.3.60)

where 
ûit = 
yit − (
yi,t−1,
x
′
it )�̂GMM,AB,
ûi = (
ûi2, . . . ,
ûiT )′.

This statistic in lieu of Hausman-type test statistic can be used to test serial
correlation in the case there exist no exogenous variables for model (4.3.7).
The statistic (4.3.59) is defined only if T ≥ 5. When T < 5, Arellano–Bond
(1991) suggest using the Sargan (1958) test of overidentification,(

N∑
i=1


̂u
′
iW

∗′
i

)(
N∑
i=1

W ∗
i 
̂ui
̂u

′
iW

∗′
i

)−1 ( N∑
i=1

W ∗
i 
̂ui

)
, (4.3.61)

whereW ∗
i could beWi or any number of instruments that satisfy the orthogonal-

ity condition E(W ∗
i 
ui) = 0. Under the null of no serial correlation, (4.3.61)

is asymptotically χ2 distributed with p − (K + 1), degrees of freedom for any
p > (K + 1), where p denotes the number of rows inW ∗

i .

Remark 4.3.2: Because the individual-specific effects αi are time-invariant,
taking the deviation of individual yit equation from any transformation of yit
equation that maintains the time-invariance property of αi can eliminate αi .
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For instance, Alvarez and Arellano (2003) consider the transformation of yit
equation into an equation of the form,

ct [yit − 1

(T − t) (yi,t+1 + · · · + yiT )], t = 1, . . . , T − 1, (4.3.62)

where c2
t = (T−t)

(T−t+1) . The advantage of considering the equation specified by

transformation (4.3.62) is that the residuals u∗
it = ct [ut − 1

(T−t) (ui,t+1 + . . .+
uiT )], t = 1, . . . , T − 1 are orthogonal, that is, Eu∗

itu
∗
is = 0 if t �= s and

Eu∗2
it = σ 2

u . However, if transformation (4.3.62) is used to remove αi , the
instruments qit takes the form (yi0, . . . , yi,t−1, x′

i) in the application of GMM.

4.3.4 Testing Some Maintained Hypotheses on Initial Conditions

As discussed in Sections 4.3.2 and 4.3.3, the interpretation and consistency
property for the MLE and GLS of a random-effects model depend on the initial
conditions. Unfortunately, in practice we have very little information on the
characteristics of the initial observations. Because some of these hypotheses
are nested, Bhargava and Sargan (1983) suggest relying on the likelihood
principle to test them. For instance, when yi0 are exogenous (Case I) we can
test the validity of the error-components formulation by maximizing L1 with
or without the restrictions on the covariance matrix V . Let L∗

1 denote the
maximum of log L1 subject to the restriction of model (4.3.7), and let L∗∗

1
denote the maximum of log L1 with V being an arbitrary positive definite
matrix. Under the null hypothesis, the resulting test statistic 2(L∗∗

1 − L∗
1) is

asymptotically χ2 distributed, with [T (T + 1)/2 − 2] degrees of freedom.
Similarly, we can test the validity of the error-components formulation under

the assumption that yi0 are endogenous. Let the maximum of the log likelihood
function under Case IVa and Case IVc′ be denoted byL∗

4a andL∗
4c′ , respectively.

Let the maximum of the log likelihood function under case IVa or IVc′ without
the restriction (4.3.20) or (4.3.24) [namely, the (T + 1) × (T + 1) covariance
matrix is arbitrary] be denoted by L∗∗

4a or L∗∗
4c′ , respectively. Then, under the

null, 2(L∗∗
4a − L∗

4a) and 2(L∗∗
4c′ − L∗

4c′ ) are asymptoticallyχ2, with [(T + 1)(T +
2)/2 − 2] and [(T + 1)(T + 2)/2 − 3] degrees of freedom, respectively.

To test the stationarity assumption, we denote the maximum of the log
likelihood function for Case IVb and Case IVd′ as L∗

4b and L∗
4d ′ , respectively.

Then 2(L∗
4b − L∗

4a) and 2(L∗
4d ′ − L∗

4c′) are asymptotically χ2, with 1 degree of
freedom. The statistics 2(L∗∗

4a − L∗
4b) and 2(L∗∗

4c′ − L∗
4d ′ ) can also be used to test

the validity of Case IVb and Case IVd′, respectively. They are asymptoticallyχ2

distributed, with [(T + 1)(T + 2)/2 − 3] and [(T + 1)(T + 2)/2 − 4] degrees
of freedom, respectively.

We can also generalize the Bhargava and Sargan principle to test the
assumption that the initial observations have a common mean μw or have
different means θi0 under various assumptions about the error process. The
statistics 2[L∗

4c′ − L∗
4a], 2[L∗∗

4c′ − L∗∗
4a], or 2[L∗

4d ′ − L∗
4b] are asymptotically χ2
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distributed, with q, (q − 1), and (q − 1) degrees of freedom, respectively,
where q is the number of unknown coefficients in (4.3.22). We can also test
the combined assumption of a common mean and a variance-components
formulation by using the statistic 2[L∗∗

4c′ − L∗
4a] or 2[L∗∗

4c′ − L∗
4b], both of

which are asymptotically χ2 distributed, with q + (T + 1)(T + 2)/2 − 3 and
q + (T + 1)(T + 2)/2 − 4 degrees of freedom, respectively.

With regard to testing that yi0 are exogenous, unfortunately it is not pos-
sible to directly compare L1 with the likelihood functions of various forms
of case IV, because in the former case we are considering the density of
(yi1, . . . , yiT ) assuming yi0 to be exogenous, whereas the latter case is the
joint density of (yi0, . . . , yiT ). However, we can write the joint likelihood
function of (4.3.7) and (4.3.22) under the restriction that vi0 are independent
of ηi (or αi) and have variance σ 2

εo. Namely, we impose the restriction that
Cov(vi0, vit ) = 0, t = 1, . . . , T , in the (T + 1) × (T + 1) variance–covariance
matrix of (yi0, . . . , yiT ). We denote this likelihood function by L5. Let L∗∗

5
denote the maximum of log L5 with unrestricted variance–covariance matrix
for (vi0, . . . , viT ). Then we can test the exogeneity of yi0 using 2(L∗∗

4c′ − L∗∗
5 ),

which is asymptotically χ2 with T degrees of freedom under the null.
It is also possible to test the exogeneity of yi0 by constraining the error terms

to have a variance-components structure. Suppose the variance–covariance
matrix of (vi1, . . . , viT ) is of the form V [equation (3.3.4)]. Let L∗

5 denote the
maximum of the log likelihood function L5 under this restriction. Let L∗

4d ′

denote the maximum of the log likelihood function of (yi0, . . . , yiT ) under the
restriction thatEviv′

i = Ṽ ∗, but allowing the variance of vi0 and the covariance
between vi0 and vit , t = 1, . . . , T , to be arbitrary constants σ 2

w0 and σ 2
τ . The

statistic 2(L∗
4d ′ − L∗

5) is asymptotically χ2 with 1 degree of freedom if yi0 are
exogenous. In practice, however, it may not even be necessary to calculateL∗

4d ′ ,
because L∗

4d ′ ≥ L∗
4c′ , and if the null is rejected using 2(L∗

4c′ − L∗
5) against the

critical value of χ2 with 1 degree of freedom, then 2(L∗
4d ′ − L∗∗

5 ) must also
reject the null.

4.3.5 Simulation Evidence

To investigate the performance of maximum-likelihood estimators under var-
ious assumptions about the initial conditions, Bhargava and Sargan (1983)
conducted Monte Carlo studies. Their true model was generated by

yit = 1 + 0.5yi,t−1 − 0.16zi + 0.35xit + αi + uit , i = 1, . . . , 100,

t = 1, . . . , 20,

(4.3.63)

where αi and uit were independently normally distributed, with means 0 and
variances 0.09 and 0.4225, respectively. The time-varying exogenous variables



108 Dynamic Models with Variable Intercepts

xit were generated by

xit = 0.1t + φixi,t−1 + ωit , i = 1, . . . , 100,

t = 1, . . . , 20,
(4.3.64)

with φi and ωit independently normally distributed, with means 0 and vari-
ances 0.01 and 1, respectively. The time-invariant exogenous variables zi were
generated by

zi = −0.2xi4 + ω∗
i , i = 1, . . . , 100, (4.3.65)

and ω∗
i were independently normally distributed, with mean 0 and variance 1.

The z and the x were held fixed over the replications, and the first 10 obser-
vations were discarded. Thus, the yi0 are in fact stochastic and are correlated
with the individual effects αi . Table 4.2 reproduces their results on the biases
in the estimates for various models obtained in 50 replications.

In cases where the yi0 are treated as endogenous, the MLE performs
extremely well, and the biases in the parameters are almost negligible. But
this is not so for the MLE where yi0 are treated as exogenous. The magnitude
of the bias is about 1 standard error. The boundary solution of σ 2

α = 0 occurs
in a number of replications for the error-components formulation as well.
The likelihood-ratio statistics also rejected the exogeneity of yi0 46 and 50
times, respectively, using the tests 2[L∗∗

4c′ − L∗∗
5 ] and 2[L∗

4c′ − L∗
5]. Under the

endogeneity assumption, the likelihood-ratio statistic 2(L∗∗
4c′ − L∗

4c′ ) rejected
the error-components formulation 4 times (out of 50), whereas under the exo-
geneity assumption, the statistic 2(L∗∗

1 − L∗
1) rejected the error-components

formulation 7 times.16

4.4 AN EXAMPLE

We have discussed the properties of various estimators for dynamic models with
individual-specific effects. In this section we report results from the study of
demand for natural gas conducted by Balestra and Nerlove (1966) to illustrate
the specific issues involved in estimating dynamic models using observations
drawn from a time series of cross sections.

Balestra and Nerlove (1966) assumed that the new demand for gas (inclusive
of demand due to the replacement of gas appliances and the demand due to
net increases in the stock of such appliances), G∗, was a linear function of the
relative price of gas, P , and the total new requirements for all types of fuel, F ∗.
Let the depreciation rate for gas appliances be r , and assume that the rate of
utilization of the stock of appliances is constant; the new demand for gas and
the gas consumption at year t , Gt , follow the relation

G∗
t = Gt − (1 − r)Gt−1. (4.4.1)

16 Bhargava and Sargan (1983) did not report the significance level of their tests. Presumably they
used the conventional 5 percent significance level.



Table 4.2. Simulation results for the biases of the MLEs for dynamic random-effects models

yi0 exogenous, yi0 exogenous, yi0 endogenous, yi0 endogenous,
unrestricted error-components unrestricted error-components

Coefficient of covariance matrix formulation covariance matrix formulation

Intercept −0.1993 −0.1156 −0.0221 0.0045
(0.142)a (0.1155) (0.1582) (0.105)

zi 0.0203 0.0108 0.0007 −0.0036
(0.0365) (0.0354) (0.0398) (0.0392)

xit 0.0028 0.0044 0.0046 0.0044
(0.0214) (0.0214) (0.0210) (0.0214)

yi,t−1 0.0674 0.0377 0.0072 −0.0028
(0.0463) (0.0355) (0.0507) (0.0312)

σ 2
α

/
σ 2
u −0.0499 0.0011

(0.0591) (0.0588)

a Means of the estimated standard errors in parentheses.
Source: Bhargava and Sargan (1983).
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They also postulated a similar relation between the total new demand for all
types of fuel and the total fuel consumption, F , with F approximated by a
linear function of total population, N , and per capita income, I . Substituting
these relations into (4.4.1), they obtained

Gt = β0 + β1Pt + β2
Nt + β3Nt−1 + β4
It + β5It−1 + β6Gt−1 + vt ,
(4.4.2)

where 
Nt = Nt −Nt−1,
It = It − It−1, and β6 = 1 − r .
Balestra and Nerlove used annual U.S. data from 36 states over the period

1957–67 to estimate the model for residential and commercial demand for
natural gas (4.4.2). Because the average age of the stock of gas appliances
during this period was relatively young, it was expected that the coefficient of
the lagged gas consumption variable, β6, would be less than 1, but not too much
below 1. The OLS estimates of (4.4.2) are reported in the second column of
Table 4.3. The estimated coefficient of Gt−1 is 1.01. It is clearly incompatible
with a priori theoretical expectations, as it implies a negative depreciation rate
for gas appliances.

One possible explanation for the foregoing result is that when cross-sectional
and time series data are combined in the estimation of (4.4.2), certain effects
specific to the individual state may be present in the data. To account for such
effects, dummy variables corresponding to the 36 different states were intro-
duced into the model. The resulting dummy variable estimates are shown in the

Table 4.3. Various estimates of the parameters of Balestra and Nerlove’s
demand-for-gas model (4.4.2) from the pooled sample, 1957–1962

Coefficient OLS LSDV GLS

β0 −3.650 — −4.091
(3.316)a (11.544)

β1 −0.0451 −0.2026 −0.0879
(0.0270) (0.0532) (0.0468)

β2 0.0174 −0.0135 −0.00122
(0.0093) (0.0215) (0.0190)

β3 0.00111 0.0327 0.00360
(0.00041) (0.0046) (0.00129)

β4 0.0183 0.0131 0.0170
(0.0080) (0.0084) (0.0080)

β5 0.00326 0.0044 0.00354
(0.00197) (0.0101) (0.00622)

β6 1.010 0.6799 0.9546
(0.014) (0.0633) (0.0372)

a Figures in parentheses are standard errors for the corresponding coefficients.
Source: Balestra and Nerlove (1966).
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third column of Table 4.3. The estimated coefficient of the lagged endogenous
variable is drastically reduced; in fact, it is reduced to such a low level that it
implies a depreciation rate of gas appliances of greater than 30 percent – again
highly implausible.

Instead of assuming the regional effect to be fixed, they again estimated
(4.4.2) by explicitly incorporating individual state-specific effects into the error
term, so that vit = αi + uit , where αi and uit are independent random variables.
The two-step GLS estimates under the assumption that the initial observations
are fixed are shown in the fourth column of Table 4.3. The estimated coefficient
of lagged consumption is 0.9546. The implied depreciation rate is approxi-
mately 4.5 percent, which is in agreement with a priori expectation.

The foregoing results illustrate that by properly taking account of the unob-
served heterogeneity in the panel data, Balestra and Nerlove were able to obtain
results that were reasonable on the basis of a priori theoretical considerations
that they were not able to obtain through attempts to incorporate other variables
into the equation by conventional procedures. Moreover, the least-squares and
the least-squares dummy variables estimates of the coefficient of the lagged
gas consumption variable were 1.01 and 0.6799, respectively. In previous sec-
tions we showed that for dynamic models with individual-specific effects, the
least-squares estimate of the coefficient of the lagged dependent variable is
biased upward and the least-squares dummy variable estimate is biased down-
ward if T is small. Their estimates are in agreement with these theoretical
results.17

4.5 FIXED-EFFECTS MODELS

If individual effects are considered fixed and different across individuals,
because of strict multicollinearity between the effects and other time-invariant
variables, there is no way one can disentangle the individual-specific effects
from the impact of other time-invariant variables. We shall therefore assume
zi ≡ 0. When T tends to infinity, even though lagged y does not satisfy the
strict exogeneity condition for the regressors, it does satisfy the weak exo-
geneity condition of E(uit | yi,t−1, yi,t−2, .;αi) = 0; hence the least-squares
regression of yit on lagged yi,t−j and xit and the individual-specific constant
yields a consistent estimator. In the case that T is fixed and N tends to infin-
ity, the number of parameters in a fixed-effects specification increases with

17 We do not know the value of the GLS estimates when the initial observations are treated as
endogenous. My conjecture is that it is likely to be close to the two-step GLS estimates with
fixed initial observations. As mentioned in Chapter 4, Section 4.3, Sevestre and Trognon (1982)
have shown that even the initial values are correlated with the effects; the asymptotic bias of the
two-step GLS estimator under the assumption of fixed initial observations is still smaller than
the OLS or the within estimator. Moreover, if Bhargava and Sargan’s simulation result is any
indication, the order of bias due to the wrong assumption about initial observations when T is
greater than 10 is about 1 standard error or less. Here, the standard error of the lagged dependent
variable for the two-step GLS estimates with fixed initial values is only 0.037.
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the number of cross-sectional observations. This is the classical incidental
parameters problem (Neyman and Scott 1948). In a static model with strict
exogeneity assumption, the presence of individual specific constants does not
affect the consistency of the CV or MLE estimator of the slope coefficients (see
Chapter 3). However, the result no longer holds if lagged dependent variables
also appear as explanatory variables. The regularity conditions for the consis-
tency of the MLE are violated. In fact, if uit are normally distributed and yi0
are given constants, the MLE of (4.2.1) is the CV of (4.2.2) and (4.2.3). The
asymptotic bias is given by (4.2.8).

While the MLE is inconsistent when T is fixed and N is large, the IV
estimator of (4.3.32) or the GMM estimator (4.3.43) remains consistent and
asymptotically normally distributed with fixed α∗

i . The transformed equation
(4.3.39) does not involve the incidental parameters α∗

i . The orthogonality con-
dition (4.3.40) remains valid.

In addition to the IV type estimator, a likelihood-based approach based on a
transformed likelihood function can also yield a consistent and asymptotically
normally distributed estimator.

4.5.1 Transformed Likelihood Approach

The first difference equation (4.3.32) no longer contains the individual effects
α∗
i and is well defined for t = 2, 3, . . . , T , under the assumption that the

initial observations yi0 and xi0 are available. But (4.3.32) is not defined for

yi1 = (yi1 − yi0) because
yi0 and
xi0 are missing. However, by continuous
substitution, we can write 
yi1 as


yi1 = ai1 +
∞∑
j=0

γ j
ui,1−j , (4.5.1)

where ai1 = �′∑∞
j=0
xi,1−j γ j . Since 
xi,1−j , j = 1, 2, . . . , are unavail-

able, ai1 is unknown. Treating ai1 as a free parameter to be estimated will
again introduce the incidental parameters problem. To get around this problem,
the expected value of ai1, conditional on the observables, has to be a function
of a finite number of parameters of the form,

E(ai1 | 
xi) = c∗ + 
′
xi , i = 1, . . . , N, (4.5.2)

where 
 is a TK1 × 1 vector of constants, and 
xi is a TK1 × 1 vector of
(
x′

i1, . . . ,
x′
iT )′. Hsiao, Pesaran, and Tahmiscioglu (2002) have shown that

if xit are generated by

xit = �i + gt +
∞∑
j=0

b′
j�i,t−j

∞∑
j=0

| bj |<∞, (4.5.3)

where �it are assumed to be i.i.d. with mean 0 and constant covariance matrix,
then (4.5.2) holds. The data-generating process of the exogenous variables
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xit (4.5.3) can allow fixed and different intercepts �i across i, or to have �i
randomly distributed with a common mean. However, if there exists a trend
term in the data-generating process of xit , then they must be identical across i.

Given (4.5.2), 
yi1 can be written as


yi1 = c∗ + 
′
xi + v∗
i1. (4.5.4)

where v∗
i1 =∑∞

j=0 γ
j
ui,1−j + [ai1 − E(ai1 | 
xi)]. By construction,E(v∗

i1 |

xi) = 0, E(v∗2

i1 ) = σ 2
v∗ , E(v∗

i1
ui2) = −σ 2
u , and E(v∗

i1
uit ) = 0, for t =
3, 4, . . . , T . It follows that the covariance matrix of 
u∗

i = (v∗
i1,
u′

i)
′ has

the form

�∗ = σ 2
u

⎡⎢⎢⎢⎢⎢⎢⎣

h −1 0 . . . 0
−1 2 −1

0
. . .

. . .
...

. . .
. . .

0 −1 2

⎤⎥⎥⎥⎥⎥⎥⎦ = σ 2
u �̃

∗, (4.5.5)

where h = σ 2
v∗
σ 2
u

.
Combining (4.3.32) and (4.5.4), we can write the likelihood function of


y∗
i = (
yi1, . . . ,
yiT )′, i = 1, . . . , N , in the form of

(2π )−
NT

2 | �∗ |− N
2 exp

{
−1

2

N∑
i=1


u∗′
i �

∗−1
u∗
i

}
, (4.5.6)

if 
u∗
i is normally distributed, where


u∗
i = [
yi1 − c∗ − 
′
xi , 
yi2 − γ
yi1

− �′
xi2, . . . ,
yiT − γ
yi,T−1 − �′
xiT ]′. (4.5.7)

The likelihood function again depends only on a fixed number of parameters
and satisfies the standard regularity conditions, so that the MLE is consistent
and asymptotically normally distributed as N → ∞.

Since | �̃∗ |= 1 + T (h− 1) and

�̃∗−1 = [1 + T (h− 1)]−1

·

⎡⎢⎢⎢⎢⎢⎣
T T − 1 . . . 2 1

T − 1 (T − 1)h 2h h
...

...
...

...
2 2h 2[(T − 2)h− (T − 3)] (T − 2)h− (T − 3)
1 h (T − 2)h− (T − 3) (T − 1)h− (T − 2)

⎤⎥⎥⎥⎥⎥⎦ ,

(4.5.8)
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the logarithm of the likelihood function (4.5.6) is

lnL = − NT

2
log 2π − NT

2
log σ 2

u − N

2
log [1 + T (h− 1)]

− 1

2

N∑
i=1

[
(
y∗

i −Hi�)′�∗−1(
y∗
i −Hi�)

]
,

(4.5.9)

where � = (c∗,
′, γ,�′)′, and

Hi =

⎡⎢⎢⎢⎣
1 
x′

i 0 0′

0 0′ 
yi1 
x′
i2

...
...

...
0 0′ 
yi,T−1 
x′

iT

⎤⎥⎥⎥⎦ .
The MLE is obtained by solving the following equations simultaneously:

� =
(
N∑
i=1

H ′
i

ˆ̃�∗−1Hi

)−1 ( N∑
i=1

H ′
i

ˆ̃�∗−1
y∗
i

)
, (4.5.10)

σ 2
u = 1

NT

N∑
i=1

[
(
y∗

i −Hi�̂)′( ˆ̃�∗)−1(
y∗
i −Hi�̂)

]
, (4.5.11)

h = T − 1

T
+ 1

σ̂ 2
uNT

2

N∑
i=1

[
(
y∗

i −Hi�̂)′(J J ′)(
y∗
i −Hi�̂)

]
, (4.5.12)

where J ′ = (T , T − 1, . . . , 2, 1). One way to obtain the MLE is to iterate
among (4.5.10)–(4.5.12) conditionally on the early round estimates of the
other parameters until the solution converges or to use the Newton–Raphson
type iterative scheme (Hsiao, Pesaran, and Tahmiscioglu 2002).

For finite N , occasionally, the transformed MLE breaks down giving esti-
mated γ greater than unity or negative variance estimates. However, the problem
quickly disappears as N becomes large. For further discussions on the proper-
ties of transformed MLE when γ = 1 or approaches −1 or explosive, see Han
and Phillips (2013) and Kruiniger (2009).

4.5.2 Minimum Distance Estimator

Conditional on �∗, the MLE is the minimum distance estimator (MDE) of the
form

Min
N∑
i=1


u∗′
i �

∗−1
u∗
i . (4.5.13)
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In the case that �∗ is unknown, a two-step feasible MDE can be implemented.
In the first step we obtain consistent estimators of σ 2

u and σ 2
v∗. For instance, we

can regress (4.5.4) across i to obtain the least-squares residuals v̂∗
i1, and then

estimate

σ̂ 2
v∗ = 1

N − TK1 − 1

N∑
i=1

v̂∗2
i1 . (4.5.14)

Similarly, we can apply the IV to (4.3.32) and obtain the estimated residuals

ûit and

σ̂ 2
u = 1

N (T − 1)

N∑
i=1


̂u
′
i Ã

−1
̂ui (4.5.15)

where Ã is defined in (4.3.46).
In the second step, we substitute estimated σ 2

u and σ 2
v∗ into (4.5.5) and treat

them as if they were known and use (4.5.10) to obtain the MDE of �, �̂MDE.
The asymptotic covariance matrix of MDE, Var (�̂MDE), using the true

�∗ as the weighting matrix is equal to (
∑N
i=1H

′
i �

∗−1Hi)−1. The asymptotic
covariance of the feasible MDE using a consistently estimated�∗, Var (�̂FMDE),
contrary to the static case, is equal to (Hsiao, Pesaran, and Tahmiscioglu 2002)

(
1

N

N∑
i=1

H ′
i �

∗−1Hi

)−1

+
(

1

N

N∑
i=1

H ′
i �

∗−1Hi

)−1

⎡⎢⎢⎣
0 0′ 0 0′

0 0 0 0
0 0′ d 0′

0 0 0 0

⎤⎥⎥⎦
(

1

N

N∑
i=1

H ′
i �

∗−1Hi

)−1

,

(4.5.16)

where

d = [γ T−2 + 2γ T−3 + · · · + (T − 1)]2

[1 + T (h− 1)]2σ 4
u

· (σ 4
u Var

(
σ̂ 2
v∗
)+ σ 4

v∗ Var
(
σ̂ 2
u

)− 2σ 2
u σ

2
v∗ Cov

(
σ̂ 2
v∗ , σ̂

2
u

))
.

The second term of (4.5.16) arises because the estimation of � and �∗ are not
asymptotically independent when the lagged dependent variables also appear
as regressors.
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4.5.3 Relations between the Likelihood-Based Estimator
and the GMM

Although normality is assumed to derive the transformed MLE and MDE, it is
not required. Both estimators remain consistent and asymptotically normally
distributed even the errors are not normally distributed. Under normality, the
transformed MLE achieves the Cramér–Rao lower bound, and hence is fully
efficient. Even without normality, the transformed MLE (or MDE if �∗ is
known) is more efficient than the GMM that only uses second moment restric-
tions.

Using the formula of partitioned inverse (e.g., Amemiya 1985), the covari-
ance matrix of the minimum distance estimator of (γ,�) is of the form

Cov

(
�MDE
�MDE

)
=σ 2

u

[
N∑
i=1

(

y′

i,−1

X′

i

)(
Ã− 1

h
gg′
)−1

(
yi,−1, 
Xi)

]−1

(4.5.17)

where g′ = (−1, 0, . . . , 0).
We note that (4.5.17) is smaller than

σ 2
u

[
N∑
i=1

(

y′

i,−1

X′

i

)
Ã−1(
yi,−1,
Xi)

]−1

, (4.5.18)

in the sense that the difference between the two matrices is a nonpositive
semidefinite matrix, because Ã− (Ã− 1

h
gg′) is a positive semidefinite matrix.

Furthermore,

N∑
i=1

(

y′

i,−1

X′

i

)
Ã−1(
yi,−1,
Xi) −

[
N∑
i=1

(

y′

i,−1

X′

i

)
W ′
i

]( N∑
i=1

WiÃW
′
i

)−1

·
[
N∑
i=1

Wi(
yi,−1,
Xi)

]
= D′[I −Q(Q′Q)−1Q]D,

(4.5.19)

is a positive semidefinite matrix, where D = (D′
1, . . . , D

′
N )′,Q =

(Q′
1,Q

′
2, . . . ,Q

′
N )′,Di = �′(
yi,−1,
Xi),Qi = �−1Wi , and ��′ = Ã−1.

Therefore, the asymptotic covariance matrix of the GMM estimator (4.3.47),
(4.3.48), is greater than (4.5.18), which is greater than (4.5.17) in the sense
that the difference of the two covariance matrix is a positive semidefinite
matrix.

When �̃∗ is unknown, the asymptotic covariance matrix of (4.3.47) remains
as (4.3.48). But the asymptotic covariance matrix of the feasible MDE is
(4.5.16). Although the first term of (4.5.16) is smaller than (4.3.47), it is not
clear that with the addition of the second term, it will remain smaller than
(4.3.48). However, it is very likely so because of several factors. First, additional
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information due to the 
yi1 equation is utilized that can be substantial (e.g.,
see Hahn 1999). Second, the GMM method uses the (t − 1) instruments
(yi0, . . . , yi,t−2) for the 
yit equation for t = 2, 3, . . . , T . The likelihood-
based approach uses the t instruments (yi0, yi1, . . . , yi,t−1). Third, the like-
lihood approach uses the condition that E(H ′

i �
∗−1
u∗

i ) = 0 and the GMM
method uses the condition E( 1

N

∑N
i=1Wi
ui) = 0. The grouping of observa-

tions in general will lead to a loss of information.18

Although both the GMM and the likelihood-based estimator are consistent,
the process of removing the individual-specific effects in a dynamic model
creates the order 1, (O(1)) correlation between (yi,t−1 − yi,t−1) and (uit −
ui,t−1). The likelihood approach uses all NT observations to approximate the
population momentE(H ′

i �
∗−1
u∗

i ) = 0, and hence is asymptotically unbiased
independent of the way N or T −→ ∞ (Hsiao and Zhang 2013). The GMM
(or instrumental variable) approach transforms the correlation between (yit −
yi,t−1) and (uit − ui,t−1) into the correlation between 1

N

∑N
i=1 qit (yit − yi,t−1)

and 1
N

∑N
i=1 qit (uit − ui,t−1), which is of order 1

N
,O( 1

N
). Therefore, when T

is fixed and N is large, the GMM estimator is consistent and
√
N (γ̂GMM − γ )

is centered at 0. However, the number of moment conditions for the GMM (say
(4.3.40)) is (or increases) at the order of T 2. This could create finite sample bias
(e.g., see Ziliak 1997). When bothN and T are large, and T

N
−→ c, 0 < c <∞

as N → ∞, the effects of the correlations due to 1
N

∑N
i=1 qit (yit − yi,t−1) and

1
N

∑N
i=1 qit (uit − ui,t−1) get magnified. Alvarez and Arellano (2003) show that√

NT γ̂GMM has asymptotic bias equal to −√
c(1 + γ ). On the other hand,

the likelihood-based estimator is asymptotically unbiased (Hsiao and Zhang
2013). In other words, the GMM estimator multiplied by the scale factor

√
NT

is not centered at
√
NT γ , but the likelihood based estimator is.19 Whether an

estimator is asymptotically biased or not has important implications in statistical
inference because in hypothesis testing typically we normalize the estimated
γ by the inverse of its standard error, which is equivalent to multiplying the
estimator by the scale factor

√
NT . The Monte Carlo studies conducted by

Hsiao and Zhang (2013) show that there is no size distortion for the MLE or
simple IV ((4.3.33), (4.3.34)) but there are significant size distortions for GMM
when N and T are of similar magnitude. For a nominal 5% significance level
test, the actual size could be 40% when γ = .5 and 80% when γ = .8 for cases
when N and T are of similar magnitude.

18 For additional discussions on the contribution of initial observations, see Blundell and Bond
(1998) and Hahn (1999).

19 As a matter of fact, Alvarez and Arellano (2003) show that the least variance ratio estimator
(which they call “the limited information maximum likelihood estimator”) has asymptotic bias
of order 1

2N−T when 0 < c < 2. However, it appears that their forward deviation approach
works only under fixed initial conditions. When the initial condition is treated as random, there
is no asymptotic bias for the MLE (see Hsiao and Zhang 2013).
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Table 4.4. Monte Carlo design

Design number γ β φ θ g R2

y σε

1 0.4 0.6 0.5 0.5 0.01 0.2 0.800
2 0.4 0.6 0.9 0.5 0.01 0.2 0.731
3 0.4 0.6 1 0.5 0.01 0.2 0.711
4 0.4 0.6 0.5 0.5 0.01 0.4 1.307
5 0.4 0.6 0.9 0.5 0.01 0.4 1.194
6 0.4 0.6 1 0.5 0.01 0.4 1.161
7 0.8 0.2 0.5 0.5 0.01 0.2 1.875
8 0.8 0.2 0.9 0.5 0.01 0.2 1.302
9 0.8 0.2 1 0.5 0.01 0.2 1.104

10 0.8 0.2 0.5 0.5 0.01 0.4 3.062
11 0.8 0.2 0.9 0.5 0.01 0.4 2.127
12 0.8 0.2 1 0.5 0.01 0.4 1.803

Source: Hsiao, Pesaran, and Tahmiscioglu (2002, Table 1).

Hsiao, Pesaran, and Tahmiscioglu (2002) have conducted Monte Carlo stud-
ies to compare the performance of the IV of (4.3.34), the GMM of (4.3.47), the
MLE, and the MDE when T is small and N is finite. They generate yit by

yit = αi + γyi,t−1 + βxit + uit , (4.5.20)

where the error term uit is generated from two schemes. One is fromN (0, σ 2
u ).

The other is from mean adjusted χ2 with 2 degrees of freedom. The regressor
xit is generated according to

xit = μi + gt + ξit (4.5.21)

where ξit follows an autoregressive moving average process

ξit − φξi,t−1 = εit + θεi,t−1 (4.5.22)

and εit ∼ N (0, σ 2
ε ). The fixed effects μi and αi are generated from a variety

of schemes such as being correlated with xit or uncorrelated with xit but from
a mixture of different distributions. Table 4.4 gives a summary of the different
designs of the Monte Carlo study.

In generating yit and xit , both are assumed to start from 0. But the first
50 observations are discarded. The bias and root mean square error (RMSE)
of various estimators of γ and β when T = 5 and N = 50 based on 2500
replications are reported in Tables 4.5 and 4.6, respectively. The results show
that the bias of the MLE of γ as a percentage of the true value is smaller than 1
percent in most cases. The bias of the IV of γ can be significant for certain data
generating processes. In particular, if γ is close to 1, the GMM method could
run into weak IV problem (for an analytical results, see Kruiniger 2009). The
MDE and GMM of γ also have substantial downward biases in all designs. The
bias of the GMM estimator of γ can be as large as 15 to 20 percent in many
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Table 4.5. Bias of estimators (T = 5 and N = 50)

Bias

Design Coeff. IVE MDE MLE GMM

1 γ = 0.4 0.0076201 −0.050757 −0.000617 −0.069804
β = 0.6 −0.001426 0.0120812 0.0023605 0.0161645

2 γ = 0.4 0.0220038 −0.052165 −0.004063 −0.072216
β = 0.6 −0.007492 0.0232612 0.0027946 0.0321212

3 γ = 0.4 1.3986691 −0.054404 −0.003206 −0.075655
β = 0.6 −0.386998 0.0257393 0.0002997 0.0365942

4 γ = 0.4 0.0040637 −0.026051 −0.001936 −0.03616
β = 0.6 0.0004229 0.0066165 0.0019218 0.0087369

5 γ = 0.4 0.1253257 −0.023365 −0.000211 −0.033046
β = 0.6 −0.031759 0.0113724 0.0016388 0.0155831

6 γ = 0.4 −0.310397 −0.028377 −0.00351 −0.040491
β = 0.6 0.0640605 0.0146638 0.0022274 0.0209054

7 γ = 0.8 −0.629171 −0.108539 0.009826 −0.130115
β = 0.2 −0.018477 0.0007923 0.0026593 0.0007962

8 γ = 0.8 −1.724137 −0.101727 0.0027668 −0.128013
β = 0.2 0.0612431 0.0109865 −0.000011 0.013986

9 γ = 0.8 −0.755159 −0.102658 0.00624 −0.133843
β = 0.2 −0.160613 0.0220208 0.0002624 0.0284606

10 γ = 0.8 0.1550445 −0.045889 0.001683 −0.05537
β = 0.2 0.0096871 0.0000148 0.0007889 −0.000041

11 γ = 0.8 −0.141257 −0.038216 −0.000313 −0.050427
β = 0.2 0.0207338 0.0048828 0.0007621 0.0063229

12 γ = 0.8 0.5458734 −0.039023 0.0005702 −0.053747
β = 0.2 −0.069023 0.0079627 0.0003263 0.010902

Source: Hsiao, Pesaran, and Tahmiscioglu (2002, Table 2).

cases and is larger than the bias of the MDE. The MLE also has the smallest
RMSE followed by the MDE, then GMM. The IV has the largest RMSE.

4.5.4 Issues of Random versus Fixed-Effects Specification

The GMM or the MLE of the transformed likelihood function (4.5.6) or the
MDE (4.5.10) is consistent and asymptotically normally distributed whether αi
are fixed or random. However, when αi are random and uncorrelated with xit ,
the likelihood function of the form (4.3.19) uses the level variables whereas
(4.5.6) uses the first difference variables. In general, the variation across individ-
uals are greater than the variation within individuals. Moreover, first differenc-
ing reduces the number of time series observations by one per cross-sectional
unit; hence maximizing (4.5.6) yields estimators that will not be as efficient as
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Table 4.6. Root mean square error (T = 5 and N = 50)

Root Mean Square Error

Design Coeff. IVE MDE MLE GMM

1 γ = 0.4 0.1861035 0.086524 0.0768626 0.1124465
β = 0.6 0.1032755 0.0784007 0.0778179 0.0800119

2 γ = 0.4 0.5386099 0.0877669 0.0767981 0.11512
β = 0.6 0.1514231 0.0855346 0.0838699 0.091124

3 γ = 0.4 51.487282 0.0889483 0.0787108 0.1177141
β = 0.6 15.089928 0.0867431 0.0848715 0.0946891

4 γ = 0.4 0.1611908 0.0607957 0.0572515 0.0726422
β = 0.6 0.0633505 0.0490314 0.0489283 0.0497323

5 γ = 0.4 2.3226456 0.0597076 0.0574316 0.0711803
β = 0.6 0.6097378 0.0529131 0.0523433 0.0556706

6 γ = 0.4 14.473198 0.0620045 0.0571656 0.0767767
β = 0.6 2.9170627 0.0562023 0.0550687 0.0607588

7 γ = 0.8 27.299614 0.1327602 0.116387 0.1654403
β = 0.2 1.2424372 0.0331008 0.0340688 0.0332449

8 γ = 0.8 65.526156 0.1254994 0.1041461 0.1631983
β = 0.2 3.2974597 0.043206 0.0435698 0.0450143

9 γ = 0.8 89.83669 0.1271169 0.104646 0.1706031
β = 0.2 5.2252014 0.0535363 0.0523473 0.0582538

10 γ = 0.8 12.201019 0.074464 0.0715665 0.0884389
β = 0.2 0.6729934 0.0203195 0.020523 0.0203621

11 γ = 0.8 17.408874 0.0661821 0.0642971 0.0822454
β = 0.2 1.2541247 0.0268981 0.026975 0.02756742

12 γ = 0.8 26.439613 0.0674678 0.0645253 0.0852814
β = 0.2 2.8278901 0.0323355 0.0323402 0.0338716

Source: Hsiao, Pesaran, and Tahmiscioglu (2002, Table 5).

the MLE of (4.3.19) when αi are indeed random. However, if αi are fixed or
correlated with xit , the MLE of (4.3.19) yields an inconsistent estimator.

The transformed MLE or MDE is consistent under a more general data-
generating process of xit than the MLE of (4.3.19) or the GLS (4.3.30). For the
Bhargava and Sargan (1983) MLE of the random effects model to be consistent,
we will have to assume that the xit are strictly exogenous and are generated
from the same stationary process with common means ((4.3.21)). Otherwise,
E(yi0 | xi) = ci + 
′

ixi , where ci and 
i vary across i, and we will have
the incidental parameters problem again. On the other hand, the transformed
likelihood approach allows xit to be correlated with individual specific effects,
αi , and to have different means (or intercepts) (4.5.3). Therefore it appears that
if one is not sure about the assumption of the effects, αi , or the homogeneity
assumption about the data-generating process of xit , one should work with the
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transformed likelihood function (4.5.6) or the MDE (4.5.10) despite the fact
that one may lose efficiency under the ideal condition.

The use of the transformed likelihood approach also offers the possibility of
using a Hausman (1978) type test for fixed versus random effects specification
or test for the homogeneity and stationarity assumption about the xit process
under the assumption that αi are random. Under the null of random effects and
homogeneity of the xit process, the MLE of the form (4.3.19) is asymptotically
efficient. The transformed MLE of (4.5.6) is consistent, but not efficient. On
the other hand, if αi are fixed or xit is not generated by a homogeneous process
but satisfies (4.5.3), the transformed MLE of (4.5.6) is consistent, but the MLE
of (4.3.19) is inconsistent. Therefore, a Hausman type test statistics (3.5.2) can
be constructed by comparing the difference between the two estimators.

4.6 ESTIMATION OF DYNAMIC MODELS
WITH ARBITRARY SERIAL CORRELATIONS
IN THE RESIDUALS

In previous sections we discussed estimation of the dynamic model

yit = γyi,t−1 + �′xit + α∗
i + uit , i = 1, . . . , N,

t = 1, . . . , T ,
(4.6.1)

under the assumption that uit are serially uncorrelated, where we now again
let xit stand for a K × 1 vector of time-varying exogenous variables. When
T is fixed and N tends to infinity, we can relax the restrictions on the serial
correlation structure of uit and still obtain efficient estimates of γ and �.

Taking the first difference of (4.6.1) to eliminate the individual effect α∗
i ,

and stacking all equations for a single individual, we have a system of (T − 1)
equations,

yi2 − yi1 = γ (yi1 − yi0) + �′(xi2 − xi1) + (ui2 − ui1),

yi3 − yi2 = γ (yi2 − yi1) + �′(xi3 − xi2) + (ui3 − ui2),

...

yiT − yi,T−1 = γ (yi,T−1 − yi,T−2) + �′(xiT − xi,T−1)

+ (uiT − ui,T−1), i = 1, . . . , N,

(4.6.2)

We complete the system (4.6.2) with the identities

yi0 = E∗(yi0 | xi1, . . . , xiT ) + [yi0 − E∗(yi0 | xi1, . . . , xiT )]

= a0 +
T∑
t=1


′
0txit + εi0

(4.6.3)
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and

yi1 = E∗(yi1 | xi1, . . . , xiT ) + [yi1 − E∗(yi1 | xi1, . . . , xiT )]

= a1 +
T∑
t=1


′
1txit + εi1, i = 1, . . . , N.

(4.6.4)

where E∗ denotes the projection operator. Because (4.6.3) and (4.6.4) are
exactly identified equations, we can ignore them and apply the three-stage
least squares (3SLS) or generalized 3SLS (see Chapter 5) to the system (4.6.2)
only. With regard to the cross equation constraints in (4.6.2), one can either
directly substitute them out or first obtain unknown nonzero coefficients of
each equation ignoring the cross equation linear constraints, then impose the
constraints and use the constrained estimation formula [Theil 1971, p. 281,
equation (8.5)].

Because the system (4.6.2) does not involve the individual effects, α∗
i , nor

does the estimation method rely on specific restrictions on the serial-correlation
structure of uit , the method is applicable whether α∗

i are treated as fixed or
random or as being correlated with xit . However, to implement simultaneous-
equations estimation methods to (4.6.2) without imposing restrictions on the
serial-correlation structure of uit , there must exist strictly exogenous variables
xit such that

E(uit | xi1, . . . , xiT ) = 0. (4.6.5)

Otherwise, the coefficient γ and the serial correlations of uit cannot be disen-
tangled (e.g., Binder, Hsiao, and Pesaran 2005).

4.7 MODELS WITH BOTH INDIVIDUAL- AND
TIME-SPECIFIC ADDITIVE EFFECTS

For notational ease and without loss of generality, we illustrate the fundamental
issues of dynamic model with both individual- and time-specific additive effects
model by restricting � = 0 in (4.1.2); thus the model becomes

yit = γyi,t−1 + vit , (4.7.1)

vit = αi + λt + uit , i = 1, . . . , N,
t = 1, . . . , T ,
yi0 observable.

(4.7.2)

The panel data estimators discussed in Sections 4.3–4.6 assume no presence
of λt (i.e., λt = 0 ∀ t). When λt are indeed present, those estimators are not
consistent if T is finite when N → ∞. For instance, the consistency of GMM
(4.3.47) is based on the assumption that 1

N

∑N
i=1 yi,t−j
vit converges to the

population moments (4.3.40) of 0. However, if λt are also present as in (4.7.2),
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this condition is likely to be violated. To see this, taking the first difference of
(4.7.1) yields


yit = γ
yi,t−1 +
vit
= γ
yi,t−1 +
λt +
uit ,
i = 1, . . . , N,

t = 2, . . . , T .

(4.7.3)

Although under the assumption λt are independently distributed over t with
mean 0,

E(yi,t−j
vit ) = 0 for j = 2, . . . , t, (4.7.4)

the sample moment, as N −→ ∞,

1

N

N∑
i=1

yi,t−j
vit = 1

N

N∑
i=1

yi,t−j
λt

+ 1

N

N∑
i=1

yi,t−j
uit

(4.7.5)

converges to ȳt−j
λt , which in general is not equal to 0, in particular, if yit
has mean different from 0,20 where ȳt = 1

N

∑N
i=1 yit .

To obtain consistent estimators of γ , we need to take explicit account of the
presence of λt in addition to αi . When αi and λt are fixed constants, under the
assumption that uit is independent normal and fixed yi0, the MLE of the FE
model (4.7.1) is equal to:

γ̃cv =
∑N
i=1

∑T
t=1 y

∗
i,t−1y

∗
it∑N

i=1

∑T
t=1 y

∗2
i,t−1

, (4.7.6)

where y∗
it = (yit − ȳi − ȳt + ȳ); ȳi = 1

T

∑T
t=1 yit , ȳt = 1

N

∑N
i=1 yit ; ȳ =

1
NT

∑N
i=1

∑T
t=1 yit ; and similarly for ȳt , ȳi,−1, x̄i , x̄t , x∗

it , v
∗
it , v̄i , v̄t , and v̄. The

FE MLE of γ is also called the covariance estimator because it is equivalent to
first applying covariance transformation to sweep out αi and λt ,

y∗
it = γy∗

i,t−1 + v∗
it , (4.7.7)

and then applying the least-squares estimator of (4.7.7).
The probability limit of γ̃cv is identical to the case where λt ≡ 0 for all

t (4.2.8) (Hahn and Moon 2006; Hsiao and Tahmiscioglu 2008). The bias

20 For instance, if yit is also a function of exogenous variables as (4.1.2), where ȳt = 1
N

∑N
i=1 yit .
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is to the order of (1/T ) and it is identical independent of whether αi and
λt are fixed or random and are identical whether λt are present or not (e.g.,
Hahn and Moon 2006; Hsiao and Tahmiscioglu 2008). When T −→ ∞, the
MLE of the FE model is consistent. However, if N also goes to infinity and
lim

(
N
T

) = c > 0, Hahn and Moon (2006) have shown that
√
NT (γ̃cv − γ )

is asymptotically normally distributed with mean −√
c(1 + γ ) and variance

1 − γ 2. In other words, the usual t-statistic based on γcv could be subject to
severe size distortion unless T increases faster than N .

If αi and λt are random and satisfy (4.3.8), because Eyi0vit �= 0, we either
have to write (4.7.1) conditional on yi0 or to complete the system (4.7.1)
by deriving the marginal distribution of yi0. By continuous substitutions, we
have

yi0 = 1 − γ m
1 − γ αi +

m−1∑
j=0

λi,−j γ j +
m−1∑
j=0

εi,−j γ j

= vi0,
(4.7.8)

assuming the process started at period −m.
Under (4.3.8), Eyi0 = Evi0 = 0, var(yi0) = σ 2

0 , E(vi0vit ) = 1−γ m
1−γ σ

2
α =

c∗, Evitvjt = d∗. Stacking the T + 1 time series observations for the ith
individual into a vector, yi = (yi0, . . . , yi,T )′ and yi,−1 = (0, yi1, . . . , yi,T−1)′,
vi = (vi0, . . . , viT )′. Let y = (y′

1, . . . , y′
n)

′, y−1 = (y′
1,−1, . . . , y′

N,−1), v =
(v′

1, . . . , v
′
N )′, then

y = y−1γ + v, (4.7.9)

Ev = 0,

Evv′ = σ 2
u IN ⊗

(
ω 0′

0 IT

)
+ σ 2

α IN ⊗
(

0 c∗e′
T

c∗eT eT e′
T

)
+ σ 2

λ eNeN ⊗
(
d∗ 0′

0 IT

)
,

(4.7.10)

where ⊗ denotes the Kronecker product, and ω denotes the variance of
vi0 divided by σ 2

u . The system (4.7.9) has a fixed number of unknowns
(γ, σ 2

u , σ
2
α , σ

2
λ , σ

2
0 , c

∗, d∗) as N and T increase. Therefore, the MLE (or
quasi-MLE or GLS of (4.7.9)) is consistent and asymptotically normally
distributed.

When αi and λt are fixed constants, we note that first differencing only
eliminates αi from the specification. The time-specific effects, 
λt , remain
at (4.7.3). To further eliminate 
λt , we note that the cross-sectional mean

yt = 1

N

∑N
i=1
yit is equal to


yt = γ
yt−1 +
λt +
ut, (4.7.11)
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where
ut = 1
N

∑N
i=1
uit . Taking the deviation of (4.7.3) from (4.7.11) yields


y∗
it = γ
y∗

i,t−1 +
u∗
it ,

i = 1, . . . , N,

t = 2, . . . , T ,
(4.7.12)

where
y∗
it = (
yit −
yt ) and
u∗

it = (
uit −
ut ). The system (4.7.12) no
longer involves αi and λt .

Since

E[yi,t−j
u∗
it ] = 0 for

j = 2, . . . , t,

t = 2, . . . , T .
(4.7.13)

the 1
2T (T − 1) orthogonality conditions can be represented as

E(Wi
ũ∗
i ) = 0, (4.7.14)

where 
ũ∗
i = (
u∗

i2, . . . ,
u
∗
iT )′,

Wi =

⎛⎜⎜⎜⎜⎜⎜⎝

qi2 0 . . . 0
0 qi3

. .
. . .

...
...

0 0 qiT

⎞⎟⎟⎟⎟⎟⎟⎠ , i = 1, . . . , N,

and qit = (yi0, yi1, . . . , yi,t−2)′, t = 2, 3, . . . , T . Following Arellano and Bond
(1991), we can propose a generalized method of moments (GMM) estimator,21

γ̃GMM =
{[

1

N

N∑
i=1


ỹ∗′
i,−1W

′
i

]
�̂−1

[
1

N

N∑
i=1

Wi
ỹ∗
i,−1

]}−1

·
{[

1

N

N∑
i=1


ỹ∗′
i,−1W′

i

]
�̂−1

[
1

N

N∑
i=1

Wi
ỹ∗
i

]}
,

(4.7.15)

where 
ỹ∗
i = (
y∗

i2, . . . ,
y
∗
iT )′,
ỹ∗

i,−1 = (
y∗
i1, . . . ,
y

∗
i,T−1), and

�̂ = 1

N2

[
N∑
i=1

Wi
 ˆ̃u∗
i

][
N∑
i=1

Wi
 ˆ̃u∗
i

]′

(4.7.16)

and 
 ˆ̃u∗
i = 
ỹ∗

i −
ỹ∗
i,−1γ̃ , and γ̃ denotes some initial consistent estimator

of γ , say a simple instrumental variable estimator.

21 For ease of exposition, we have considered only the GMM that makes use of orthogonality
conditions. For additional moments conditions such as homoscedasticity or initial observations
see, for example, Ahn and Schmidt (1995), Blundell and Bond (1998).
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The asymptotic covariance matrix of γ̃GMM can be approximated by

asym. Cov (γ̃GMM) =
{[

N∑
i=1


ỹ∗′
i,−1W

′
i

]
�̂−1

[
N∑
i=1

Wi
ỹ∗
i,−1

]}−1

. (4.7.17)

To implement the likelihood approach, we need to complete the system
(4.7.12) by deriving the marginal distribution of
y∗

i1 through continuous sub-
stitution,


y∗
i1 =

m−1∑
j=0


u∗
i,1−j γ

j

(4.7.18)
= 
u∗

i1, i = 1, . . . , N.

Let 
y∗
i = (
y∗

i1, . . . , 
y
∗
iT )′,
y∗

i,−1 = (0,
y∗
i1, . . . ,
y

∗
i,T−1)′, 
u∗

i =
(
u∗

i1, . . . , 
u
∗
iT )′; then the system


y∗
i = 
y∗

i,−1γ +
u∗
i , (4.7.19)

does not involve αi and λt . The MLE conditional on ω = Var (
y∗
i1)

σ 2
u

is identical
to the GLS:

γ̂GLS =
[
N∑
i=1


y∗′
i,−1Ã

∗−1
y∗
i,−1

]−1 [ N∑
i=1


y∗′
i,−1Ã

∗−1
y∗
i

]
, (4.7.20)

where Ã∗ is a T × T matrix of the form,

Ã∗ =

⎡⎢⎢⎢⎢⎣
ω −1 0 0 . . . 0 0
−1 2 −1 0 . . . . .

0 −1 2 −1 . . . . .

. . . . . 2 −1
0 . . . −1 2

⎤⎥⎥⎥⎥⎦ . (4.7.21)

The GLS is consistent and asymptotically normally distributed with covari-
ance matrix equal to

Var (γ̂GLS) = σ 2
u

[
N∑
i=1


y∗′
i,−1Ã

∗−1
y∗
i,−1

]−1

. (4.7.22)

Remark 4.7.1: The GLS with
� present is basically of the same form as the
GLS without the time-specific effects (i.e.,
� = 0) (Hsiao, Pesaran, and Tah-
miscioglu 2002), (4.5.10). However,there is an important difference between
the two. The estimator (4.7.20) uses 
y∗

i,t−1 as the regressor for the equa-
tion 
y∗

it (4.7.19), does not use 
yi,t−1 as the regressor for the equation 
yit
((4.7.3)). If there are indeed common shocks that affect all the cross-sectional
units, then the estimator (4.5.10) is inconsistent while (4.7.20) is consistent (for
details, see Hsiao and Tahmiscioglu 2008). Note also that even though when
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there are no time-specific effects, (4.7.20) remains consistent, although it will
not be as efficient as (4.5.10).

Remark 4.7.2: The estimator (4.7.20) and the estimator (4.7.15) remain con-
sistent and asymptotically normally distributed when the effects are random
because the transformation (4.7.11) effectively removes the individual- and
time-specific effects from the specification. However, if the effects are indeed
random, and uncorrelated with xit then the MLE or GLS of (4.7.7) is more
efficient.

Remark 4.7.3: The GLS (4.7.20) assumes known ω. If ω is unknown, one
may substitute it by a consistent estimator ω̂, and then apply the feasible
GLS. However, there is an important difference between the GLS and the
feasible GLS in a dynamic setting. The feasible GLS is not asymptotically
equivalent to the GLS when T is finite. However, if both N and T → ∞ and
lim (N

T
) = c > 0, then the FGLS will be asymptotically equivalent to the GLS

(Hsiao and Tahmiscioglu 2008).

Remark 4.7.4: The MLE or GLS of (4.7.20) can also be derived by treating

λt as fixed parameters in the system (4.7.3). Through continuous substitution,
we have


yi1 = λ∗
1 +
ũi1, (4.7.23)

where λ∗
1 =∑m

j=0 γ
j
λ1−j and 
ũi1 =∑m

j=0 γ
j
ui,1−j . Let 
y′

i =
(
yi1, . . . ,
yiT ),
y′

i,−1 = (0,
yi1, . . . ,
yi,T−1), 
u′
i = (
ũi1, . . . ,


uiT ), and 
� ′ = (λ∗
1,
λ2, . . . , 
λT ), we may write


y =
NT × 1

⎛⎜⎝
y1
...


yN

⎞⎟⎠ =

⎛⎜⎝
y1,−1
...


yN,−1

⎞⎟⎠ γ + (eN ⊗ IT )
� +

⎛⎜⎝
u1
...


uN

⎞⎟⎠
= 
y−1γ + (eN ⊗ IT )
� +
u, (4.7.24)

If uit is i.i.d. normal with mean 0 and variance σ 2
u , then 
u′

i is independently
normally distributed across i with mean 0 and covariance matrix σ 2

u Ã
∗, and

ω = Var (
ũi1)
σ 2
u

.
The log-likelihood function of 
y takes the form

log L=− NT

2
log σ 2

u − N

2
log | Ã∗ | − 1

2σ 2
u

[
y −
y−1γ − (eN ⊗ IT )
�]′

· (IN ⊗ Ã∗−1)[
y −
y−1γ − (eN ⊗ IT )
�]. (4.7.25)

Taking the partial derivative of (4.7.25) with respect to
� and solving for
�
yields


�̂ = (N−1e′
N ⊗ IT )(
y −
y−1γ ). (4.7.26)
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Substituting (4.7.26) into (4.7.25) yields the concentrated log-likelihood func-
tion.

log Lc = − NT

2
log σ 2

ε − N

2
log | Ã∗ |

− 1

2σ 2
ε

(
y∗ −
y∗
−1γ )′(IN ⊗ Ã∗−1)(
y∗ −
y∗

−1γ ).
(4.7.27)

Maximizing (4.7.27) conditional on ω yields (4.7.20).

Remark 4.7.5: When γ approaches 1 and σ 2
α is large relative to σ 2

u , the GMM
estimator of the form (4.3.47) suffers from the weak instrumental variables
issues and performs poorly (e.g., Binder, Hsiao, and Pesaran 2005). On the
other hand, the performance of the likelihood or GLS estimator is not affected
by these problems.

Remark 4.7.6: Hahn and Moon (2006) propose a bias-corrected estimator as

γ̃b = γ̃cv + 1

T
(1 + γ̃cv). (4.7.28)

They show that when N/T → c, as both N and T tend to infinity where
0 < c <∞,

√
NT (γ̃b − γ ) =⇒ N (0, 1 − γ 2). (4.7.29)

The limited Monte Carlo studies conducted by Hsiao and Tahmiscioglu
(2008) to investigate the finite sample properties of the feasible GLS (FGLS),
GMM, and bias-corrected (BC) estimator of Hahn and Moon (2006) have
shown that in terms of bias and RMSEs, FGLS dominates. However, the BC
rapidly improves as T increases. In terms of the closeness of actual size to the
nominal size, again FGLS dominates and rapidly approaches the nominal size
when N or T increases. The GMM with T fixed and N large also has actual
sizes close to nominal sizes except for the cases when γ is close to unity (here
γ = 0.8). However, ifN and T are of similar magnitude, T

N
= c �= 0, there are

significant size distortion (e.g., Hsiao and Zhang 2013). The BC has significant
size distortion, presumably because of the use of asymptotic covariance matrix,
which is significantly downward biased in the finite sample.

Remark 4.7.7: Hsiao and Tahmiscioglu (2008) also compared the FGLS and
GMM with and without the correction of time-specific effects in the presence
of both individual- and time-specific effects or in the presence of individual-
specific effects only. It is interesting to note that when both individual- and
time-specific effects are present, the biases and RMSEs are large for estimators
assuming no time-specific effects; however, their biases decrease as T increases
when the time-specific effects are independent of regressors. On the other hand,
even in the case of no time-specific effects, there is hardly any efficiency loss
for the FGLS or GMM that makes the correction of presumed presence of
time-specific effects. Therefore, if an investigator is not sure if the assumption
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of cross-sectional independence is valid or not, it might be advisable to use
estimators that take account both individual- and time-specific effects when T
is finite.

APPENDIX 4A: DERIVATION OF THE ASYMPTOTIC
COVARIANCE MATRIX OF FEASIBLE MDE

The estimation error of �̂MDE is equal to

√
N (�̂MDE − �) =

(
1

N

N∑
i=1

H ′
i

ˆ̃�∗−1Hi

)−1(
1√
N

N∑
i=1

H ′
i

ˆ̃�∗−1
u∗
i

)
. (4A.1)

When N −→ ∞

1

N

N∑
i=1

H ′
i

ˆ̃�∗−1Hi −→ 1

N

N∑
i=1

H ′
i �̃

∗−1Hi (4A.2)

but

1√
N

N∑
i=1

H ′
i

ˆ̃�∗−1
u∗
i � 1√

N

N∑
i=1

H ′
i �̃

∗−1
u∗
i

+
[

1

N

N∑
i=1

H ′
i

(
∂

∂h
�̃∗−1

)

u∗

i

]
·
√
N (ĥ− h),

(4A.3)

where the right-hand side follows from taking a Taylor series expansion of
ˆ̃�∗−1 around �̃∗−1. By (4.5.8),

∂

∂h
�̃∗−1 = −T

[1 + T (h− 1)]2
�̃∗−1

+ 1

1 + T (h− 1)]

⎡⎢⎢⎢⎢⎢⎣
0 0 . . . 0 0
0 T − 1 . . . 2 1
. . .

. . .
. . .

. . .
. 2 . . . 2(T − 2) T − 2
0 1 . . . T − 2 T − 1

⎤⎥⎥⎥⎥⎥⎦ . (4A.4)

We have

1

N

N∑
i=1

H ′
i �̃

∗−1
u∗
i −→ 0,

1

N

N∑
i=1

[
1 
x′

i 0′

0 0 
Xi

]′
· ∂
∂h
�̃∗−1
u∗

i −→ 0,
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1

N

N∑
i=1


y′
i,−1

⎡⎢⎢⎢⎣
T − 1 . . . 1

. . .
...

2 T − 2
1 T − 1

⎤⎥⎥⎥⎦
u∗
i

−→ [γ T−2 + 2γ T−3 + · · · + (T − 1)]σ 2
u .

Since plim σ̂ 2
u = σ 2

u , and

√
N (ĥ− h) =

√
N

[
σ̂ 2
v∗
σ̂ 2
u

− σ 2
v∗
σ 2
u

]
=

√
N
σ 2
u (σ̂ 2

v∗ − σ 2
v∗) − σ 2

v∗(σ̂ 2
u − σ 2

u )

σ̂ 2
u σ

2
u

,

it follows that the limiting distribution of the feasible MDE converges to

√
N (�̂MDE − �) −→

(
1

N

N∑
i=1

H ′
i �

∗−1Hi

)−1 {
1√
N

N∑
i=1

H ′
i �

∗−1
u∗
i

−

⎡⎢⎢⎣
0
0
1
0

⎤⎥⎥⎦ [γ T−2 + 2γ T−3 + · · · + (T − 1)]

[1 + T (h− 1)]σ 2
u

[
σ 2
u ·

√
N
(
σ̂ 2
v∗ − σ 2

v∗
)− σ 2

v∗ ·
√
N
(
σ̂ 2
u − σ 2

u

)]}
,

(4A.5)

with the asymptotic covariance matrix equal to (4.5.16).

APPENDIX 4B: LARGE N AND T ASYMPTOTICS

In cases when N is fixed and T is large or T is fixed and N is large, standard
one-dimensional asymptotic techniques can be applied. However, in some panel
data sets, the orders of magnitude of the cross section and time series are similar,
for instance, the Penn-World tables. These large N , large T panels call for the
use of large N , T asymptotics rather than just large N asymptotics. Moreover,
when T is large, there is a need to consider serial correlations more generally,
including both short memory and persistent components. In some panel data sets
such as the Penn-World Table, the time series components also have strongly
evident nonstationarity. It turns out that panel data in this case can sometimes
offer additional insights to the data-generating process than a single time series
or cross-sectional data.

In regressions with large N , large T panels most of the interesting test
statistics and estimators inevitably depend on the treatment of the two indexes,
N and T , which tend to infinity together. Several approaches are possible:

(a) Sequential Limits. A sequential approach is to fix one index, say N ,
and allow the other, say T , to pass to infinity, giving an intermediate
limit. Then, by letting N pass to infinity subsequently, a sequential
limit theory is obtained.
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(b) Diagonal Path Limits. This approach allows the two indexes,N and T ,
to pass to infinity along a specific diagonal path in the two-dimensional
array, say T = T (N ) such as N

T
−→ c �= 0 <∞ as the index N →

∞. This approach simplifies the asymptotic theory of a double-indexed
process into a single-indexed process.

(c) Joint Limits. A joint limit theory allows both indexes, N and T , to
pass to infinity simultaneously without placing specific diagonal path
restrictions on the divergence, although it may still be necessary to
exercise some control over the rate of expansion of the two indexes to
get definitive results.

A double-index process in this monograph typically takes the form,

XN,T = 1

kN

N∑
i=1

Yi,T , (4B.1)

where kN is an N -indexed standardizing factor, Yi,T are independent m-
component random vectors across i for all T that is integrable and has the
form

Yi,T = 1

dT

T∑
t=1

f (Zi,t ), (4B.2)

for the h-component independently, identically distributed random vectors,Zi,t
with finite 4th moments; f (·) is a continuous functional fromRh toRm, and dT
is a T -indexed standardizing factor. Sequential limit theory is easy to derive and
generally leads to quick results. However, it can also give asymptotic results that
are misleading in cases where both indexes pass to infinity simultaneously. A
joint limit will give a more robust result than either a sequential limit or diagonal
path limit, but will also be substantially more difficult to derive and will usually
apply only under stronger conditions, such as the existence of higher moments,
which will allow for uniformity in the convergence arguments. Phillips and
Moon (1999) give the conditions for sequential convergence to imply joint
convergence as:

(i) XN,T converges to XN , for all N , in probability as T −→ ∞ uni-
formly and XN converges to X in probability as N −→ ∞. Then
XN,T converges to X in probability jointly if and only if

lim sup
T→∞

sup
N
P {‖ XN,T −XN ‖> ε} = 0 for every ε > 0. (4B.3)

(ii) XN,T converges to XN in distribution for any fixed N as T −→ ∞
and XN converges to X in distribution as N −→ ∞. Then, XN,T
converges to distribution jointly if and only if

lim sup | E(f (XN,T ) − E(f (X)) |= 0,
N, T

(4B.4)

for all bounded, continuous, real function on Rm.
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Suppose Yi,T converges to Yi in distribution as T −→ ∞, Phillips and
Moon (1999) have given the following set of sufficient conditions that ensures
the sequential limits are equivalent to joint limits:

(i) lim supN,T
(

1
N

)∑N
i=1 E ‖ Yi,T ‖<∞;

(ii) lim supN,T
(

1
N

)∑N
i=1 ‖ EYi,T − EYi ‖= 0;

(iii) lim supN,T
(

1
N

)∑N
i=1 E ‖ Yi,T ‖ 1

{‖ Yi,T ‖> Nε} = 0 ∀ε > 0;

(iv) lim supN
(

1
N

)∑N
i=1 E ‖ Yi ‖ 1 {‖ Yi ‖> Nε} = 0 ∀ε > 0,

where ‖ A ‖ is the Euclidean norm (tr(A′A))
1
2 and 1 {·} is an indicator function.

In general, if an estimator is of the form (4B.1) and yi,T is integrable for all
T and if this estimator is consistent in the fixed T , large N case, it will remain
consistent if both N and T tend to infinity irrespective of how N and T tend to
infinity. Moreover, even in the case that an estimator is inconsistent for fixed
T and large N case, say, the CV estimator for the fixed effects dynamic model
(4.2.1), it can become consistent if T also tends to infinity. The probability limit
of an estimator, in general, is identical independent of the sequence of limits
one takes. However, the properly scaled limiting distribution may be different
depending on how the two indexes, N and T , tend to infinity. Consider the
double sequence

XN,T = 1

N

N∑
i=1

Yi,T . (4B.5)

Suppose Yi,T is independently, identically distributed across i for each T with
E(Yi,T ) = 1√

T
b and Var (Yi,T ) ≤ B <∞. For fixed N , XN,T converges to XN

in probability as T → ∞ where E(XN ) = 0. Because Var (Yi,T ) is bounded,
by a law of large numbers, XN converges to 0 in probability as N → ∞.
Since (4B.5) satisfies (4B.3), the sequential limit is equal to the joint limit as
N, T → ∞. This can be clearly seen by writing

XN,T = 1

N

N∑
i=1

[Yi,T − E(Yi,T )] + 1

N

N∑
i=1

E(Yi,T )

= 1

N

N∑
i=1

[Yi,T − E(Yi,T )] + b√
T
.

(4B.6)

Since the variance of Yi,T is uniformly bounded by B,

E(X2
N,T ) = 1

N
Var (Yi,T ) + b2

T
−→ 0 (4B.7)

as N, T −→ ∞. Equation (4B.7) implies that XN,T converges to 0 jointly as
N, T −→ ∞.
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Alternatively, if we let

XN,T = 1√
N

N∑
i=1

Yi,T . (4B.8)

The sequential limit would imply XN,T is asymptotically normally distributed
with E(XN,T ) = 0. However, under (4B.8) the condition (4B.3) is violated.
The joint limit would have

EXN,T =
√
c

N

N∑
i=1

b −→ √
cb, (4B.9)

along some diagonal limit, N
T

−→ c �= 0 as N −→ ∞. In this case, T has
to increase faster than N to make the

√
N -standardized sum of the biases

small, say N
T

−→ 0 to prevent the bias from having a dominating asymptotic
effect on the standardized quantity (e.g., Alvarez and Arellano 2003; Hahn and
Kuersteiner 2002).

If the time series component is an integrated process (nonstationary), panel
regressions in which both T and N are large can behave very differently from
time series regressions. For instance, consider the linear regression model

y = E(y | x) + v = βx + v. (4B.10)

If vt is stationary (or I (0) process), the least-squares estimator of β, β̂, gives the
same interpretation irrespective of whether y and x are stationary or integrated
of order 1 I (1) (i.e., the first difference of a variable is stationary or I (0)).
However, if both yit and xit are I (1) but not cointegrated, then vit is also I (1).
It is shown by Phillips (1986) that a time series regression coefficient β̂i has a
nondegenerating distribution as T −→ ∞. The estimate β̂i is spurious in the
sense that the time series regression of yit on xit does not identify any fixed
long-run relation between yit and xit . On the other hand, with panel data, such
regressions are not spurious in the sense that they do, in fact, identify a long-run
average relation between yit and xit . To see this, consider the case that the y
and x is bivariate normally distributed as N (0, 
) with


 =
(

yy 
yx

xy 
xx

)
, (4B.11)

then plim �̂ = 
yx
−1
xx . In a unit root framework of the form(

yt

xt

)
=
(
yt−1

xt−1

)
+
(
uyt

uxt

)
, (4B.12)

where the errors ut = (uyt , uxt )′ are stationary, then the panel regression under
the assumption of cross-sectional independence yields

plim β̂ = �yx�−1
xx , (4B.13)
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which can be viewed as long-run average relation between y and x, where
�yx,�xx denote the long-run covariance between uyt and uxt , and the long-run
variance of xt defined by

� = lim
T→∞

E

[(
1√
T

T∑
t=1

ut

)(
1√
T

T∑
t=1

u′
t

)]

=
∞∑

�=−∞
E(u0u′

�) =
(
�yy �yx
�xy �xx

)
.

(4B.14)

When cross-sectional units have heterogeneous long-run covariance matri-
ces �i for (yit , xit ), i = 1. . . . , N with E�i = �, Phillips and Moon (1999)
extend this concept of a long-run average relation among cross-sectional units
further

β = E(�yx,i)(E�xx,i)
−1 = �yx�−1

xx . (4B.15)

and show that the least-squares estimator converges to (4B.15) as N, T → ∞.
This generalized concept of average relation between cross-sectional units

covers both the cointegrated case (Engle and Granger 1987) in which β is
a cointegrating coefficient in the sense that the particular linear combination
yt − βxt is stationary, and the correlated but noncointegrated case, which is not
available for a single time series. To see this point more clearly, suppose that
the two nonstationary time series variables have the following relation:

yt = ft + wt,
xt = ft ,

(4B.16)

with (
wt
ft

)
=
(
wt−1

ft−1

)
+
(
uwt
uf t

)
, (4B.17)

where uws is independent of uf t for all t and s and has nonzero long-run
variance. Then ft is a nonstationary common factor variable for y and x and
uw is a nonstationary idiosyncratic factor variable. Since wt is nonstationary
over time, it is apparent that there is no cointegrating relation between yt and
xt . However, since the two nonstationary variables yt and xt share a common
contributory nonstationary source in uf t , we may still expect to find evidence
of a long-run correlation between yt and xt , and this is what is measured by the
regression coefficient β in (4B.13).

Phillips and Moon (1999, 2000) show that for large N and T panels, the
regression coefficient β coverages to such a defined long-run average relation.
However, if N is fixed, then as T → ∞, the least-squares estimator of β is a
nondegenerate random variable that is a functional of Brownian motion that
does not converge to β (Phillips 1986). In other words, with a single time series
or a fixed number of time series, the regression coefficient β will not converge
to the long-run average relation defined by (4B.13) if only T → ∞.
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Therefore, if we define spurious regression as yielding nonzero β for the
two independent variables, then contrary to the case of time series regression
of involving two linearly independent I(1) variables (Phillips 1986) the issue
of spurious regression will not arise for the panel estimates of N → ∞ (e.g.,
McCoskey and Kao 1998).

When data on cross-sectional dimension are correlated, the limit theorems
become complicated. When there are strong correlations on cross-sectional
dimensions, it is unlikely that the law of large numbers or central limit theory
will hold if cross-sectional correlations are strong. They can hold only when
cross-sectional dependence is weak (in the sense of time series mixing condition
in the cross-sectional dimension, e.g., Conley 1999; Pesaran and Tosetti 2010).



CHAPTER 5

Static Simultaneous-Equations Models

5.1 INTRODUCTION

In Chapters 3 and 4, we discussed the approach of decomposing the effect
of a large number of factors that affect the dependent variables, but are not
explicitly included as explanatory variables, into effects specific to individual
units, to time periods, and to both individual units and time periods as a means
to take account of the unobserved heterogeneity in panel data in estimating
single-equation models. However, the consistency or asymptotic efficiency of
various estimators discussed in previous chapters depends on the validity of
the single-equation model assumptions. If they are not true, this approach may
solve one problem but aggravate other problems.

For instance, consider the income-schooling model,

y = β0 + β1S + β2A+ u, (5.1.1)

where y is a measure of income, earnings, or wage rate, S is a measure of
schooling, and A is an unmeasured ability variable that is assumed to be
positively related to S. The coefficients β1 and β2 are assumed positive. Under
the assumption that S and A are uncorrelated with u, the least-squares estimate
of β1 that ignores A is biased upward. The standard left-out-variable formula
gives the size of this bias as

E(β̂1,LS) = β1 + β2
σAS

σ 2
S

, (5.1.2)

where σ 2
S is the variance of S, and σAS is the covariance between A and S.

If the omitted variable A is a purely “family” one,1 that is, if siblings have
exactly the same level of A, then estimating β1 from within-family data (i.e.,
from differences between the brothers’ earnings and differences between the
brothers’ education) will eliminate this bias. But if ability, apart from having
a family component, also has an individual component, and this individual

1 Namely, the family effect Ai has the same meaning as αi in Chapters 3 and 4.

136
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component is not independent of the schooling variable, the within-family
estimates are not necessarily less biased.

Suppose

Ait = αi + ωit , (5.1.3)

where i denotes the family, and t denotes members of the family. If ωit is
uncorrelated with Sit , the combination of (5.1.1) and (5.1.3) is basically of the
same form as (3.2.10). The expected value of the within (or LSDV) estimator
is unbiased. On the other hand, if the within-family covariance between A and
S, σsω, is not equal to 0, the expected value of the within estimator is

E(β̂1,w) = β1 + β2
σSω

σ 2
S|w
, (5.1.4)

where σ 2
S|w is the within-family variance of S. The estimator remains biased.

Furthermore, if the reasons for the correlation between A and S are largely
individual rather than familial, then going to within data will drastically reduce
σ 2
S|w, with little change to σAS (or σSω), which would make this source of bias

even more serious.
Moreover, if S is also a function of A and other socioeconomic variables,

(5.1.1) is only one behavioral equation in a simultaneous-equations model.
Then the probability limit of the least-squares estimate, β̂1,LS, is no longer
(5.1.2) but is of the form

plim β̂1,LS = β1 + β2
σAS

σ 2
S

+ σuS

σ 2
S

, (5.1.5)

where σuS is the covariance between u and S. If, as argued by Griliches (1977,
1979), schooling is the result, at least in part, of optimizing behavior by indi-
viduals and their family, σuS could be negative. This opens the possibility that
the least-squares estimates of the schooling coefficient may be biased down-
ward rather than upward. Furthermore, if the reasons for σuS being negative are
again largely individual rather than familial, and the within-family covariance
between A and S reduces σAS by roughly the same proportion as σ 2

S|w is to σ 2
S ,

there will be a significant decline in the β̂1,w relative to β̂1,LS. The size of this
decline will be attributed to the importance of ability and “family background,”
but in fact it reflects nothing more than the simultaneity problems associated
with the schooling variable itself. In short, the simultaneity problem could
reverse the single-equation conclusions.

In this chapter we focus on the issues of correlations arising from the joint
dependence of G endogenous variables yit = (y1,it , y2,it , . . . , yG,it )′ given K
exogenous variables xit = (x1,it , x2,it , . . . , xK,it )′. In this chapter, we focus on
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issues of static simultaneous equations model of the form,2

�yit + Bxit + � = vit , i = 1, . . . , N,

t = 1, . . . , T , (5.1.6)

where � and B areG×G andG×K matrices of coefficients; � is theG× 1
vector of intercepts. We assume that the G× 1 errors vit has a component
structure,

vit = 	 i + � t + uit , (5.1.7)

where 	 i and � t denote the G× 1 individual varying but time-invariant
and individual-invariant but time-varying specific effects, respectively, and
uit denote the G× 1 random vector that varies across i and over t and are
uncorrelated with xit ,

E
(
xitu′

js

) = 0. (5.1.8)

The issue of dynamic dependence is discussed in Chapter 10, Section 10.4.
Model (5.1.6) could give rise to two sources of correlations between the

regressors and the errors of the equations: (1) the potential correlations between
the individual- and time-specific effects, 	 i and � t , with xit , and (2), the
correlations between the joint dependent variables and the errors. The first
source of correlations could be eliminated through some linear transformation
of the original variables. For instance, the covariance transformation of yit
and xit ,

ẏit = yit − ȳi − ȳt + ȳ, (5.1.9)

ẋit = xit − x̄i − x̄t + x̄, (5.1.10)

yields

�ẏit + Bẋit = v̇it , (5.1.11)

where v̇it = vit − v̄i − v̄t + v̄ and (ȳi , x̄i , v̄i) , (ȳt , x̄t , v̄t ) , (ȳ, x̄, v̄) denote the
ith individual time series mean, cross-sectional mean at t, and overall mean
of respective variable, for example, ȳi = 1

T

∑T
t=1 yit , ȳt = 1

N

∑N
i=1 yit , and

ȳ = 1
NT

∑N
i=1

∑T
t=1 yit .

Under the assumption (5.1.8),

E
(
ẋit v̇′

js

) = 0 (5.1.12)

2 The asymptotic property of a fixed-effects linear simultaneous-equations model is the same as
that of the single-equation fixed-effects linear static model (see Chapter 3). The MLE of 	 i is
consistent only when T tends to infinity. The MLE of �t is consistent only when N tends to
infinity. However, just as in the linear static model, the MLE of � and B do not depend on the
MLE of 	 i and �t . They are consistent when either N or T or both tend to infinity (Schmidt
1984).
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standard identification and estimation methods for a Cowles Commission struc-
tural equation model can be applied to model (5.1.11) to obtain consistent
and asymptotically normally distributed estimators (e.g., Hood and Koopmans
1953; Hsiao 1983; Intriligator, Bodkin, and Hsiao 1996). However, exploitation
of the component structure could lead to more efficient inference of (5.1.6) than
those based on the two- or three-stage least-squares methods for model (5.1.11).

We assume 	 i , � t , and uit are eachG× 1 random vectors that have 0 means
and are independent of one another, and

Exitv′
js = 0,

E	 i	
′
j =

{
�α =

(
σ 2
αg�

)
if i = j,

0 if i �= j,
(5.1.13)

E� t�
′
s =

{
�λ =

(
σ 2
λg�

)
if t = s,

0 if t �= s,

Euitu′
js =

{
�u =

(
σ 2
ug�

)
if i = j, and t = s,

0 otherwise.

Multiplying (5.1.6) by �−1, we have the reduced form

yit = �∗ +�xit + �it , (5.1.14)

where �∗ = −�−1�,� = −�−1B, and �it = �−1vit . The reduced-form error
term �it again has an error-component structure3

�it = 	∗
i + �∗

t + u∗
it , (5.1.15)

with

E	∗
i = E�∗

t = Eu∗
it = 0, E	∗

i �
∗′
t = E	∗

i u
∗′
it = E�∗

t u
∗′
it = 0,

E	∗
i	

∗′
j =

{
�∗
α =

(
σ ∗2
αg�

)
if i = j,

0 if i �= j,

E�∗
t �

∗′
s =

{
�∗
λ =

(
σ ∗2
λg�

)
if t = s,

0 if t �= s,
(5.1.16)

Eu∗
itu

∗′
js =

{
�∗
u =

(
σ ∗2
ug�

)
if i = j and t = s,

0 otherwise.

If the G×G covariance matrices �α,�λ, and �u are unrestricted, there
are no restrictions on the variance–covariance matrix. The usual order and rank

3 Note that the meaning of these asterisks has been changed from what they were in previous
chapters.
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conditions are the necessary and sufficient conditions for identifying a particular
equation in the system (e.g., Hsiao 1983). If there are restrictions on �α,�λ,
or �u, we can combine these covariance restrictions with the restrictions on
the coefficient matrices to identify a model and obtain efficient estimates of the
parameters. We first discuss estimation of the simultaneous-equations model
under the assumption that there are no restrictions on the variance–covariance
matrix, but the rank condition for identification holds. Estimation of reduced-
form or stacked equations is discussed in Section 5.2, and estimation of the
structural form is dealt with in Section 5.3. We then discuss the case in which
there are restrictions on the variance–covariance matrix in Section 5.4. Because
a widely used structure for longitudinal microdata is the triangular structure
(e.g., Chamberlain 1976, 1977a,b; Chamberlain and Griliches 1975), we shall
use this special case to illustrate how the covariance restrictions can be used to
identify an otherwise unidentified model and to improve the efficiency of the
estimates.

5.2 JOINT GENERALIZED LEAST-SQUARES
ESTIMATION TECHNIQUE

We can write an equation of a reduced form (5.1.14) in the more general form
in which the explanatory variables in each equation can be different4:

yg = eNT�∗
g + Xg
g + �g, g = 1, . . . ,G, (5.2.1)

where yg and eNT are NT × 1,Xg is NT ×Kg,�∗
g is the 1 × 1 intercept term

for the gth equation, 
g is Kg × 1, and �g = (IN ⊗ eT )	∗
g + (eN ⊗ IT )�∗

g +
u∗
g , where 	∗

g = (	∗
1g,	

∗
2g, . . . ,	

∗
Ng)

′, �∗
g = (λ∗

1g, λ
∗
2g, . . . , λ

∗
T g)

′, and u∗
g =

(u∗
11g, u

∗
12g, . . . , u

∗
1T g, u

∗
21g, . . . , u

∗
NTg)

′ areN × 1, T × 1, andNT × 1 random
vectors, respectively. Stacking the set of G equations, we get

y
GNT×1

= (IG ⊗ eNT )�∗ + X
 + �, (5.2.2)

where

y
GNT×1

=

⎡⎢⎣y1
...

yG

⎤⎥⎦ , X
GNT×

(∑G
g=1 Kg

) =

⎡⎢⎢⎢⎣
X1 0 · · · 0

0 X2
...

...
. . . 0

0 · · · 0 XG

⎤⎥⎥⎥⎦ ,

�∗
G×1

=

⎡⎢⎢⎢⎣
�∗

1
�∗

2
...

�∗
G

⎤⎥⎥⎥⎦ , 
(∑G
g=1 Kg

)
×1

=

⎡⎢⎣
1
...


G

⎤⎥⎦ , � =

⎡⎢⎣�1
...

�G

⎤⎥⎦ ,
4 By allowingX to be different, the discussion of estimation of reduced-form equations can proceed

along the more general format of seemingly unrelated regression models (Avery 1977; Baltagi
1980).
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with

V = E(��′) = [Vg�], (5.2.3)

where Vg� denotes the g�th block submatrix of V , which is given by

Vg�
NT×NT

= E (�g�′
�

) = σ ∗2
αg�
A+ σ ∗2

λg�
D + σ ∗2

ug�
INT , (5.2.4)

whereA = IN ⊗ eT e′
T andD = eNe′

N ⊗ IT . Equation (5.2.4) can also be writ-
ten as

Vg� = σ ∗2
1g�

(
1

T
A− 1

NT
J

)
+ σ ∗2

2g�

(
1

N
D − 1

NT
J

)

+ σ ∗2
ug�
Q̃+ σ ∗2

4g�

(
1

NT
J

)
, (5.2.5)

where J = eNT e′
NT , Q̃ = INT − (1/T )A− (1/N )D + (1/NT )J, σ ∗2

1g�
=

σ ∗2
ug�

+ T σ ∗2
αg�
, σ ∗2

2g�
= σ ∗2

ug�
+Nσ ∗2

λg�
, and σ ∗2

4g�
= σ ∗2

ug�
+ T σ ∗2

αg�
+Nσ ∗2

λg�
. It was

shown in Appendix 3B that σ ∗2
1g�
, σ ∗2

2g�
, σ ∗2
ug�

, and σ ∗2
4g�

are the distinct charac-
teristic roots of Vg� of multiplicity N − 1, T − 1, (N − 1)(T − 1), and 1, with
C1, C2, C3, andC4 as the matrices of their corresponding characteristic vectors.

We can rewrite V as

V = V1 ⊗
(

1

T
A− 1

NT
J

)
+ V2 ⊗

(
1

N
D − 1

NT
J

)

+ �∗
u ⊗ Q̃+ V4 ⊗

(
1

NT
J

)
, (5.2.6)

where V1 = (σ ∗2
1g�

), V2 = (σ ∗2
2g�

), and V4 = (σ ∗2
4g�

) all of dimensionG×G. Using

the fact that [(1/T )A− (1/NT )J ], [(1/N )D − (1/NT )J ], Q̃, and [(1/NT )J ]
are symmetric idempotent matrices, mutually orthogonal, and sum to the iden-
tity matrix INT , we can write down the inverse of V explicitly as (Avery 1977;
Baltagi 1980)5

V −1 = V −1
1 ⊗

(
1

T
A− 1

NT
J

)

+ V −1
2 ⊗

(
1

N
D − 1

NT
J

)

+ �∗−1
u ⊗ Q̃+ V −1

4 ⊗
(

1

NT
J

)
. (5.2.7)

5 One can check that (5.2.7) is indeed the inverse of (5.2.6) by repeatedly using the formulas
of the Kronecker products: (B + C) ⊗ A = B ⊗ A+ C ⊗ A, (A⊗ B)(C ⊗D) = AC ⊗ BD,
provided the product of these matrices exists (Theil 1971, Chapter 7, Section 7.2).
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The generalized least-squares (GLS) estimators of �∗ and 
 are obtained
by minimizing the distance function

[y − (IG ⊗ eNT )�∗ − X
]′V −1[y − (IG ⊗ eNT )�∗ − X
] (5.2.8)

Taking partial derivatives of (5.2.8) with respect to �∗ and 
, we obtain the
first-order conditions

− (IG ⊗ eNT )′V −1[y − (IG ⊗ eNT )�∗ − X
] = 0, (5.2.9)

−X′V −1[y − (IG ⊗ eNT )�∗ − X
] = 0. (5.2.10)

Solving (5.2.9) and making use of the relations [(1/T )A− (1/NT )J ]eNT =
0, [(1/N )D − (1/NT )J ]eNT = 0, Q̃eNT = 0, and (1/NT )J eNT = eNT , we
have

�̂∗ =
(
IG ⊗ 1

NT
e′
NT

)
(y − X
). (5.2.11)

Substituting (5.2.11) into (5.2.10), we have the GLS estimator of 
 as6


̂GLS = [X′Ṽ −1X]−1(X′Ṽ −1y), (5.2.12)

where

Ṽ −1 = V −1
1 ⊗

(
1

T
A− 1

NT
J

)
+ V −1

2 ⊗
(

1

N
D − 1

NT
J

)
+ �∗−1

u ⊗ Q̃. (5.2.13)

If E(�g�′
�) = 0 for g �= � then V is block-diagonal, and equation (5.2.12) is

reduced to applying the GLS estimation method to each equation separately.
If both N and T tend to infinity and N/T tends to a nonzero constant, then
lim V −1

1 = 0, limV −1
2 = 0, and lim V −1

4 = 0. Equation (5.2.12) becomes the
least-squares dummy variable (or fixed-effects) estimator for the seemingly

6 If only the first M out of G equations have nonzero intercepts, we estimate the first
M intercepts by {[IM, (VMM4 )−1V

M(G−M)
4 ] ⊗ (1/NT )e′

NT }(y −X
) and estimate 
 by

[X′V ∗−1X]−1[X′V ∗−1 y], where IM is the M-rowed identity matrix, VMM4 and VM(G−M)
4 are

the correspondingM ×M andM × (G−M) partitioned matrices of

V −1
4 =

⎡⎣ VMM4 V
M(G−M)
4

V
(G−M)M
4 V

(G−M)(G−M)
4

⎤⎦
and

V ∗−1 = Ṽ −1 +
⎡⎣ 0 0

0 V
(G−M)(G−M)
4 − V (G−M)M

4 (VMM4 )−1V
M(G−M)
4

⎤⎦⊗ 1

NT
J.

For details, see Prucha (1983).
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unrelated regression case,

plim 
̂GLS = plim
N→∞
T→∞

[
1

NT
X′ (�∗−1

u ⊗ Q̃)X
]−1

·
[

1

NT
X′ (�∗−1

u ⊗ Q̃) y
]
. (5.2.14)

In the case of the standard reduced form, X1 = X2 = · · · = XG = X̄,


̂GLS =
[
V −1

1 ⊗ X̄′
(

1

T
A− 1

NT
J

)
X̄

+V −1
2 ⊗ X̄′

(
1

N
D − 1

NT
J

)
X̄ +�∗−1

u ⊗ X̄′Q̃X̄
]−1

·
{[
V −1

1 ⊗ X̄′
(

1

T
A− 1

NT
J

)]
y

+
[
V −1

2 ⊗ X̄′
(

1

N
D − 1

NT
J

)]
y + [�∗−1

u ⊗ X̄′Q̃
]

y
}
.

(5.2.15)

We know that in the conventional case when no restriction is imposed on
the reduced-form coefficients vector 
, estimating each equation by the least-
squares method yields the best linear unbiased estimate. Equation (5.2.15)
shows that in a seemingly unrelated regression model with error components,
the fact that each equation has an identical set of explanatory variables is not a
sufficient condition for the GLS performed on the whole system to be equivalent
to estimating each equation separately.

Intuitively, by stacking different equations together we shall gain efficiency
in the estimates, because knowing the residual of the �th equation helps
in predicting the gth equation when the covariance terms between different
equations are nonzero. For instance, if the residuals are normally distributed,
E(�g | ��) = Cov(�g, ��)Var(��)−1�� �= 0. To adjust for this nonzero mean, it
would be appropriate to regress yg − Cov(�g, ��)Var(��)−1�� on (eNT ,Xg).
Although in general �� is unknown, asymptotically there is no difference if we
replace it by the least-squares residual, �̂�. However, if the explanatory vari-
ables in different equations are identical, namely, Xg = X� = X̄, there is no
gain in efficiency by bringing different equations together when the cross equa-
tion covariances are unrestricted; because Cov(�g, ��) = σεg�INT ,Var(��) =
σε��INT , and �̂� is orthogonal to (eNT ,Xg) by construction, the variable
σεg�σ

−1
ε��

�̂� can have no effect on the estimate of (μg,
′
g) when it is subtracted

from yg . But the same cannot be said for the error-components case, because
Cov(�g, ��)Var(��)−1 is not proportional to an identity matrix. The weighted
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variable Cov(�g, ��)Var(��)−1�̂� is no longer orthogonal to (eNT , X̄). There-
fore, in the error-components case it remains fruitful to exploit the covariances
between different equations to improve the accuracy of the estimates.

When V1, V2, and �∗
u are unknown, we can replace them by their con-

sistent estimates. In Chapter 3, we discussed methods of estimating variance
components. These techniques can be straightforwardly applied to the multiple-
equations model as well (Avery 1977; Baltagi 1980).

The model discussed earlier assumes the existence of both individual and
time effects. Suppose we believe that the covariances of some of the components
are 0. The same procedure can be applied to the simpler model with some slight
modifications. For example, if the covariance of the residuals between equations
g and � is composed of only two components (an individual effect and overall
effect), then σ 2

λg�
= 0. Hence, σ ∗2

1g�
= σ ∗2

4g�
, and σ ∗2

2g�
= σ ∗2

ug�
. These adjusted roots

can be substituted into the appropriate positions in (5.2.6) and (5.2.7), with
coefficient estimates following directly from (5.2.12).

5.3 ESTIMATION OF STRUCTURAL EQUATIONS

5.3.1 Estimation of a Single Equation in the Structural Model

As (5.2.12) shows, the GLS estimator of the slope coefficients is invariant
against centering the data around overall sample means; so for ease of exposition
we shall assume that there is an intercept term and that all sample observations
are measured as deviations from their respective overall means and consider
the gth structural equation as

yg
NT×1

= Ygγg + Xg�g + vg

= Wg�g + vg, g = 1, . . . ,G, (5.3.1)

where Yg is anNT × (Gg − 1) matrix ofNT observations ofGg − 1 included
joint dependent variables, Xg is an NT ×Kg matrix of NT observations of
Kg included exogenous variables, Wg = (Yg,Xg), and θg = (γ ′

g,�
′
g)

′, The vg
is an NT × 1 vector of error terms that are independent of x,

vg = (IN ⊗ eT )	g + (eN ⊗ IT )�g + ug, (5.3.2)

with 	g = (α1g, . . . , αNg)′,�g = (λ1g, . . . , λTg)′, and ug = (u11g, . . . , u1T g,

u21g, . . . , uNTg)′ satisfying assumption (5.1.13). So the covariance matrix
between the gth and the �th structural equations is


g� = E(vgv′
�) = σ 2

αg�
A+ σ 2

λg�
D + σ 2

ug�
INT

= σ 2
1g�

(
1

T
A− 1

NT
J

)
+ σ 2

2g�

(
1

N
D − 1

NT
J

)
+ σ 2

3g� Q̃+ σ 2
4g�

(
1

NT
J

)
, (5.3.3)
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where σ 2
1g�

= σ 2
ug�

+ T σ 2
αg�
, σ 2

2g�
= σ 2

ug�
+Nσ 2

λg�
, σ 2

3g�
= σ 2

ug�
, and σ 2

4g�
= σ 2

ug�
+

T σ 2
αg�

+Nσ 2
λg�

. We also assume that each equation in (5.3.1) satisfies the rank
condition for identification with K ≥ Gg +Kg − 1, g = 1, . . . ,G.

We first consider estimation of a single equation in the structural model.
To estimate the gth structural equation, we take account only of the a priori
restrictions affecting that equation and ignore the restrictions affecting all other
equations. Therefore, suppose we are interested in estimating the first equation.
The limited-information principle of estimating this equation is equivalent to
the full-information estimation of the system

y1it = w′
1it�1 + v1it ,

y2it = x′
it
2 + ε2it ,

... (5.3.4)

yGit = x′
it
G + εGit , i = 1, . . . , N,

t = 1, . . . , T ,

where there are no restrictions on 
2, . . . ,πG.
We can apply the usual two-stage least-squares (2SLS) method to estimate

the first equation in (5.3.4). The 2SLS estimator is consistent. However, if
the v1it are not independently identically distributed over i and t , the 2SLS
estimator is not efficient even within the limited-information context. To allow
for arbitrary heteroscedasticity and serial correlation in the residuals, we can
generalize Chamberlain’s (1982, 1984) minimum-distance or generalized 2SLS
estimator.

We first consider the minimum-distance estimator. Suppose T is fixed and
N tends to infinity. Stacking the T period equations for a single individual’s
behavioral equation into one system, we create a model of GT equations,

y1i
T×1

= W1i�1 + v1i ,

y2i
T×1

= Xi
2 + �2i ,

... (5.3.5)

yGi = Xi
G + �Gi , i = 1, . . . , N.

Let y′
i = (y′

1i
, . . . , y′

Gi
). The reduced form of yi is

yi =

⎡⎢⎢⎢⎣
y1i
y2i
...

yGi

⎤⎥⎥⎥⎦ = (IG ⊗ X̃i)
̃ + �i , i = 1, . . . , N, (5.3.6)
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where

X̃i
T×TK

=

⎡⎢⎢⎢⎣
x′
i1 0

x′
i2

. . .
0 x′

iT

⎤⎥⎥⎥⎦,

̃ = vec(�̃′), (5.3.7)

�̃
GT×K

= �⊗ eT , and � = E(yit | xit ). (5.3.8)

The unconstrained least-squares regression of yi on (IG ⊗ X̃i) yields a con-
sistent estimate of 
̃, ˆ̃
. If �i are independently distributed over i, then√
N ( ˆ̃
 − 
̃) is asymptotically normally distributed, with mean 0 and variance–

covariance matrix

�̃
GTK×GTK

= (IG ⊗�−1
xx

)
Ṽ
(
IG ⊗�−1

xx

)
, (5.3.9)

where �xx = EX̃′
iX̃i = diag{E(xi1x′

i1), . . . , E(xiT x′
iT )}, and Ṽ is a GTK ×

GTK matrix, with the g�th block a TK × TK matrix of the form

Ṽg� = E

⎡⎢⎢⎢⎢⎣
�gi1 ��i1 xi1x′

i1 �gi1 ��i2 xi1x′
i2 · · · �gi1 ��iT xi1x′

iT

�gi2 ��i1 xi2x′
i1 �gi2 ��i2 xi2x′

i2 · · · �gi2 ��iT xi2x′
iT

...
...

...
�giT ��i1 xiT x′

i1 �giT ��i2 xiT x′
i2 · · · �giT ��iT xiT x′

iT

⎤⎥⎥⎥⎥⎦ .
(5.3.10)

One can obtain a consistent estimator of �̃ by replacing the population moments
in �̃ by the corresponding sample moments (e.g., Exi1x′

i1 is replaced by∑N
i=1 xi1x′

i1/N ).
Let �′ = (�′

1,

′
2, . . . ,


′
G), and specify the restrictions on 
̃ by the condition

that 
̃ = f̃ (�). Choose � to minimize the following distance function:

[ ˆ̃
 − f̃(�)]′ ˆ̃�−1[ ˆ̃
 − f̃(�)]. (5.3.11)

Then
√
N (�̂ − �) is asymptotically normally distributed with mean 0 and

variance–covariance matrix (F̃ ′�̃−1F̃ )−1, where F̃ = ∂ f̃/∂�′. Noting that
�̃ = �⊗ eT , and evaluating the partitioned inverse, we obtain the asymptotic
variance–covariance matrix of

√
N (�̂1 − �1) as

(
�̃w1x�

−1
11 �̃

′
w1x

)−1
, (5.3.12)
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where �̃w1x = [E(w1i1 x′
i1), E(w1i2 x′

i2), . . . , E(w1iT x′
iT )], and

�11 = E

⎡⎢⎢⎢⎢⎣
v2

1i1
xi1x′

i1 v1i1v1i2 xi1x′
i2 · · · v1i1v1iT xi1x′

iT

v1i2v1i1 xi2x′
i1 v2

1i2
xi2x′

i2 · · · v1i2v1iT xi2x′
iT

...
...

...
v1iT v1i1 xiT x′

i1 v1iT v1i2 xiT x′
i2 · · · v1iT v1iT xiT x′

iT

⎤⎥⎥⎥⎥⎦ .
(5.3.13)

The limited-information minimum-distance estimator of (5.3.11) is asymp-
totically equivalent to the following generalization of the 2SLS estimator:

θ̂1,G2SLS = (S̃w1x�̂
−1
11 S̃′

w1x

)−1 (
S̃w1x�̂

−1
11 sxy1

)
, (5.3.14)

where

S̃w1x =
(

1

N

N∑
i=1

w1i1 x′
i1,

1

N

N∑
i=1

w1i2 x′
i2, . . . ,

1

N

N∑
i=1

w1iT x′
iT

)
,

sxy1 =

⎡⎢⎢⎢⎢⎢⎣
1
N

∑N
i=1 xi1y1i1

1
N

∑N
i=1 xi2y1i2

...
1
N

∑N
i=1 xiT y1iT

⎤⎥⎥⎥⎥⎥⎦ ,

�̂11= 1

N

⎡⎢⎢⎣
∑N
i=1 v̂

2
1i1

xi1x′
i1

∑N
i=1 v̂1i1 v̂1i2 xi1x′

i2 · · · ∑N
i=1 v̂1i1 v̂1iT xi1x′

iT

...
...

...∑N
i=1 v̂1iT v̂1i1 xiT x′

i1

∑N
i=1 v̂1iT v̂1i2xiT x′

i2 · · · ∑N
i=1 v̂1iT v̂1iT xiT x′

iT

⎤⎥⎥⎦,
and v̂1iT = y1it − w′

1it
�̂1, with �̂1 any consistent estimator of �1. The gener-

alized 2SLS converges to the 2SLS if v1it is independently identically dis-
tributed over i and t and Exitx′

it = Exisx′
is . But the generalized 2SLS, like the

minimum-distance estimator of (5.3.11), makes allowance for the heteroscedas-
ticity and arbitrary serial correlation in ν1it , whereas the 2SLS does not.

When the variance–covariance matrix
∑
gg possesses an error-component

structure as specified in (5.3.3), although both the 2SLS estimator and the
minimum-distance estimator of (5.3.11) (or the generalized 2SLS estimator)
remain consistent, they are no longer efficient even within a limited-information
framework, because, as shown in the last section, when there are restrictions on
the variance–covariance matrix the least-squares estimator of the unconstrained
� is not as efficient as the generalized least-squares estimator.7 An efficient
estimation method has to exploit the known restrictions on the error structure.
Baltagi (1981a) has suggested using the following error-component two-stage

7 See Chapter 3, footnote 22.
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least-squares (EC2SLS) method to obtain a more efficient estimator of the
unknown parameters in the gth equation.

Transforming (5.3.1) by the eigenvectors of
∑
gg, C

′
1, C

′
2, and C ′

3, we
have8

y(h)
g = Y (h)

g γg + X(h)
g �g + v(h)

g = W(h)
g �g + v(h)

g , (5.3.15)

where y(h)
g = C ′

hyg,W
(h)
g = C ′

hWg, v
(h)
g = C ′

hvg for h = 1, 2, 3, and C ′
1, C

′
2,

and C ′
3 are as defined in Appendix 3B. The transformed disturbance term v(h)

g

is mutually orthogonal and has a covariance matrix proportional to an identity
matrix. We can therefore use X(h) = C ′

hX as the instruments and apply the
Aitken estimation procedure to the system of equations⎡⎢⎢⎣

X(1)′y(1)
g

X(2)′y(2)
g

X(3)′y(3)
g

⎤⎥⎥⎦ =

⎡⎢⎢⎣
X(1)′W (1)

g

X(2)′W (2)
g

X(3)′W (3)
g

⎤⎥⎥⎦
[
γg

�g

]
+

⎡⎢⎢⎣
X(1)′v(1)

g

X(2)′v(2)
g

X(3)′v(3)
g

⎤⎥⎥⎦ . (5.3.16)

The resulting Aitken estimator of (γ ′
g,�

′
g) is

�̂g,EC2SLS =
{

3∑
h=1

[
1

σ 2
hgg

W (h)′
g PX(h)W (h)

g

]}−1

{
3∑
h=1

[
1

σ 2
hgg

W (h)′
g PX(h)y(h)

g

]}
, (5.3.17)

where PX(h) = X(h)(X(h)′X(h))−1X(h)′. It is a weighted combination of the
between-groups, between-time-periods, and within-groups 2SLS estimators of
(γ ′
g,�

′
g). The weights σ 2

hgg can be estimated by substituting the transformed
2SLS residuals in the usual variance formula,

σ̂ 2
hgg =

(
y(h)
g −W (h)

g �̂
(h)
g,2SLS

)′ (
y(h)
g −W (h)

g �̂
(h)
g,2SLS

)/
n(h) , (5.3.18)

where �̂
(h)
g,2SLS = [W (h)′

g PX(h)W (h)
g ]−1[W (h)′

g PX(h)y(h)
g ], and n(1) = N − 1,

n(2) = T − 1, n(3) = (N − 1)(T − 1). If N → ∞, T → ∞, and N/T tends
to a nonzero constant, then the probability limit of the EC2SLS tends to the
2SLS estimator based on the within-groups variation alone.

In the special case in which the source of correlation between some of the
regressors and residuals comes from the unobserved time-invariant individ-
ual effects alone, the correlations between them can be removed by removing

8 As indicated earlier, we have assumed here that all variables are measured as deviations from their
respective overall means. There is no loss of generality in this formulation, because the intercept
μg is estimated by μ̂g = (1/NT )e′

NT (yg −Wg �̂g). Because C′
heNT = 0 for h = 1, 2, 3, the

only terms pertinent to our discussion are Ch for h = 1, 2, 3.
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the time-invariant component from the corresponding variables. Thus, instru-
ments for the correlated regressors can be chosen from “inside” the equation,
as opposed to the conventional method of being chosen from “outside” the
equation. Hausman and Taylor (1981) noted that for variables that are time-
varying and are correlated with αig , transforming them into deviations from
their corresponding time means provides legitimate instruments, because they
will no longer be correlated with αig . For variables that are time-invariant, the
time means of those variables that are uncorrelated with αig can be used as
instruments. Hence, a necessary condition for identification of all the param-
eters within a single-equation framework is that the number of time-varying
variables that are uncorrelated with αig be at least as great as the number
of time-invariant variables that are correlated with αig . They further showed
that when the variance-component structure of the disturbance term is taken
account of, the instrumental-variable estimator with instruments chosen this
way is efficient among the single-equation estimators.

5.3.2 Estimation of the Complete Structural System

The single-equation estimation method considered earlier ignores restrictions
in all equations in the structural system except the one being estimated. In
general, we expect to get more efficient estimates if we consider the additional
information contained in the other equations. In this subsection we consider
the full-information estimation methods.

Let y = (y′
1, . . . , y

′
G)′, v = (v′

1, . . . , v
′
G)′,

W =

⎡⎢⎢⎢⎣
W1 0 · · · 0
0 W2 · · · 0
...

...
...

0 0 · · · WG

⎤⎥⎥⎥⎦ , and � =

⎡⎢⎣�1

...
�G

⎤⎥⎦ .

We write the set of G structural equations as

y = W� + v. (5.3.19)

We can estimate the system (5.3.19) by the three-stage least-squares (3SLS)
method. But just as in the limited-information case, the 3SLS estimator is
efficient only if (v1it , v2it , . . . , vGit ) are independently identically distributed
over i and t . To allow for arbitrary heteroscedasticity or serial correlation, we
can use the full-information minimum-distance estimator or the generalized
3SLS estimator.

We first consider the minimum-distance estimator. When T is fixed and
N tends to infinity, we can stack the T period equations for an individual’s
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behavioral equation into a system to create a model of GT equations,

y1i
T×1

= W1i�1 + v1i ,

y2i = W2i�2 + v2i ,

... (5.3.20)

yGi = WGi�G + vGi , i = 1, . . . , N.

We obtain a minimum-distance estimator of � by choosing �̂ to minimize
[ ˆ̃
 − f̃(�)]′ ˆ̃�−1[ ˆ̃
 − f̃(�)], where ˆ̃
 is the unconstrained least-squares estima-
tor of regressing yi on (IG ⊗ X̃i), and ˆ̃� is a consistent estimate of �̃ [equa-
tion (5.3.9)]. Noting that �̃ = �⊗ eT and vec(�′) = 
 = vec([−�−1B]′) for
all elements of � and B not known a priori, and making use of the formula
∂
/∂�′ [equation (3.8.25)], we can show that if vi are independently distributed
over i, then

√
N (�̂ − �) is asymptotically normally distributed, with mean 0

and variance–covariance matrix

{�wx�−1�′
wx}−1, (5.3.21)

where

�wx =

⎡⎢⎢⎢⎣
�̃w1x 0 · · · 0

0 �̃w2x 0
...

. . .
...

0 0 · · · �̃wGx

⎤⎥⎥⎥⎦,
�̃wgx = [E(wgi1 x′

i1), E(wgi2 x′
i2), . . . , E(wgiT x′

iT )],

(5.3.22)

�
GTK×GTK

=

⎡⎢⎢⎢⎣
�11 �12 · · · �1G

�21 �22 · · · �2G
...

...
...

�G1 �G2 · · · �GG

⎤⎥⎥⎥⎦,

�g�
TK×TK

= E

⎡⎢⎣ vgi1v�i1 xi1x′
i1 vgi1v�i2 xi1x′

i2 · · · vgi1v�iT xi1x′
iT

...
...

...
vgiT v�i1xiT x′

i1 vgiT v�i2 xiT x′
i2 · · · vgiT v�iT xiT x′

iT

⎤⎥⎦.
We can also estimate (5.3.20) by using a generalized 3SLS estimator,

�̂G3SLS = (Swx�̂
−1S ′

wx)
−1(Swx�̂

−1Sxy), (5.3.23)
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where

Swx =

⎡⎢⎢⎢⎣
S̃w1x 0 · · · 0

0 S̃w2x 0
...

...
. . .

...
0 0 · · · S̃wGx

⎤⎥⎥⎥⎦,

S̃wgx =
[

1

N

N∑
i=1

wgi1 x′
i1,

1

N

N∑
i=1

wgi2 x′
i2, . . . ,

1

N

N∑
i=1

wgiT x′
iT

]
,

Sxy =

⎡⎢⎢⎣
sxy1

sxy2

...
sxyG

⎤⎥⎥⎦,

sxyg
TK×1

=

⎡⎢⎣
1
N

∑N
i=1 xi1ygi1

...
1
N

∑N
i=1 xiT ygiT ,

⎤⎥⎦,
and �̂ is � [equation (5.3.22)] with vit replaced by v̂it = �̂yit + B̂xit , where
�̂ and B̂ are any consistent estimates of � and B. The generalized 3SLS is
asymptotically equivalent to the minimum-distance estimator.

Both the 3SLS and the generalized 3SLS are consistent. But just as in
the limited-information case, if the variance–covariance matrix possesses an
error-component structure, they are not fully efficient. To take advantage of
the known structure of the covariance matrix, Baltagi (1981a) suggested the
following error-component three-stage least-squares estimator (EC3SLS).

The g�th block of the covariance matrix
 is of the form (5.3.3). A key point
that is evident from Appendix 3B is that the set of eigenvectors C1, C2, C3, and
C4 of (5.3.3) is invariant with respect to changes in the parameters σ 2

λg�
, σ 2
αg�

,

and σ 2
ug�

. Therefore, premultiplying (5.3.19) by IG ⊗ C ′
h, we have9

y(h) = W (h)� + v(h), h = 1, 2, 3, (5.3.24)

where y(h) = (IG ⊗ C ′
h)y,W

(h) = (IG ⊗ C ′
h)W, v

(h) = (IG ⊗ C ′
h)v, with

E(v(h)v(h)′) = 
(h) ⊗ In(h), where 
(h) = (σ 2
hg�

) for h = 1, 2, and 3. Because

W (h) contains endogenous variables that are correlated with v(h), we first pre-
multiply (5.3.24) by (IG ⊗X(h))′ to purge the correlation between W (h) and
v(h). Then apply the GLS estimation procedure to the resulting systems of

9 Again, we ignore C4 = eNT /
√
NT because we have assumed that there is an intercept for each

equation and because C′
heNT = 0 for h = 1, 2, 3.
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equations to obtain

�̂GLS =
[

3∑
h=1

{W (h)′[(
(h))−1 ⊗ PX(h)]W (h)}
]−1

·
[

3∑
h=1

{W (h)′[(
(h))−1 ⊗ PX(h)]y(h)

]
. (5.3.25)

Usually we do not know
(h). Therefore, the following three-stage procedure
is suggested:

1. Estimate the �̂
(h)
g by 2SLS.

2. Use the residuals from the hth 2SLS estimate to estimate σ̂ 2
hgl

[equation
(5.3.18)].

3. Replace 
(h) by the estimated covariance matrix. Estimate � by
(5.3.25).

The resulting estimator is called the EC3SLS estimator. It is a weighted com-
bination of three 3SLS (within, between-groups, and between-time-periods)
estimators of the structural parameters (Baltagi 1981a).

The EC3SLS estimator is asymptotically equivalent to the full-information
maximum-likelihood estimator. In the case in which 
 is block-diagonal, the
EC3SLS reduces to the EC2SLS. But, contrary to the usual simultaneous-
equations models, when the error terms have an error-component structure, the
EC3SLS does not necessarily reduce to the EC2SLS, even if all the structural
equations are just identified. For details, see Baltagi (1981a).

5.4 TRIANGULAR SYSTEM

Under the assumption that αi ,λt and uit are independent of xis , the model dis-
cussed earlier assumes that residuals of different equations in a multiequation
model have an unrestricted variance-component structure. Under this assump-
tion, the panel data improve the precision of the estimates only by providing
a large number of sample observations. They do not offer additional oppor-
tunities that are not standard. However, quite often the residual correlations
may simply be due to one or two common omitted or unobservable variables
(Chamberlain 1976, 1977a, 1977b; Chamberlain and Griliches 1975; Gold-
berger 1972; Zellner 1970). For instance, in the estimation of income and
schooling relations or individual-firm production and factor-demand relations,
it is sometimes postulated that the biases in different equations are caused by
a common left-out “ability” or “managerial-differences” variable. When panel
data are used, this common omitted variable is again assumed to have a within-
and between-group structure. The combination of this factor-analytic structure
with error-components formulations puts restrictions on the residual covari-
ance matrix that can be used to identify an otherwise unidentified model and
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improve the efficiency of the estimates. Because a widely used structure for
longitudinal microdata is the triangular structure, and because its connection
with the general simultaneous-equations model in which the residuals have a
factor-analytic structure holds in general, in this section we focus on the trian-
gular structure to illustrate how such information can be used to identify and
estimate a model.

5.4.1 Identification

A convenient way to model correlations across equations, as well as the corre-
lation of a given individual at different times (or different members of a group),
is to use latent variables to connect the residuals. Let ygit denote the value of
the variable yg for the ith individual (or group) at time t (or tth member). We
can assume that

vgit = dghit + ugit , (5.4.1)

where the ug are uncorrelated across equations and across i and t . The corre-
lations across equations are all generated by the common omitted variable h,
which is assumed to have a variance-component structure:

hit = αi + ωit , (5.4.2)

where αi is invariant over t but is independently identically distributed across
i (groups), with mean 0 and variance σ 2

α , and ωit is independently identically
distributed across i and t , with mean 0 and variance σ 2

ω and is uncorrelated
with αi .

An example of the model with Γ lower-triangular and v of the form (5.4.1) is
(Chamberlain 1977a, 1977b; Chamberlain and Griliches 1975; Griliches 1979)

y1it = �′
1xit + d1hit + u1it ,

y2it = −γ21y1it + �′
2xit + d2hit + u2it , (5.4.3)

y3it = −γ31y1it − γ32y2it + �′
3xit + d3hit + u3it ,

where y1, y2, and y3 denote years of schooling, a late (postschool) test score,
and earnings, respectively, and xit are exogenous variables (which may differ
from equation to equation via restrictions on �g). The unobservable h can be
interpreted as early “ability,” and u2 as measurement error in the test. The
index i indicates groups (or families), and t indicates members in each group
(or family).

Without the h variables, or if dg = 0, equation (5.4.3) would be only a simple
recursive system that could be estimated by applying least-squares separately to
each equation. The simultaneity problem arises when we admit the possibility
that dg �= 0. In general, if there were enough exogenous variables in the first
(schooling) equation that did not appear again in the other equations, the system
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could be estimated using 2SLS or EC2SLS procedures. Unfortunately, in the
income–schooling–ability model using sibling data [e.g., see the survey by
Griliches 1979] there usually are not enough distinct x’s to identify all the
parameters. Thus, restrictions imposed on the variance–covariance matrix of
the residuals will have to be used.

Given that h is unobservable, we have an indeterminate scale

d2
g

(
σ 2
α + σ 2

ω

) = cd2
g

(
1

c
σ 2
α + 1

c
σ 2
ω

)
. (5.4.4)

So we normalize h by letting σ 2
α = 1. Then

Evitv′
it = (

1 + σ 2
ω

)
dd′ + diag

(
σ 2

1 , . . . , σ
2
G

) = �, (5.4.5)

Evitv′
is = dd′ = �w if t �= s, (5.4.6)

Evitv′
js = 0 if i �= j, (5.4.7)

where d = (d1, . . . , dG), and diag(σ 2
1 , . . . , σ

2
G) denotes a G×G diagonal

matrix with σ 2
1 , σ

2
2 , . . . , σ

2
G on the diagonal.

Under the assumption that αi, ωit , and ugit are normally distributed, or if we
limit our attention to second-order moments, all the information with regard to
the distribution of y is contained in

Cytt = Γ−1BCxttB
′Γ′−1 + Γ−1�Γ′−1, (5.4.8)

Cyts = Γ−1BCxtsB
′�′−1 + Γ−1�wΓ′−1, t �= s, (5.4.9)

Cyxts = −Γ−1BCxts , (5.4.10)

where Cyts = Eyity′
is , Cyxts = Eyitx′

is , and Cxts = Exitx′
is .

Stack the coefficient matrices � and B into a 1 ×G(G+K) vector �′ =
(γ ′

1, . . . , γ
′
G, β

′
1, . . . , β

′
G). Suppose � is subject toM a priori constraints:

�(�) = �, (5.4.11)

where � is an M × 1 vector of constants. Then a necessary and sufficient
condition for local identification of Γ,B,d, σ 2

ω , and σ 2
1 , . . . , σ

2
G is that the rank

of the Jacobian formed by taking partial derivatives of (5.4.8)–(5.4.11) with
respect to the unknowns is equal to G(G+K) + 2G+ 1 (e.g., Hsiao 1983).

Suppose there is no restriction on the matrix B. The GK equations (5.4.10)
can be used to identify B provided that Γ is identifiable. Hence, we can con-
centrate on

Γ
(
Cytt − Cyxtt C−1

xtt
C ′
yxtt

)
Γ′ = �, (5.4.12)

Γ
(
Cyts − CyxtsC−1

xts
C ′
yxts

)
Γ′ = �w, t �= s, (5.4.13)
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We note that � is symmetric, and we have G(G+ 1)/2 independent equa-
tions from (5.4.12). But �w is of rank 1; therefore, we can derive only G
independent equations from (5.4.13). Suppose Γ is lower-triangular and the
diagonal elements of Γ are normalized to be unity; there are G(G− 1)/2
unknowns in Γ, and 2G+ 1 unknowns of (d1, . . . , dG), (σ 2

1 , . . . , σ
2
G), and σ 2

ω.
We have one less equation than the number of unknowns. In order for the
Jacobian matrix formed by (5.4.12), (5.4.13), and a priori restrictions to be
nonsingular, we need at least one additional a priori restriction. Thus, for the
system

Γyit + Bxit = vit , (5.4.14)

where Γ is lower-triangular, B is unrestricted, and vit satisfies (5.4.1) and
(5.4.2), a necessary condition for the identification under exclusion restrictions
is that at least one γg� = 0 for g > �. (For details, see Chamberlain 1976 or
Hsiao 1983.)

5.4.2 Estimation

We have discussed how the restrictions in the variance–covariance matrix can
help identify the model. We now turn to the issues of estimation. Two methods
are discussed: the purged-instrumental-variable method (Chamberlain 1977a)
and the maximum-likelihood method (Chamberlain and Griliches 1975). The
latter method is efficient, but computationally complicated. The former method
is inefficient, but it is simple and consistent. It also helps to clarify the previous
results on the sources of identification.

For simplicity, we assume that there is no restriction on the coefficients of
exogenous variables. Under this assumption we can further ignore the exis-
tence of exogenous variables without loss of generality, because there are no
excluded exogenous variables that can legitimately be used as instruments for
the endogenous variables appearing in the equation. The instruments have to
come from the group structure of the model. We illustrate this point by consid-
ering the following triangular system:

y1it = + v1it ,

y2it = γ21y1it + v2it ,
...

yGit = γG1y1it + · · · + γG,G−1yG−1it + vGit ,
(5.4.15)

where vgit satisfy (5.4.1) and (5.4.2). We assume one additional γ�k = 0 for
some � and k, � > k, for identification.

The reduced form of (5.4.15) is

ygit = aghit + εgit , g = 1, . . . ,G, (5.4.16)
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where

a =

⎡⎢⎢⎢⎢⎢⎣
a1

a2

a3
...
aG

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
d1

d2 + γ21d1

d3 + γ31d1 + γ32(d2 + γ21d1)
...

⎤⎥⎥⎥⎦ , (5.4.17)

�it =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε1it
ε2it
ε3it

...
εgit

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1it

u2it + γ21u1it

u3it + γ31u1it + γ32(u2it + γ21u1it )
...
ugit +

∑g−1
k=1 γ

∗
gkukit

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5.4.18)

where γ ∗
gk = γgk +∑g−1

i=k+1 γgiγ
∗
ik if g > 1 and k + 1 < g, and γ ∗

gk = γgk if
k + 1 = g.

5.4.2.1 Instrumental-Variable Method

The trick of the purged instrumental-variable (IV) method is to leave h in the
residual and construct instruments that are uncorrelated with h. Before going
to the general formula, we use several simple examples to show where the
instruments come from.

Consider the case that G = 3. Suppose γ21 = γ31 = 0. Using y1 as a proxy
for h in the y3 equation, we have

y3it = γ32y2it +
d3

d1
y1it + u3it −

d3

d1
u1it . (5.4.19)

If T ≥ 2 then y1is , s �= t , is a legitimate instrument for y1it , because it is uncorre-
lated with u3it − (d3/d1)u1it but it is correlated with y1it provided that d1σ

2
α �= 0.

Therefore, we can use (y2it , y1is ) as instruments to estimate (5.4.19).
Next, suppose that only γ32 = 0. The reduced form of the model becomes⎡⎣y1

y2

y3

⎤⎦ =

⎡⎢⎣d1

d2 + γ21d1

d3 + γ31d1

⎤⎥⎦hit +
⎡⎢⎣u1it

u2it + γ21u1it

u3it + γ31u1it

⎤⎥⎦

=
⎡⎣a1

a2

a3

⎤⎦hit +
⎡⎣ε1it
ε2it
ε3it

⎤⎦. (5.4.20)

In this case, the construction of valid instruments is more complicated. It
requires two stages. The first stage is to use y1 as a proxy for h in the
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reduced-form equation for y2:

y2it = a2

a1
y1it + ε2it −

a2

a1
ε1it . (5.4.21)

Equation (5.4.21) can be estimated by using y1is , s �= t , as an instrument for
y1it , provided that d1σ

2
α �= 0. Then form the residual, thereby purging y2 of its

dependence on h:

z2it = y2it −
a2

a1
y1it = ε2it −

a2

a1
ε1it . (5.4.22)

The second stage is to use z2 as an instrument for y1 in the structural equation
y3:

y3it = γ31y1it + d3hit + u3it . (5.4.23)

The variable z2 is an appropriate IV because it is uncorrelated with h and u3, but
it is correlated with y1, provided d2σ

2
1 �= 0. (If d2 = 0, then z2 = y2 − γ21y1 =

u2. It is no longer correlated with y1.) Therefore, we require that h appear
directly in the y2 equation and that y1 not be proportional to h – otherwise we
could never separate the effects of y1 and h.

In order to identify the y2 equation

y2it = γ21y1it + d2hit + u2it , (5.4.24)

we can interchange the reduced-form y2 and y3 equations and repeat the two
stages. With γ21 and γ31 identified, in the third stage we form the residuals

v2it = y2it − γ21y1it = d2hit + u2it ,

(5.4.25)
v3it = y3it − γ31y1it = d3hit + u3it .

Then use y1 as a proxy for h:

v2it = d2

d1
y1it + u2it −

d2

d1
u1it ,

(5.4.26)

v3it = d3

d1
y1it + u3it −

d3

d1
u1it .

Now d2/d1 and d3/d1 can be identified by a third application of instrumental
variables, using y1is , s �= t , as an instrument for y1it . (Note that only the ratio of
the d’s is identified, because of the indeterminate scale of the latent variable.)

Now come back to the construction of IVs for the general system (5.4.15)–
(5.4.18). We assume that T ≥ 2. The instruments are constructed over several
stages. At the first stage, let y1 be a proxy for h. Then the reduced-form equation
for yg becomes

ygit = ag

a1
y1it + εgit −

ag

a1
ε1it , g = 2, . . . , �− 1. (5.4.27)

If T ≥ 2, ag/a1 can be consistently estimated by using different members in
the same group (e.g., y1is and y1it , t �= s) as instruments for the yg equation
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(5.4.27) when d1σ
2
α �= 0. Once ag/a1 is consistently estimated, we form the

residual

zgit = ygit −
ag

a1
y1it = εgit −

ag

a1
ε1it , g = 2, . . . , �− 1. (5.4.28)

The zg are uncorrelated with h. They are valid instruments for yg provided
dgσ

2
1 �= 0. There are �− 2 IVs for the �− 2 variables that remain on the right-

hand side of the �th structural equation after yk has been excluded.
To estimate the equations that follow y�, we form the transformed variables

y∗
2it = y2it − γ21y1it ,

y∗
3it = y3it − γ31y1it − γ32y2it ,

(5.4.29)
...

y∗
�it

= y�it − γ�1y1it − · · · − γ�,�−1y�−1it ,

and rewrite the y�+1 equation as

y�+1it = γ ∗
�+1,1y1it + γ ∗

�+1,2y
∗
2it + · · · + γ ∗

�+1,�−1y
∗
�−1it + γ�+1,�y

∗
�it

+ d�+1hit + u�+1it , (5.4.30)

where γ ∗
�+1,j = γ�+1,j +∑�

m=j+1 γ�+1,mγ
∗
mj for j < �. Using y1 as a proxy for

h, we have

y�+1it = γ ∗
�+1,2y

∗
2it + · · · + γ�+1,�y

∗
�it

(5.4.31)

+
(
γ ∗
�+1,1 + d�+1

d1

)
y1it + u�+1it −

d�+1

d1
u1it ,

Because u1 is uncorrelated with y∗
g for 2 ≤ g ≤ �, we can use y∗

git
together with

y1is , s �= t as instruments to identify γ�+1,j . Once γ�+1,j are identified, we can
form y∗

�+1 = y�+1 − γ�+1,1y1 − · · · − γ�+1,�y� and proceed in a similar fashion
to identify the y�+2 equation, and so on.

Once all the γ are identified, we can form the estimated residuals, v̂it . From
v̂it we can estimate dg/d1 by the same procedure as (5.4.26). Or we can form

the matrix �̂ of variance–covariances of the residuals, and the matrix ˆ̄� of
variance–covariances of averaged residuals (1/T )

∑T
t=1 v̂it , then solve for d,

(σ 2
1 , . . . , σ

2
G), and σ 2

ω from the relations

�̂ = (
1 + σ 2

ω

)
dd′ + diag

(
σ 2

1 , . . . , σ
2
G

)
, (5.4.32)

ˆ̄� = (
1 + σ 2

ω

)
dd′ + 1

T
diag

(
σ 2

1 , . . . , σ
2
G

)
. (5.4.33)

The purged IV estimator is consistent. It also will often indicate quickly if
a new model is identified. For instance, to see the necessity of having at least
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one more γg� = 0 for g > � to identify the foregoing system, we can check if
the instruments formed by the foregoing procedure satisfy the required rank
condition. Consider the example where G = 3 and all γg� �= 0 for g > �. In
order to follow the strategy of allowing h to remain in the residual, in the third
equation we need IVs for y1 and y2 that are uncorrelated with h. As indicated
earlier, we can purge y2 of its dependence on h by forming z2 = y2 − (a2/a1)y1.
A similar procedure can be applied to y1. We use y2 as a proxy for h, with
y2is as an IV for y2it . Then form the residual z1 = y1 − (a1/a2)y2. Again z1 is
uncorrelated with h and u3. But z1 = −(a1/a2)z2, and so an attempt to use both
z2 and z1 as IVs fails to meet the rank condition.

5.4.2.2 Maximum-Likelihood Method

Although the purged IV method is simple to use, it is likely to be inefficient,
because the correlations between the endogenous variables and the purged
IVs will probably be small. Also, the restriction that (5.4.6) is of rank 1 is
not being utilized. To obtain efficient estimates of the unknown parameters,
it is necessary to estimate the covariance matrices simultaneously with the
equation coefficients. Under the normality assumptions for αi, ωit and uit , we
can obtain efficient estimates of (5.4.15) by maximizing the log likelihood
function

logL = −N
2

log |V |

− 1

2

N∑
i=1

(y′
1i , y

′
2i , . . . , y

′
Gi)V

−1(y′
1i , . . . , y

′
Gi)

′, (5.4.34)

where

ygi
T×1

= (ygi1 , . . . , ygiT )′, g = 1, . . . ,G,

V
GT×GT

= �⊗ IT + aa′ ⊗ eT e′
T , (5.4.35)

�
G×G

= E(�it�
′
it ) + σ 2

ωaa′.

Using the relations10

V −1 = �−1 ⊗ IT − cc′ ⊗ eT e′
T , (5.4.36)

|V | = |�|T |1 − T c′�c|−1, (5.4.37)

10 For the derivations of (5.4.36) and (5.4.37), see Appendix 5.
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we can simplify the log likelihood function as11

logL = −NT
2

log |�| + N

2
log(1 − T c′�c)

− NT
2

tr(�−1R) + NT 2

2
c′R̄c, (5.4.38)

where c is a G× 1 vector proportional to �−1a, R is the matrix of the sums
of the squares and cross-products of the residuals divided by NT , and R̄ is the
matrix of sums of squares and cross-products of the averaged residuals (over
t for i) divided by N . In other words, we simplify the log likelihood function
(5.4.34) by reparameterizing it in terms of c and �.

Taking partial derivatives of (5.4.38), we obtain the first-order conditions12

∂ logL

∂�−1
= NT

2
�+ NT

2

1

(1 − T c′�c)
�cc′�− NT

2
R = 0, (5.4.39)

∂ logL

∂c
= − NT

1 − T c′�c
�c +NT 2R̄c = 0. (5.4.40)

Postmultiplying (5.4.39) by c and regrouping the terms, we have

�c = 1 − T c′�c
1 − (T − 1)c′�c

Rc. (5.4.41)

Combining (5.4.40) and (5.4.41), we obtain(
R̄ − 1

T [1 − (T − 1)c′�c]
R

)
c = 0. (5.4.42)

Hence, the MLE of c is a characteristic vector corresponding to a root of

|R̄ − λR| = 0. (5.4.43)

The determinate equation (5.4.43) has G roots. To find which root to use,
substitute (5.4.39) and (5.4.40) into (5.4.38):

logL = −NT
2

log |�| + N

2
log(1 − T c′�c)

− NT
2

(G+ T tr c′R̄c) + NT 2

2
tr(c′R̄c)

= −NT
2

log |�| + N

2
log(1 − T c′�c) − NTG

2
. (5.4.44)

Let the G characteristic vectors corresponding to the G roots of (5.4.43)
be denoted as c1(= c), c2, . . . , cG. These characteristic vectors are determined

11 From V · V −1 = IGT , we have −�cc′ − T aa′cc′ + aa′�−1 = 0. Premultiplying this equation
by c′ we obtain (b1 + T b2

2)c′ = b2a′�−1, where b1 = c′�c and b2 = c′a. In Appendix 5 we
give the values of b1 and b2 explicitly in terms of the eigenvalue of [aa′ − λ� |= 0.

12 We make use of the formula ∂ log | � | /∂�−1 = −�′ and ∂(c′�c)/∂�−1 = −�cc′� (Theil
1971, pp. 32–33).
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only up to a scalar. Choose the normalization c∗′
g Rc∗

g = 1, g = 1, . . . ,G, where
c∗
g = (c′

gRcg)−1/2cg . LetC∗ = [c∗
1, . . . , c

∗
G]; thenC∗′RC∗ = IG. From (5.4.39)

and (5.4.41) we have

C∗′�C∗ = C∗′RC∗ − 1 − T c′�c
[1 − (T − 1)c′�c]2

C∗′Rcc′RC∗

= IG − 1 − T c′�c
[1 − (T − 1)c′�c]2

·

⎡⎢⎢⎢⎣
(c′Rc)1/2

0
...
0

⎤⎥⎥⎥⎦ [(c′Rc)1/2 0 · · · 0]. (5.4.45)

Equation (5.4.41) implies that (c′Rc) = {[1 − (T − 1)c′�c]/[1 −
T c′�c]}c′�c. Therefore, the determinant of (5.4.45) is {[1 − T c′�c]/
[1 − (T − 1)c′�c]}. Using C∗′−1C∗−1 = R, we have |�| = {[1 − T c′�c]/
[1 − (T − 1)c′�c]}|R|. Substituting this into (5.4.44), the log likelihood
function becomes

logL = −NT
2

{log |R| + log(1 − T c′�c)

− log[1 − (T − 1)c′�c]}

+ N
2

log[1 − T c′�c] − NTG

2
, (5.4.46)

which is positively related to c′�c within the admissible range (0, 1/T ).13 So
the MLE of c is the characteristic vector corresponding to the largest root of
(5.4.43). Once c is obtained, from Appendix 5A and (5.4.39) and (5.4.40) we
can estimate a and � by

a′ = T (1 + T 2c′R̄c)−1/2c′R̄, (5.4.47)

and

� = R − aa′. (5.4.48)

Knowing a and �, we can solve for the coefficients of the joint dependent
variables �.

When exogenous variables also appear in the equation, and with no restric-
tions on the coefficients of exogenous variables, we need only replace the
exponential term of the likelihood function (5.4.34),

−1

2

N∑
i=1

(y′
1i , . . . , y

′
Gi)V

−1(y′
1i , . . . , y

′
Gi)

′,

13 See Appendix 5, equation (5A.7), in which ψ1 is positive.
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with

−1

2

N∑
i=1

(y′
1i − 
′

1X′
i , . . . , y

′
Gi − 
′

GX
′
i)

· V −1(y′
1i − 
′

1X
′
i , . . . , y

′
Gi − 
′

GX
′
i)

′.

The MLEs of c, a, and� remain the solutions of (5.4.43), (5.4.47), and (5.4.48).
From knowledge of � and a we can solve for � and σ 2

ω. The MLE of �
conditional on V is the GLS of �. Knowing � and �, we can solve for
B = −��.

Thus, Chamberlain and Griliches (1975) suggested the following iterative
algorithm to solve for the MLE. Starting from the least-squares reduced-form
estimates, we can form consistent estimates of R and R̄. Then estimate c by
maximizing14

c′R̄c
c′Rc

. (5.4.49)

Once c is obtained, we solve for a and� by (5.4.47) and (5.4.48). After obtain-
ing � and a, the MLE of the reduced-form parameters is just the generalized
least-squares estimate. With these estimated reduced-form coefficients, one can
form new estimates of R and R̄ and continue the iteration until the solution
converges. The structural-form parameters are then solved from the convergent
reduced-form parameters.

5.4.3 An Example

Chamberlain and Griliches (1975) used the Gorseline (1932) data of the highest
grade of schooling attained (y1), the logarithm of the occupational (Duncan’s
SES) standing (y2), and the logarithm of 1927 income (y3) for 156 pairs of
brothers from Indiana (U.S.) to fit a model of the type (5.4.1)–(5.4.3). Specifi-
cally, they let

y1it = �′
1xit + d1hit + u1it ,

y2it = γ21y1it + �′
2xit + d2hit + u2it , (5.4.50)

y3it = γ31y1it + �′
3xit + d3hit + u3it .

The setX contains a constant, age, and age squared, with age squared appearing
only in the income equation.

14 Finding the largest root of (5.4.43) is equivalent to maximizing (5.4.49). If we normalize c′Rc =
1, then to find the maximum of (5.4.49) we can use Lagrangian multipliers and maximize c′R̄c +
λ(1 − c′Rc). Taking partial derivatives with respect to c gives (R̄ − λR)c = 0. Premultiplying
by c′, we have c′R̄c = λ. Thus, the maximum of (5.4.49) is the largest root of | R̄ − λR |= 0,
and c is the characteristic vector corresponding to the largest root.
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The reduced form of (5.4.50) is

yit = �xit + ahit + �it , (5.4.51)

where

Π =
⎡⎣�′

1
γ21�′

1 + �′
2

γ31�′
1 + �′

3

⎤⎦,
a =

⎡⎣d1

d2 + γ21d1

d3 + γ31d1

⎤⎦, (5.4.52)

�it =
⎡⎣u1it
u2it + γ21u1it
u3it + γ31u1it

⎤⎦.
Therefore,

E�it�
′
it =

⎡⎢⎢⎣
σ 2
u1 γ21σ

2
u1 γ31σ

2
u1

σ 2
u2 + γ 2

21σ
2
u1 γ21γ31σ

2
u1

σ 2
u3 + γ 2

31σ
2
u1

⎤⎥⎥⎦, (5.4.53)

and

� =
⎡⎣σ11 σ12 σ13

σ22 σ23

σ33

⎤⎦ = E(�it�
′
it ) + σ 2

ωaa′. (5.4.54)

We show that knowing a and � identifies the structural coefficients of the
joint dependent variables as follows: For a given value of σ 2

ω, we can solve for

σ 2
u1 = σ11 − σ 2

ωa
2
1, (5.4.55)

γ21 = σ12 − σ 2
ωa1a2

σ 2
u1

, (5.4.56)

γ31 = σ13 − σ 2
ωa1a3

σ 2
u1

. (5.4.57)

Equating

γ21γ31 = σ23 − σ 2
ωa2a3

σ 2
u1

(5.4.58)

with the product of (5.4.56) and (5.4.57), and making use of (5.4.55), we have

σ 2
ω = σ12σ13 − σ11σ23

σ12a1a3 + σ13a1a2 − σ11a2a3 − σ23a
2
1

. (5.4.59)
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Table 5.1. Parameter estimates and their standard errors for the
income-occupation-schooling model

Method

Least-squares Covariance
Coefficients of the structural equations estimate estimate MLE

Schooling in the:
Income equation 0.082 0.080 0.088

(0.010)a (0.011) (0.009)

Occupation equation 0.104 0.135 0.107
(0.010) (0.015) (0.010)

“Ability” in the:
Income equation 0.416

(0.038)

Occupation equation 0.214
(0.046)

Schooling equation −0.092
(0.178)

a Standard errors in parentheses.
Source: Chamberlain and Griliches (1975, p. 429).

The problem then becomes one of estimating a and �. Table 5.1 presents
the MLE of Chamberlain and Griliches (1975) for the coefficients of school-
ing and (unobservable) ability variables with σ 2

α normalized to equal 1. Their
least-squares estimates ignore the familial information, and the covariance esti-
mates in which each brother’s characteristics (his income, occupation, school-
ing, and age) are measured around his own family’s mean are also presented in
Table 5.1.

The CV estimate of the coefficient-of-schooling variable in the income
equation is smaller than the least-squares estimate. However, the simultaneous-
equations model estimate of the coefficient for the ability variable is negative
in the schooling equation. As discussed in Section 5.1, if schooling and ability
are negatively correlated, the single-equation within-family estimate of the
schooling coefficient could be less than the least-squares estimate (here 0.080
vs. 0.082). To attribute this decline to “ability” or “family background” is
erroneous. In fact, when schooling and ability were treated symmetrically, the
coefficient-of-schooling variable (0.088) became greater than the least-squares
estimate 0.082.

APPENDIX 5A:

Let

V = �⊗ IT + aa′⊗eT e′
T . (5A.1)
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Because� is positive definite and aa′ is positive semidefinite, there exists a
G×G nonsingular matrix F such that (Anderson 1985, p. 341)

F ′�F = IG and F ′aa′F =

⎡⎢⎢⎣
ψ1 0

0
. . .

0 0

⎤⎥⎥⎦ ,
where ψ1 is the root of∣∣aa′ − λ�∣∣ = 0. (5A.2)

Next, choose a T × T orthogonal matrix E, with the first column of E being
the vector (1/

√
T )eT .Then

E′E = IT and E′eT e′
T E =

[
T 0′

0 0

]
(5A.3)

Now F ⊗ E can be used to diagonalize V,

(F ⊗ E)′V (F ⊗ E) = IGT +
[
ψ1 0′

0 0

]
G×G

⊗
[
T 0′

0 0

]
T×T

, (5A.4)

and factor V −1,

V −1 = �−1 ⊗ IT − F ′
[ ψ1

1+T ψ1
0′

0 0

]
F ⊗ eT e′

T

= �−1 ⊗ IT − cc′⊗eT e′
T , (5A.5)

where c′ = [ψ1/(1 + T ψ1)]
1
2 f′

1,and f1 is the first column of F.
The determinant of V can be obtained from (5A.4):

|V | = |�|T · (1 + T ψ1). (5A.6)

This can be expressed in terms of c and � by nothing that

c′�c = ψ1

1 + T ψ1
. (5A.7)

Thus, we have

1 − T c′�c = 1

1 + T ψ1
, (5A.8)

and

|V | = |�|T · (1 − T c′�c)−1. (5A.9)

From V · V −1 = IGT it is implied that

−�cc′ + aa′�−1 − T aa′cc′ = 0. (5A.10)
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Premultiplying (5A.10) by c′,we obtain

a = c′a
c′�c + (c′a)2

�c. (5A.11)

Also, from f′
1a = ψ 1

2 and a proportional to c1 [equation (5A.11)] and hence
f1,we have

a = ψ
1
2

f′
1f1

f1 = 1

(1 + T ψ1)
1
2 (cc′)

c (5A.12)

Premultiplying (5.4.40) by c′, we obtain

c′R̄c = c′�c
T (1 − T c′�c)

= 1

T
ψ1. (5A.13)

Combining (5.4.40) with (5A.8), (5A.12), and (5A.13), and using �f1 =
(1/f′

1f1)f1, we obtain

R̄c = 1

T
(1 + T ψ1)�c

= 1

T
(1 + T ψ1)

1
2 a

= 1

T
(1 + T 2c′R̄c)

1
2 a. (5A.14)

From (5.4.39) and (5A.12), we have

� = R − 1

1 − T c′�c
�cc′�

= R − aa′ (5A.15)



CHAPTER 6

Variable-Coefficient Models

6.1 INTRODUCTION

So far we have confined our discussion to models in which the effects of
omitted variables are either individual-specific or time-specific or both. But
there are cases in which there are changing economic structures or unobserved
different socioeconomic and demographic background factors that imply that
the response parameters of the included variables may be varying over time
and/or may be different for different cross-sectional units. For instance, in farm
production it is likely that variables not included in the specification could also
impact the marginal productivity of fertilizer used such as soil characteristics
(e.g., slope, soil fertility, water reserve, etc.) or climatic conditions. The same
applies to empirical studies of economic growth. The per capita output growth
rates are assumed to depend on two sets of variables over a common horizon.
One set of variables consists of initial per capita output, savings, and population
growth rates, variables that are suggested by the Solow growth model. The
second set of variables consists of control variables that correspond to whatever
additional determinants of growth a researcher wishes to examine (e.g., Durlauf
2001; Durlauf and Quah 1999). However, there is nothing in growth theory that
would lead one to think that the marginal effect of a change in high school
enrollment percentages on the per capita growth of the United States should be
the same as the effect on a country in sub-Saharan Africa. Had all these factors
been taken into account in the specification, a common slope coefficients model
may seem reasonable. However, these variables could be unavailable or could
be difficult to observe with precision. Moreover, a model is not a mirror; it is a
simplification of the real world to capture the relationships among the essential
variables. As a matter of fact, any parsimonious regression will necessarily leave
out many factors that would, from the perspective of economic theory, be likely
to affect the parameters of the included variables (e.g., Canova 1999; Durlauf
and Johnson 1995). In these situations, varying parameter models appear to be
more capable of capturing the unobserved heterogeneity than a model with only
individual-specific and/or time-specific effects (variable-intercept models).

In Chapter 2 we reported a study (Kuh 1963) on investment expenditures
of 60 small and middle-sized firms in capital-goods-producing industries
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from 1935 to 1955, excluding the war years (1942–45). In a majority of the
cases Kuh investigated, the common intercept and common slope coefficients
for all firms, as well as the variable-intercept common-slope hypotheses,
were rejected (Tables 2.3 and 2.4). Similar results were found by Swamy
(1970), who used the annual data of 11 U.S. corporations from 1935 to
1954 to fit the Grunfeld (1958) investment functions. His preliminary test of
variable-intercept–common slope coefficients against the variable-intercept
and variable slope coefficients for the value of a firm’s outstanding shares at
the beginning of the year and its beginning-of-year capital stock yielded an F
value of 14.4521. That is well above the 5 percent value of an F distribution
with 27 and 187 degrees of freedom.1

When an investigator is interested mainly in the fundamental relationship
between the outcome variable and a set of primary conditional variables, either
for ease of analysis or because of the unavailability of the secondary condi-
tional variables, it would seem reasonable to allow variations in parameters
across cross-sectional units and/or over time as a means to take account of the
interindividual and/or interperiod heterogeneity. A single-equation model in its
most general form can be written as

yit =
K∑
k=1

βkitxkit + uit , i = 1, . . . , N,

t = 1. . . . , T ,

(6.1.1)

where, in contrast to previous chapters, we no longer treat the intercept dif-
ferently than other explanatory variables and let x1it = 1. However, if all the
coefficients are treated as fixed and different for different cross-sectional units
in different time periods, there are NKT parameters with only NT observa-
tions. Obviously, there is no way we can obtain any meaningful estimates of
βkit . We are thus led to search for an approach that allows the coefficients of
interest to differ, but provides some method of modeling the cross-sectional
units as a group rather than individually.

One possibility would be to introduce dummy variables into the model that
would indicate differences in the coefficients across individual units and/or
over time, that is, to develop an approach similar to the least-squares dummy
variable approach. In the case in which only cross-sectional differences are
present, this approach is equivalent to postulating a separate regression for
each cross-sectional unit2

yit = x′
it�i + uit , i = 1, . . . , N,

t = 1, . . . , T ,
(6.1.2)

where �i and xit are K × 1 vectors of parameters and explanatory variables.

1 See Mehta, Narasimham, and Swamy (1978) for another example that using error-components
formulation to account for heterogeneity does not always yield economically meaningful results.

2 Alternatively, we can postulate a separate regression for each time period; so yit = x′
it�t + uit .
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Alternatively, each regression coefficient can be viewed as a random variable
with a probability distribution (e.g., Hurwicz 1950; Klein 1953; Theil and
Mennes 1959; Zellner 1966). The random-coefficients specification reduces
the number of parameters to be estimated substantially, while still allowing the
coefficients to differ from unit to unit and/or from time to time. Depending on
the type of assumption about the parameter variation, it can be further classified
into one of two categories: stationary and nonstationary random-coefficient
models.

Stationary random-coefficient models regard the coefficients as having con-
stant means and variance–covariances. Namely, theK × 1 vector of parameters
�it is specified as

�it = �̄ + �it , i = 1. . . . , N,

t = 1. . . . , T ,
(6.1.3)

where �̄ is a K × 1 vector of constants, and �it is a K × 1 vector of stationary
random variables with 0 means and constant variance–covariances. For this
type of model we are interested in (1) estimating the mean coefficient vector �̄,
(2) predicting each individual component �it , (3) estimating the dispersion of
the individual-parameter vector, and (4) testing the hypothesis that the variances
of �it are 0.

The nonstationary random-coefficient models do not regard the coefficient
vector as having constant mean or variance. Changes in coefficients from one
observation to the next can be the result of the realization of a nonstationary
stochastic process or can be a function of exogenous variables. In this case we
are interested in (1) estimating the parameters characterizing the time-evolving
process, (2) estimating the initial value and the history of parameter realizations,
(3) predicting the future evolutions, and (4) testing the hypothesis of random
variation.

Because of the computational complexities, variable-coefficient models have
not gained as wide acceptance in empirical work as has the variable-intercept
model. However, that does not mean that there is less need for taking account
of parameter heterogeneity in pooling the data. In this chapter we survey some
of the popular single-equation varying coefficients models. We first discuss
models in which the variations of coefficients are independent of the variations
of exogenous explanatory variables. Single-equation models with coefficients
varying over individuals are discussed in Section 6.2. In Section 6.3 we discuss
models with coefficients varying over individuals and time. Section 6.4 con-
cerns models with time-evolving coefficients. Models with coefficients that are
functions of other exogenous variables are discussed in Section 6.5. Section 6.6
proposes a mixed fixed and random coefficient model as a unifying framework
to various approaches of controlling unobserved heterogeneity. Section 6.7 dis-
cusses issues of dynamic models. Section 6.8 provides two examples that use
random coefficients model to pool heterogeneous individuals. General mod-
els in which the variation of coefficients are correlated with the explanatory
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variables are discussed in Section 6.9. For random coefficients models with het-
eroscedasticity, see Bresson et al. (2011); with cross-correlated residuals (e.g.,
Bresson and Hsiao 2011); simultaneous-equations models with random coef-
ficients, see Chow (1983), Kelejian (1977), and Raj and Ullah (1981). Further
discussion of this subject can also be found in Amemiya (1983), Chow (1983),
Hsiao and Pesaran (2008), Judge et al. (1980), and Raj and Ullah (1981).

6.2 COEFFICIENTS THAT VARY OVER
CROSS-SECTIONAL UNITS

When regression coefficients are viewed as invariant over time, but varying
from one unit to another, we can write the model as

yit =
K∑
k=1

βkixkit + uit

=
K∑
k=1

(β̄k + αki)xkit + uit , i = 1, . . . , N,
t = 1, . . . , T ,

(6.2.1)

where �̄ = (β̄1, . . . , β̄K )′ can be viewed as the common-mean-coefficient vec-
tor and 	 i = (α1i , . . . , αKi)′ as the individual deviation from the common mean
�̄. If individual observations are heterogeneous or the performance of individ-
ual units from the data base is of interest, then 	 i are treated as fixed constants.
If conditional on xkit , individual units can be viewed as random draws from a
common population or the population characteristics are of interest, then αki are
generally treated as random variables having 0 means and constant variances
and covariances.

6.2.1 Fixed-Coefficient Model

6.2.1.1 Complete Heterogeneity

When �i are treated as fixed and different constants, we can stack the NT
observations in the form of the Zellner (1962) seemingly unrelated regression
model ⎡⎢⎢⎢⎣

y1
y2
...

yN

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
X1 0

X2

. . .
0 XN

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

�1
�2
...

�N

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
u1

u2
...

uN

⎤⎥⎥⎥⎦ ,
= X̃� + u

(6.2.2)

where yi and ui are T × 1 vectors of (yi1, . . . , yiT )′ and (ui1, . . . , uiT )′; Xi
is the T ×K matrix of the time-series observations of the ith individual’s
explanatory variables with the t th row equal to x′

it ; X̃ is NT ×NK block
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diagonal matrix with the ith block being Xi ; and � is an NK × 1 vector,
� = (�′

1, . . . ,�
′
N )′. If the covariances between different cross-sectional units

are not 0, Euiu′
j �= 0, the GLS estimator of (�′

1, . . . ,�
′
N ) is more efficient

than the single-equation estimator of �i for each cross-sectional unit. If Xi are
identical for all i or Euiu′

i = σ 2
i I and Euiu′

j = 0 for i �= j , the generalized
least-squares (GLS) estimator for (�′

1, . . . ,�
′
N ) is the same as applying the

least squares separately to the time-series observations of each cross-sectional
unit.

6.2.1.2 Group Heterogeneity

When N is large, it is neither feasible nor desirable to let �i be different
for different i. An alternative to individual heterogeneity is to assume group
heterogeneity in place of complete heterogeneity. In other words, the population
is assumed to be composed of G heterogeneous groups. Individuals belonging
to a particular group all have the same response function (e.g., Lin and Ng
2012; Su, Shi, and Phillips 2013),

yit,g = x′
it�g + uit,g, for i ε group g. (6.2.3)

If the grouping is known from some external consideration (e.g., Bester and
Hansen 2012), estimation of (6.2.3) can proceed following the Zellner (1962)
seemingly unrelated regression framework. However, if such external infor-
mation is not available, two issues arise: (1) how to determine the number of
groups, G; and (2) how to identify the group to which an individual belongs.
Following the idea of Lasso (Least Absolute Shrinkage and Selection Oper-
ator; Tibshirani (1996)) under the assumption that the number of groups, G,
is known, Su, Shi, and Phillips (SSP) (2013) suggest a modified penalized
least-squares approach,

MinQG = Q+ a

N

N∑
i=1

G∏
g=1

‖ �i − �g ‖, (6.2.4)

to simultaneously classify individuals into groups and estimate �g , where ‖ · ‖
denotes the Frobenius norm, ‖ A ‖= [tr AA′]1/2,

Q = 1

NT

N∑
i=1

T∑
t=1

(yit − x′
it�i)

2.

and a is a tuning constant. SSP show that minimizing (6.2.4) achieves classi-
fication of individuals into groups and consistent estimation of �g in a single
step when N and T are large. SSP also propose to select the number of groups,
G, by minimizing

log σ̂ 2
G + cGK, (6.2.5)
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where

σ̂ 2
G = 1

NT

G∑
g=1

∑
iεg

T∑
t=1

(yit − x′
it �̂g,G)2

is the estimated average residual sum of squares based on G-group estimates
of (6.2.3), �̂g,G, and c is a turning constant.

6.2.2 Random-Coefficient Model

6.2.2.1 The Model

When �i = β̄ + 	 i are treated as random, with common mean �̄, Swamy
(1970) assumed that3

E	 i = 0,

E	 i	
′
j

K×K
=
{

 if i = j,
0 if i �= j,

Exit	 ′
j = 0, E	 iu′

j = 0,

Euiu′
j =

{
σ 2
i IT if i = j,
0 if i �= j.

(6.2.6)

Stacking all NT observations, we have

y = X�̄ + X̃	 + u, (6.2.7)

where

y
NT×1

= (y′
1, . . . , y′

N )′,

X
NT×K

=

⎡⎢⎢⎢⎣
X1

X2
...
XN

⎤⎥⎥⎥⎦ , X̃
NT×NK

=

⎡⎢⎢⎢⎣
X1 0

X2

. . .
0 XN

⎤⎥⎥⎥⎦ = diag (X1, . . . , XN ),

u = (u′
1, . . . ,u

′
N )′, and 	 = (	 ′

1, . . . ,	
′
N )′. The covariance matrix for the com-

posite disturbance term X̃	 + u is block-diagonal, with the ith diagonal block
given by

�i = Xi
X′
i + σ 2

i IT . (6.2.8)

3 See Chamberlain (1992) for an extension of the Mundlak–Chamberlain approach of conditioning
the individual effects on the conditioning variables to models with individual-specific slopes that
may be correlated with conditioning variables. An instrumental variable estimator is proposed
within a finite dimensional, method of moments framework. Also, see section 6.9.
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6.2.2.2 Estimation

Under Swamy’s (1970) assumption, the simple regression of y on X will
yield an unbiased and consistent estimator of �̄ if (1/NT ) X′X converges to a
nonsingular constant matrix. But the estimator is inefficient, and the usual least-
squares formula for computing the variance–covariance matrix of the estimator
is incorrect, often leading to misleading statistical inferences. Moreover, when
the pattern of parameter variation is of interest in its own right, an estimator
ignoring parameter variation is incapable of shedding light on this aspect of the
economic process.

The best linear unbiased estimator of �̄ for (6.2.7) is the GLS estimator4

ˆ̄�GLS =
(
N∑
i=1

X′
i�

−1
i Xi

)−1 ( N∑
i=1

X′
i�

−1
i yi

)

=
N∑
i=1

Wi�̂i ,

(6.2.9)

where

Wi =
{
N∑
i=1

[
+ σ 2
i (X′

iXi)
−1]−1

}−1

[
+ σ 2
i (X′

iXi)
−1]−1,

and

�̂i = (X′
iXi)

−1X′
i yi .

The last expression of (6.2.9) shows that the GLS estimator is a matrix-
weighted average of the least-squares estimator for each cross-sectional unit,
with the weights inversely proportional to their covariance matrices. It also
shows that the GLS estimator requires only a matrix inversion of order K , and
so it is not much more complicated to compute than the simple least-squares
estimator.

4 Repeatedly using the formula that (A+ BDB ′)−1 = A−1 − A−1B(B ′A−1B +D−1)−1B ′A−1

(Rao 1973, their Chapter 1), we have

X′
i�

−1
i Xi = X′

i [σ
2
i I +Xi
X′

i ]
−1Xi

= X′
i

{
1

σ 2
i

IT − 1

σ 2
i

Xi [X
′
iXi + σ 2

i 

−1]−1X′

i

}
Xi

= 1

σ 2
i

⎡⎣X′
iXi −X′

iXi

⎧⎨⎩(X′
iXi )

−1

− (X′
iXi )

−1

[
(X′
iXi )

−1 + 1

σ 2
i




]−1

(X′
iXi )

−1

⎫⎬⎭X′
iXi

⎤⎦
= [
+ σ 2

i (X′
iXi )

−1]−1.
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The covariance matrix for the GLS estimator is

Var ( ˆ̄�GLS) =
(
N∑
i=1

X′
i�

−1
i Xi

)−1

=
{
N∑
i=1

[
+ σ 2
i (X′

iXi)
−1]−1

}−1

.

(6.2.10)

Swamy (1970) proposed using the least-squares estimators �̂i = (X′
iXi)

−1X′
i yi

and their residuals ûi = yi −Xi�̂i to obtain unbiased estimators of σ 2
i and
,5

σ̂ 2
i = û′

i ûi
T −K

= 1

T −K y′
i[I −Xi(X′

iXi)
−1X′

i]yi , (6.2.11)


̂ = 1

N − 1

N∑
i=1

(
�̂i −N−1

N∑
i=1

�̂i

)

·
(

�̂i −N−1
N∑
i=1

β̂i

)′

− 1

N

N∑
i=1

σ̂ 2
i (X′

iXi)
−1. (6.2.12)

Again, just as in the error-component model, the estimator (6.2.12) is not
necessarily nonnegative definite. In this situation, Swamy (see also Judge et al.
1980) has suggested replacing (6.2.12) by


̂ = 1

N − 1

N∑
i=1

(
�̂i −N−1

N∑
i=1

�̂i

)(
�̂i −N−1

N∑
i=1

�̂i

)′

. (6.2.13)

This estimator, although not unbiased, is non-negative definite and is consistent
when both N and T tend to infinity. Alternatively, we can use the Bayes mode
estimator suggested by Lindley and Smith (1972) and Smith (1973),


∗ = {R + (N − 1)
̂}/(N + ρ −K − 2), (6.2.14)

where R and ρ are prior parameters, assuming that
−1 has a Wishart distribu-
tion with ρ degrees of freedom and matrix R. For instance, we may let R = 
̂
and ρ = 2 as in Hsiao, Pesaran, and Tahmiscioglu (1999).

Swamy (1970) proved that substituting σ̂ 2
i and 
̂ for σ 2

i and 
 in (6.2.9)
yields an asymptotically normal and efficient estimator of �̄. The speed of
convergence of the GLS estimator is N1/2. This can be seen by noting that the

5 Equation (6.2.9) follows from the relation that �̂i = �i + (X′
iXi )

−1X′ui and E(�̂i − �)(�̂i −
�)′ = 
+ σ 2

i (X′
iXi )

−1.
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inverse of the covariance matrix for the GLS estimator [equation (6.2.10)] is6

Var ( ˆ̄�GLS)−1 = N
−1 −
−1

[
N∑
i=1

(

−1 + 1

σ 2
i

X′
iXi

)−1
]

−1

(6.2.15)
= O(N ) −O(N/T ).

Swamy (1970) used the model (6.2.6) and (6.2.7) to reestimate the Grunfeld
investment function with the annual data of 11 U.S. corporations. His GLS esti-
mates of the common-mean coefficients of the firms’ beginning-of-year value
of outstanding shares and capital stock are 0.0843 and 0.1961, with asymp-
totic standard errors 0.014 and 0.0412, respectively. The estimated dispersion
measure of these coefficients is


̂ =
[

0.0011 −0.0002

0.0187

]
. (6.2.16)

Zellner (1966) has shown that when each �i can be viewed as a random
variable with a constant mean, and �i and xi are uncorrelated, thereby satisfying
Swamy’s (1970) assumption, the model will not possess an aggregation bias. In
this sense, Swamy’s estimate can also be interpreted as an average relationship
indicating that in general the value of a firm’s outstanding shares is an important
variable explaining the investment.

6.2.2.3 Predicting Individual Coefficients

Sometimes one may wish to predict the individual component �i , because it
provides information on the behavior of each individual and also because it
provides a basis for predicting future values of the dependent variable for a
given individual. Swamy (1970, 1971) has shown that the best linear unbiased
predictor, conditional on given �i , is the least-squares estimator �̂i . However,
if the sampling properties of the class of predictors are considered in terms of
repeated sampling over both time and individuals, Lee and Griffiths (1979) (see
also Lindley and Smith 1972 and Section 6.6) have suggested predicting �i by

�̂
∗
i = ˆ̄�GLS +
X′

i(Xi
X
′
i + σ 2

i IT )−1(yi −Xi ˆ̄�GLS). (6.2.17)

This predictor is the best linear unbiased estimator in the sense that E(�̂
∗
i −

�i) = 0, where the expectation is an unconditional one.

6.2.2.4 Testing for Coefficient Variation

An important question in empirical investigation is whether or not the regres-
sion coefficients are indeed varying across cross-sectional units. Because the

6 We use the notation O(N ) to denote that the sequence N−1aN is bounded (Theil 1971, p. 358).
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effect of introducing random-coefficient variation is to give the dependent vari-
able a different variance at each observation, models with this feature can be
transformed into a particular heteroscedastic formulation, and likelihood-ratio
tests can be used to detect departure from the constant-parameter assumption.
However, computation of the likelihood-ratio test statistic can be complicated.
To avoid the iterative calculations necessary to obtain maximum-likelihood
estimates of the parameters in the full model, Breusch and Pagan (1979) have
proposed a Lagrangian multiplier test for heteroscedasticity. Their test has the
same asymptotic properties as the likelihood-ratio test in standard situations,
but it is computationally much simpler. It can be computed simply by repeatedly
applying least-square regressions.

Dividing the individual-mean-over-time equation by σ−1
i , we have

1

σi
ȳi = 1

σi
x̄′
i�̄ + ωi, i = 1., . . . , N, (6.2.18)

where ȳi = 1
T

∑T
t=1 yit , x̄i = 1

T

∑T
t=1 xit , ūi = 1

T

∑T
t=1 uit ,

ωi = 1

σi
x̄′
i	 i +

1

σi
ūi .

When the assumption (6.2.6) holds, model (6.2.18) is a model with
heteroscedastic variances, Var(ωi) = (1/T ) + (1/σ 2

i )x̄′
i
x̄i , i = 1, . . . , N .

Under the null hypothesis that 
 = 0, (6.2.18) has homoscedastic variances,
Var(ωi) = 1/T , i = 1, . . . , N . Thus, we can generalize the Breusch and Pagan
(1979) test of heteroscedasticity to test for random-coefficient variation here.

Following the procedures of Rao (1973, pp. 418–19) it can be shown that
the transformed Lagrangian-multiplier statistic7 for testing the null hypothesis
leads to computing one-half the predicted sum of squares in a regression of

(T ω2
i − 1) = 1

σ 2
i

[
K∑
k=1

K∑
k′=1

x̄ki x̄k′iσ
2
αkk′

]
+ εi, i = 1, . . . , N, (6.2.19)

where σ 2
αkk′ = E(αkiαk′i).8 Because ωi and σ 2

i usually are unknown, we can
substitute them by their estimated values ω̂i and σ̂ 2

i , where ω̂i is the least-
squares residual of (6.2.18) and σ̂ 2

i is given by (6.2.11). When both N and T
tend to infinity, the transformed Lagrangian-multiplier statistic has the same

7 We call this a transformed Lagrangian multiplier test because it is derived by maximizing the
log-likelihood function of yi/σi rather than maximizing the log-likelihood function of yit /σit .

8 Let

(T ω̂2
i − 1) = 1

σ 2
i

[
K∑
i=1

K∑
i′=1

x̄ki x̄k′i σ̂αkk′

]

be the least-squares predicted value of (T ω̂2
i − 1); then the predicted sum of squares is

N∑
i=1

(T ω̂2
i − 1)2.
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limiting distribution as χ2 with [K(K + 1)]/2 degrees of freedom under the
null hypothesis of 
 = 0.

The Breusch and Pagan (1979) lagrangian multiplier test can be put into the
White (1980) information matrix test framework. Chesher (1984) has shown
that the many variants of varying parameters of the same general type of model
under consideration can be tested using the statistic

DN (�̂N ) = 1

N

N∑
i=1

T∑
t=1

∂2 log f (yit | xit , �̂N )

∂�∂�′

+ 1

N

N∑
i=1

[
T∑
t=1

∂ log f (yit | xit , �̂N )

∂�

][
T∑
t=1

∂ log f (yit | xit ; �̂N )

∂�′

]
,

(6.2.20)

where f (yit | xit ,�) denotes the conditional density of yit given xit
and � under the null of no parameter variation, and �̂N denotes the

maximum-likelihood estimator of �. Under the null, E
( ∂2logf (y|x,�)

∂�∂�′
) =

−E( ∂logf (y|x,�)

∂�
· ∂logf (y|x,�)

∂�′
)
. Therefore, elements of

√
NDN (�̂N ) are

asymptotically jointly normal with mean 0 and covariance matrix given by
White (1980) and simplified by Chesher (1983) and Lancaster (1984).

Alternatively, because for given i, 	 i is fixed, we can test for random
variation indirectly by testing whether or not the fixed-coefficient vectors �i
are all equal. That is, we form the null hypothesis:

H0 : �1 = �2 = . . . = �N = �̄.

If different cross-sectional units have the same variance, σ 2
i = σ 2, i =

1, . . . , N , the conventional analysis-of-covariance (ANCOVA) test for homo-
geneity discussed in Chapter 2 (F3) can be applied. If σ 2

i are assumed different,
as postulated by Swamy (1970, 1971), we can apply the modified test statistic

F ∗
3 =

N∑
i=1

(�̂i − ˆ̄�∗)′X′
iXi(�̂i − ˆ̄�∗)

σ̂ 2
i

, (6.2.21)

where

ˆ̄�∗ =
[
N∑
i=1

1

σ̂ 2
i

X′
iXi

]−1 [ N∑
i=1

1

σ̂ 2
i

X′
i yi

]
.

UnderH0, (6.2.21) is asymptotically χ2 distributed, withK(N − 1) degrees of
freedom, as T tends to infinity and N is fixed.

Similarly, one can test for slope homogeneity conditional on individual-
specific effects. Let Xi = (eT , X̃i) and �′

i = (β1i ,�
′
2i), where X̃i denotes

the T × (K − 1) time-varying exogenous variables, x̃2,it and �2i denotes the
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(K − 1) × 1 coefficients of x2,it . Then

F̃ ∗
3 =

N∑
i=1

(
�̂2i − ˆ̄�∗

2

)′ [ 1

σ̂ 2
i

X̃′
iQX̃i

] (
�̂2i − ˆ̄�∗

2

)
, (6.2.22)

whereQ = IT − 1
T

ee′,

�̂2i = (X̃′
iQX̃i)

−1(X̃′
iQyi), (6.2.23)

ˆ̄�∗
2 =

(
N∑
i=1

1

σ̂ 2
i

X̃′
iQX̃i

)−1 ( N∑
i=1

1

σ̂ 2
i

X̃′
iQyi

)
(6.2.24)

and

σ̂ 2
i = 1

T −K (yi − X̃
′
i�̂2i)

′Q(yi − X̃′
i�̂2i). (6.2.25)

The statistic F̃ ∗
3 is asymptotically χ2 distributed with (K − 1)(N − 1) degrees

of freedom when N is fixed and T → ∞. Pesaran and Yamagata (2008) show
that when both N and T go to infinity 1√

N
F ∗

3 or 1√
N
F̃ ∗

3 is asymptotically
normally distributed with mean 0 and variance 1 provided

√
N
T

→ 0 asN → ∞.
Furthermore, they show that if σ̂ 2

i ((6.2.25)) is replaced by the estimator

σ̃ 2
i = 1

T − 1
(yi − X̃i�̂2i)

′Q(yi − X̃i�̃2i), (6.2.26)

1√
N
F ∗

3 or 1√
N
F̃ ∗

3 possesses better finite sample properties than using σ̂ 2
i in

(6.2.21) or (6.2.22).

6.2.2.5 Fixed or Random Coefficients

The question whether �i should be assumed fixed and different or random and
different depends on whether �i can be viewed as from a heterogeneous popu-
lation or random draws from a common population or whether we are making
inferences conditional on the individual characteristics or making uncondi-
tional inferences on the population characteristics. If �i are heterogeneous
or we are making inferences conditional on the individual characteristics, the
fixed-coefficient model should be used. If �i can be viewed as random draws
from a common population and inference is on the population characteris-
tics, the random-coefficient model should be used. However, extending his
work on the variable-intercept model, Mundlak (1978b) has raised the issue
of whether or not the variable coefficients are correlated with the explana-
tory variables. If they are, the assumptions of the Swamy random-coefficient
model are unreasonable, and the GLS estimator of the mean coefficient vector
will be biased. To correct this bias, Mundlak (1978b) suggested that the infer-
ences of f (yi | Xi,�) be viewed as

∫
f (yi | Xi, �̄,	 i)f (	 i | Xi) d	 i , where

f (yi | Xi, �̄,	 i) denotes the conditional density of yi given Xi, �̄ and 	 i and
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f (	 i | Xi) denotes the conditional density of 	 i givenXi which provides aux-
iliary equations for the coefficient vector 	 i as a function of the ith individual’s
observed explanatory variables. Because this framework can be viewed as a
special case of a random-coefficients model with the coefficients being func-
tions of other explanatory variables, we shall maintain the assumption that the
random coefficients are not correlated with the explanatory variables, and we
shall discuss estimation of the random coefficients that are functions of other
explanatory variables in Section 6.5.

6.2.2.6 An Example

To illustrate the specific issues involved in estimating a behavioral equation
using temporal cross-sectional observations when the data do not support the
hypothesis that the coefficients are the same for all cross-sectional units, we
report a study conducted by Barth, Kraft, and Kraft (1979). They used quarterly
observations on output prices, wages, materials prices, inventories, and sales
for 17 manufacturing industries for the period 1959 (I) to 1971 (II) to estimate
a price equation for the U.S. manufacturing sector. Assuming heteroscedastic
disturbance, but common intercept and slope coefficients across industries, and
using the two-step Aitken estimator, Barth et al. (1979) obtained

ŷ = 0.0005 + 0.2853x2 + 0.0068x3 + 0.0024x4,

(0.0003) (0.0304) (0.005) (0.0017)
(6.2.27)

where yt is the quarterly change in output price, x2 is labor costs, x3 is materials
input prices, and x4 is a proxy variable for demand, constructed from the ratio
of finished inventory to sales. The standard errors of the estimates are in
parentheses.

The findings of (6.2.27) are somewhat unsettling. The contribution of mate-
rials input costs is extremely small, less than 1 percent. Furthermore, the proxy
variable has the wrong sign. As the inventory-to-sales ratio increases, one would
expect the resulting inventory buildup to exert a downward pressure on prices.

There are many reasons that (6.2.27) can go wrong. For instance, pricing
behavior across industries is likely to vary, because input combinations are
different, labor markets are not homogeneous, and demand may be more elastic
or inelastic in one industry than another. In fact, a modified one-way ANCOVA
test for the common intercept and slope coefficients,

H0 : �1 = �2 = · · · = �N, N = 17,

using the statistic (6.2.21), has a value of 449.28. That is well above the χ2

critical value of 92.841 for the 1 percent significance level with 64 ((N − 1)K)
degrees of freedom.

The rejection of the hypothesis of homogeneous price behavior across indus-
tries suggests a need to modify the model to allow for heterogeneous behavior
across industries. However, previous studies have found that output prices are
affected mainly by unit labor and materials input costs, and secondly, if at all,
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by demand factors. Thus, to account for heterogeneous behavior, one can
assume that the relationships among variables are proper, but the coefficients
are different across industries. But if these coefficients are treated as fixed
and different, this will imply a complicated aggregation problem for the price
behavior of the U.S. manufacturing sector (e.g., Theil 1954). On the other hand,
if the coefficients are treated as random, with common means, there is no aggre-
gation bias (Zellner 1966). The random-coefficient formulation will provide a
microeconomic foundation to aggregation, as well as permit the aggregate-price
equation to capture more fully the disaggregated industry behavior. Therefore,
Barth et al. (1979) used the Swamy random-coefficient formulation, (6.2.6)
and (6.2.7), to reestimate the price equation. Their new estimates, with stan-
dard errors in parentheses, are

ŷ = −0.0006 + 0.3093x2 + 0.2687x3 − 0.0082x4.

(0.0005) (0.0432) (0.0577) (0.0101)
(6.2.28)

The estimated dispersion of these coefficients is


̂ =

⎡⎢⎢⎢⎢⎣
β1 β2 β3 β4

0.0000 −0.0002 0.0000 −0.0001
0.0020 0.0003 0.0081

0.0320 0.0030
0.0014

⎤⎥⎥⎥⎥⎦ . (6.2.29)

The results of the Swamy random-coefficient formulation appear more plau-
sible than the previous aggregate price specification [equation (6.2.27), which
ignores variation across industries] from several points of view: (1) both labor
costs and materials costs are now dominant in determining output prices; (2)
the proxy variable for demand has the correct sign, although it plays only a
small and insignificant role in the determination of manufacturing prices; and
(3) productivity, as captured in the intercept term, appears to be increasing.

This example suggests that one must be careful about drawing conclusions
on the basis of aggregate data or pooled estimates that do not allow for individual
heterogeneity. Such estimates can be misleading in terms of both the size of
coefficients and the significance of variables.

6.3 COEFFICIENTS THAT VARY OVER TIME AND
CROSS-SECTIONAL UNITS

6.3.1 The Model

Just as in the variable-intercept models, it is possible to assume that the coeffi-
cient of the explanatory variable has a component specific to an individual unit
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and a component specific to a given time period such that

yit =
K∑
k=1

(β̄k + αki + λkt )xkit + uit , i = 1, . . . , N,

t = 1, . . . , T .

(6.3.1)

Stacking all NT observations, we can rewrite (6.3.1) as

y = X�̄ + X̃	 + X� + u, (6.3.2)

where y, X, X̃,u, and 	 are defined in Section 6.2,

X
NT×TK

=

⎡⎢⎢⎢⎣
X1
X2
...

XN

⎤⎥⎥⎥⎦ , Xi
T×TK

=

⎡⎢⎢⎢⎣
x′
i1 0′

x′
i2

. . .
0 x′

iT

⎤⎥⎥⎥⎦ ,
and

�
KT×1

= (� ′
1, . . . ,�

′
T )′, � t

K×1
= (λ1t , . . . , λKt )′,

We can also rewrite (6.3.2) as

y = X�̄ + U1	1 + U2	2 + · · · + UK	K

+ UK+1�1 + · · · + U2K�K + U2K+1u,
(6.3.3)

where

Uk
NT×N

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xk11

... 0
xk1T

xk21

...

xk2T

. . .

xkN1

0
...

xkNT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, k = 1. . . . , K,
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UK+k
NT×T

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xk11 0
xk12

...

0 xk1T

xk21 0
xk22

. . .

0 xk2T

xkN1 0
. . .

0 xkNT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, k = 1. . . . , K,

U2K+1 = INT ,

(6.3.4)

	k
N×1

= (αk1, . . . , αkN )′, �k
T×1

= (λk1, . . . , λkT )′.

When 	k and �k as well as �̄ are considered fixed, it is a fixed-effects model;
when 	k and �k are considered random, with �̄ fixed, equation (6.3.3) corre-
sponds to the mixed analysis-of-variance (ANOVA) model (Hartley and Rao
1967). Thus, model (6.3.1) and its special case, model (6.2.1), fall within the
general ANOVA framework.

6.3.2 Fixed-Coefficient Model

When 	k and �k are treated as fixed, as mentioned earlier, (6.3.1) can be
viewed as a fixed-effects ANOVA model. However, the matrix of explanatory
variables is NT × (T +N + 1)K , but its rank is only (T +N − 1)K; so we
must impose 2K independent linear restrictions on the coefficients 	k and �k
for estimation of �̄, 	 , and �. A natural way of imposing the constraints in this
case is to let9

N∑
i=1

αik = 0, (6.3.5)

and

T∑
t=1

λkt = 0, k = 1. . . . , K. (6.3.6)

9 We did not impose similar restrictions in Chapter 6, Section 6.2.1 because we did not separate �
from 	 i .
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Then the best linear unbiased estimators (BLUEs) of �,	 , and � are the
solutions of

min (y −X�̄ − X̃	 − X�)′(y −X�̄ − X̃	 − X�) (6.3.7)

subject to (6.3.5) and (6.3.6).

6.3.3 Random-Coefficient Model

When 	 i and � t are treated as random, Hsiao (1974a, 1975) assumes that

E	 i	
′
j

K×K
=
{

 if i = j,
0 if i �= j,

E� t�
′
s

K×K
=
{
� if t = s,
0 if t �= s,

(6.3.8)

E	 i�
′
t = 0, E	 ix′

it = 0, E� tx′
it = 0,

and

Euiu′
j =

{
σ 2
u IT if i = j, .
0 if i �= j.

Then the composite error term,

v = X̃	 + X� + u, (6.3.9)

has a variance–covariance matrix

� = Evv′ =

⎡⎢⎢⎢⎢⎣
X1
X

′
1 0

X2
X
′
2

. . .

0 XN
X
′
N

⎤⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎣
D(X1�X

′
1) D(X1�X

′
2) . . . D(X1�X

′
N )

D(X2�X
′
1) D(X2�X

′
2)

. . .

D(XN�X′
1) D(XN�X′

N )

⎤⎥⎥⎥⎥⎦+ σ 2
u INT ,

(6.3.10)

where

D(Xi�X′
j ) =

T×T

⎡⎢⎢⎢⎢⎣
x′
i1�xj1 0

x′
i2�xj2

. . .

0 x′
iT �xjT

⎤⎥⎥⎥⎥⎦ .
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We can estimate �̄ by the least-squares method, but as discussed in Sec-
tion 6.2.2.2, it is not efficient. Moreover, the conventional formula for the
covariance matrix of the least-squares estimator is misleading. If � is known,
the BLUE of �̄ is the GLS estimator,

ˆ̄�GLS = (X′�−1X)−1(X′�−1 y). (6.3.11)

The variance–covariance matrix of the GLS estimator is

Var ( ˆ̄�GLS) = (X′�−1X)−1. (6.3.12)

Without knowledge of �, we can estimate �̄ and � simultaneously by the
maximum-likelihood method. However, because of the computational diffi-
culty, a natural alternative is to first estimate�, and then substitute the estimated
� in (6.3.11).

When 
 and � are diagonal, it is easy to see from (6.3.3) that � is a linear
combination of known matrices with unknown weights. So the problem of
estimating the unknown covariance matrix is actually the problem of estimating
the variance components. Statistical methods developed for estimating the
variance (and covariance) components can be applied here (e.g., Anderson
1969, 1970; Rao 1970, 1972). In this section we shall describe only a method
due to Hildreth and Houck (1968).10

Consider the time-series equation for the ith individual,

yi = Xi(�̄ + 	 i) + Xi� + ui . (6.3.13)

We can treat 	 i as if it is a vector of constants. Then (6.3.13) is a linear
model with heteroscedastic variance. The variance of the error term rit =∑K
k=1 λktxkit + uit is

θit = E[r2
it ] =

K∑
k=1

σ 2
λkx

2
kit + σ 2

u . (6.3.14)

Let �i = (θi1, . . . , θiT )′; then

�i = Ẋi
2
λ, (6.3.15)

where the first element of xit = 1, Ẋi is Xi with each of its elements squared,
and 
2

λ = (σ 2
λ1 + σ 2

u , σ
2
λ2, . . . , σ

2
λK )′.

An estimate of ri can be obtained as the least-squares residual, r̂i = yi −
Xi�̂i = Mi yi , where �̂i = (X′

iXi)
−1X′

i yi and Mi = IT −Xi(X′
iXi)

−1X′
i .

Squaring each element of r̂i and denoting it by ˙̂ri , we have

E(˙̂ri) = Ṁiθi = Fiσ 2
λ , (6.3.16)

where Ṁi isMi with each of its elements squared, and Fi = ṀiẊi .

10 It has been shown (Hsiao 1975) that the Hildreth–Houck estimator is the minimum-norm
quadratic unbiased estimator of Rao (1970).
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Repeating the foregoing process for all i gives

E(˙̂r) = F
2
λ, (6.3.17)

where ˙̂r = (˙̂r1, . . . , ˙̂rN )′, and F = (F ′
1, . . . , F

′
N )′. Application of least-squares

to (6.3.17) yields a consistent estimator of σ 2
λ ,


̂2
λ = (F ′F )−1F ′ ˙̂r. (6.3.18)

Similarly, we can apply the same procedure with respect to each time period
to yield a consistent estimator of 
2

α = (σ 2
α1

+ σ 2
u , σ

2
α2
, . . . , σ 2

αK
)′. To obtain

separate estimates of σ 2
u , σ 2

α1
, and σ 2

λ1, we note that E(x′
it	 i + uit )(x′

it� t +
uit ) = σ 2

u . So, letting ŝit denote the residual obtained by applying least-squares
separately to each time period, we can consistently estimate σ 2

u by

σ̂ 2
u = 1

NT

N∑
i=1

T∑
t=1

r̂it ŝit . (6.3.19)

Subtracting (6.3.19) from an estimated σ 2
α1

+ σ 2
u and σ 2

λ1
+ σ 2

u , we obtain con-
sistent estimates of σ 2

α1
and σ 2

λ1
, respectively.

Substituting consistently estimated values of 
2
α , 
2

λ, and σ 2
u into (6.3.11),

one can show that when N and T both tend to infinity and N/T tends to a
nonzero constant, the two-stage Aitken estimator is asymptotically as efficient
as if one knew the true �. Also, Kelejian and Stephan (1983) have pointed out
that contrary to the conventional regression model, the speed of convergence
of �̂GLS here is not (NT )1/2, but max (N1/2, T 1/2).

If one is interested in predicting the random components associated with an
individual, Lee and Griffiths (1979) have shown that the predictor

	̂ = (IN ⊗
)X′�−1(y −X�̂GLS) (6.3.20)

is the BLUE.
To test for the random variation of the coefficients, we can again apply the

Breusch and Pagan (1979) Lagrangian-multiplier test for heteroscedasticity.
Because for given i, 	 i is fixed, the error term x′

it� t + uit will be homoscedastic
if the coefficients are not varying over time. Therefore, under the null, one-half
the explained sum of squares in a regression11

û2
it

σ̂ 2
u

= ẋ′
it


2
λ + εit , i = 1, . . . , N,

t = 1, . . . , T ,

(6.3.21)

11 Let (yit − y) be the deviation of the sample mean, and let (ŷit − y) be its least-squares prediction.
Then the explained sum of squares is 
(ŷit − y)2.
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is distributed asymptotically as χ2 with K − 1 degrees of freedom, where
ûit = yit − �̂′

ixit , σ̂
2
u =∑N

i=1

∑T
t=1(yit − �̂′

ixit )
2/NT , and ẋit is xit with each

element squared.12

Similarly, we can test for random variation across cross-sectional units by
regressing

û∗2
it

σ̂ ∗2
u

= ẋ′
it


2
α + ε∗

it , i = 1, . . . , N,

t = 1, . . . , T ,

(6.3.22)

where û∗
it = yit − �̂

′
txit , σ̂

∗2
u =∑N

i=1

∑T
t=1 û

∗2
it /NT , and �̂t is the least-

squares estimate of �t = � + � t across cross-sectional units for a given t .
Under the null hypothesis of no random variation across cross-sectional units,
one-half of the explained sum of squares of (6.3.22) is asymptotically χ2 dis-
tributed with K − 1 degrees of freedom.

We can also test the random variation indirectly by applying the classic
ANCOVA test. For details, see Hsiao (1974a).

Swamy and Mehta (1977) have proposed a more general type of time-
varying-component model by allowing E� t�

′
t = �t to vary over t . However,

models with the coefficients varying randomly across cross-sectional units
and over time have not gained much acceptance in empirical investigations.
Part of the reason is because the inversion of � is at least of order max
(NK, TK) (Hsiao 1974a). For any panel data of reasonable size, this would
be a computationally demanding problem.

6.4 COEFFICIENTS THAT EVOLVE OVER TIME

6.4.1 The Model

There is a large amount of empirical evidence that parameters of a model
change over time. For instance, financial liberalization or changes in monetary
policy can cause the relationships between economic variables to alter. If a
constant-parameter model is used, misspecification may occur. On the other
hand, if a model is too flexible in its treatment of parameter change, over-fitting
or imprecise inferences can occur. In this section, we discuss some commonly
used time-varying-parameter models that entail a smooth evolution.13

In most models with coefficients evolving over time it is assumed that there
is no individual heterogeneity (e.g., Zellner, Hong, and Min 1991). At a given
t , the coefficient vectors �t are identical for all cross-sectional units. For this
reason we shall discuss the main issues of time-varying-parameter models
assuming that N = 1, and then indicate how this analysis can be modified
when N > 1.

12 Note here that the first term ẋ1it = 1. So the null hypothesis is (σ 2
λ2, . . . , σ

2
λK ) = (0, . . . , 0).

13 This section is largely drawn from the work of Chow (1983, their Chapter 10).
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As shown by Chow (1983, Chapter 10), a wide variety of time-varying-
parameter models can be put in the general form

yt = �′
txt + ut , (6.4.1)

and

�t = H�t−1 + �t , t = 1. . . . , T , (6.4.2)

where xt is a K × 1 vector of exogenous variables; ut is independent normal,
with mean 0 and variance σ 2

u ; �t is a K-variant independent normal random
variable, with mean 0 and covariance matrix �; and � and u are independent.
For instance, whenH = IK , it is the random-walk model of Cooley and Prescott
(1976). When H = IK and � = 0, this model is reduced to the standard
regression model.

The Rosenberg (1972, 1973) return-to-normality model can also be put
into this form. The model corresponds to replacing �t and �t−1 in (6.4.2) by
(�t − �) and (�t−1 − �) and restricting the absolute value of the characteristic
roots ofH to<1. Although this somewhat changes the formulation, if we define
�∗
t = �t − � and �t = �, the return-to-normality model can be rewritten as

yt = (x′
t , x′

t )

[
�̄t

�∗
t

]
+ ut

[
�̄t

�∗
t

]
=
[
I 0

0 H

][
�̄t−1

�∗
t−1

]
+
[

0

�t

]
,

(6.4.3)

which is a special case of (6.4.1) and (6.4.2).
Similarly, we can allow �t to be stationary, with constant mean � (Pagan

1980). Suppose

yt = x′
t� + x′

t�
∗
t + ut ,

�∗
t = �t − � = A−1(L)�t ,

(6.4.4)

where A(L) is a ratio of polynomials of orders p and q in the lag operator
L(L�t = �t−1), and � is independent normal, so that �∗

t follows an autoregres-
sive moving-average (ARMA) (p, q) process. Because an ARMA of order p
and q can be written as a first-order autoregressive process, this model can
again be put in the form of (6.4.1) and (6.4.2). For example,

�∗
t = B1�∗

t−1 + B2�∗
t−2 + �t + B3�t−1 (6.4.5)

can be written as

�̃
∗
t =

⎡⎣ �∗
t

�∗
t−1
�t

⎤⎦ =
⎡⎣B1 B2 B3

I 0 0
0 0 0

⎤⎦⎡⎣�∗
t−1

�∗
t−2

�t−1

⎤⎦+
⎡⎣�t

0
�t

⎤⎦ = H �̃
∗
t−1 + �t . (6.4.6)
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Thus, we can write Pagan’s model in the form

yt = (x′
t , x̃′

t )

[
�̄t

�̃
∗
t

]
+ ut , (6.4.4a)

where x̃′
t = (x′

t , 0
′, 0′). Equation (6.4.4a) is then formally equivalent to (6.4.3).

The Kalman filter (Kalman 1960) provides a basis for computing the
maximum-likelihood estimators and predicting the evolution of the time path
of �t for this type of the model. In this section we first consider the problem
of estimating �t using information Is , up to the time s, assuming that σ 2

u , �,
and H are known. We denote the conditional expectation of �t , given Is , as
E(�t | Is) = �t |s . The evaluation of �t |s is called filtering when t = s; it is
called smoothing when s > t ; it is called prediction when s < t . We then study
the problem of estimating σ 2

u ,�, andH by the method of maximum likelihood.
Finally, we consider the problem of testing for constancy of the parameters.

6.4.2 Predicting βt by the Kalman Filter

Denote (y1, . . . , yt ) by Yt . By definition, the conditional mean of �t , given Yt ,
is

�t |t = E(�t | yt , Yt−1)

= E(�t | Yt−1) + Lt [yt − E(yt | Yt−1)]

= �t |t−1 + Lt [yt − x′
t�t |t−1].

(6.4.7)

where yt − E(yt | Yt−1) denotes the additional information of yt not contained
in Yt−1 andLt denotes the adjustment factor of �t |t−1 because of this additional
information. If Lt is known, (6.4.7) can be used to update our estimate �t |t−1
to form �t |t .

To deriveLt , we know from our assumption on �t and ut that, conditional on
xt , yt and �t are jointly normally distributed. The normal-distribution theory
(Anderson 1985, Chapter 2) states that, conditional on Yt−1 (and Xt ), the
mean of �t , given yt isE(�t | Yt−1) + Cov(�t , yt | Yt−1)Var(yt | Yt−1)−1[yt −
E(yt | Yt−1)]. Therefore,

Lt = [E(�t − �t |t−1)(yt − yt |t−1)]Var(yt | Yt−1)−1, (6.4.8)

where yt |t−1 = E(yt | Yt−1) = x′
t�t |t−1. Denoting the covariance matrix

Cov(�t | Yt−1) = E(�t − �t |t−1)(�t − �t |t−1)′ by 
t |t−1, we have

E(�t − �t |t−1)(yt − yt |t−1)

= E{(�t − �t |t−1)[(�t − �t |t−1)′xt + ut ]} = 
t |t−1xt ,
(6.4.9)

and

Var(yt | Yt−1) = E[x′
t (�t − �t |t−1) + ut ][(�t − �t |t−1)′xt + ut ]

= x′
t
t |t−1xt + σ 2

u .

(6.4.10)
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Hence, (6.4.8) becomes

Lt = 
t |t−1xt (x′
t
t |t−1xt + σ 2

u )−1. (6.4.11)

From (6.4.2) we have

�t |t−1 = H�t−1|t−1. (6.4.12)

Thus, we can compute 
t |t−1 recursively by


t |t−1 = E(�t −H�t−1|t−1)(�t −H�t−1|t−1)′

= E[H (�t−1 − �t−1|t−1) + �t ]

· [H (�t−1 − �t−1|t−1) + �t ]
′

= H
t−1|t−1H
′ +�.

(6.4.13)

Next, from (6.4.1) and (6.4.7) we can write

�t − �t |t = �t − �t |t−1 − Lt [x′
t (�t − �t |t−1) + ut ]. (6.4.14)

Taking the expectation of the product of (6.4.14) and itstranspose, and using
(6.4.11), we obtain


t |t = 
t |t−1 − Lt (x′
t
t |t−1xt + σ 2

u )L′
t

= 
t |t−1 −
t |t−1xt (x′
t
t |t−1xt + σ 2

u )−1x′
t
t |t−1.

(6.4.15)

Equations (6.4.13) and (6.4.15) can be used to compute 
t |t (t = 1, 2, . . .) suc-
cessively, given
0|0. Having computed
t |t−1, we can use (6.4.11) to compute
Lt . Given Lt , (6.4.7) and (6.4.12) can be used to compute �t |t from �t−1|t−1 if
�0|0 is known.

Similarly, we can predict �t using future observations yt+1, yt+2, . . . , yt+n.
We first consider the regression of �t on yt+1, conditional on Yt . Analogous to
(6.4.7) and (6.4.11) are

�t |t+1 = �t |t + Ft |t+1(yt+1 − yt+1|t ) (6.4.16)

and

Ft |t+1 = [E(�t − �t |t )(yt+1 − yt+1|t )′][Cov(yt+1 | Yt )]−1. (6.4.17)

To derive the matrix Ft |t+1 of regression coefficients, we use (6.4.1) and (6.4.2)
to write

yt+1 − yt+1|t = x′
t+1(�t+1 − �t+1|t ) + ut+1

= x′
t+1H (�t − �t |t ) + x′

t+1�t+1 + ut+1.
(6.4.18)

Combining (6.4.17), (6.4.18), (6.4.10), and (6.4.11), we have

Ft |t+1 = 
t |tH ′xt+1(x′
t+1
t+1|txt+1 + σ 2

u )−1

= 
t |tH ′
−1
t+1|tLt+1.

(6.4.19)
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Therefore, from (6.4.19) and (6.4.14), we can rewrite (6.4.16) as

�t |t+1 = �t |t +
t |tH ′
−1
t+1|t (�t+1|t+1 − �t+1|t ). (6.4.20)

Equation (6.4.20) can be generalized to predict �t using future observations
yt+1, . . . , yt+n,

�t |t+n = �t |t+n−1 + F ∗
t (�t+1|t+n − �t+1|t+n−1), (6.4.21)

where F ∗
t = 
t |tH ′
−1

t+1|t . The proof of this is given by Chow (1983,
Chapter 10).

When H , �, and σ 2
u are known, (6.4.7) and (6.4.21) trace out the time path

of �t and provide the minimum-mean-square-error forecast of the future values
of the dependent variable, given the initial values �0|0 and 
0|0. To obtain the
initial values of �0|0 and 
0|0, Sant (1977) suggested using the GLS method
on the first K observations of yt and xt . Noting that

�t = H�t−1 + �t

= H 2�t−2 + �t +H�t−1

= Ht−j�j + �t +H�t−1 + · · · +Ht−j−1�j ,

(6.4.22)

and assuming that H−1 exists, we can also write yk in the form

yk = x′
k�k + uk

= x′
k[H

−K+k�K −H−K+k�K − · · · −H−1�k+1] + uk.
Thus, (y1, . . . , yK ) can be written as⎡⎢⎢⎢⎢⎣

y1

y2

...

yK

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
x′

1H
−K+1

x′
2H

−K+2

...

x′
K

⎤⎥⎥⎥⎥⎦�K +

⎡⎢⎢⎢⎢⎣
u1

u2

...

uK

⎤⎥⎥⎥⎥⎦

−

⎡⎢⎢⎢⎢⎢⎢⎣
x′

1H
−1 x′

1H
−2 . . . x′

1H
−K+1

0′ x′
2H

−1 . . . x′
2H

−K+2

. . . .

x′
K−1H

−1

0′

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
�2

�3

...

�K

⎤⎥⎥⎥⎥⎦ .
(6.4.23)

Applying GLS to (6.4.23) gives


K|K = σ 2
u {[H ′−K+1x1,H

′−K+2x2, . . . , xK ]

· [IK + AK (IK−1 ⊗ P )A′
K ]−1[H−K+1x1, . . . , xK ]′}−1

(6.4.24)
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and

�K|K = 1

σ 2
u


K|K [H ′−K+1x1,H
′−K+2x2, . . . , xK ]

[IK + AK (IK−1 ⊗ P )A′
K ]−1

⎡⎢⎣y1
...
yK

⎤⎥⎦ , (6.4.25)

whereP = σ−2
u �, andAK is the coefficient matrix of (�2, . . . ,�K )′ in (6.4.23).

The initial estimators, �K|K and 
K|K , are functions of σ 2
u , �, and H .

6.4.3 Maximum-Likelihood Estimation

When H , �, and σ 2
u are unknown, (6.4.7) opens the way for maximum-

likelihood estimation without the need for repeated inversions of covari-
ance matrices of large dimensions. To form the likelihood function, we note
that

yt − yt |t−1 = x′
t (�t − �t |t−1) + ut = yt − x ′

t�t |t−1 (6.4.26)

is normal and serially uncorrelated. Hence, the joint density of (y1, . . . , yT )
can be written as the product of the conditional density of (yK+1, . . . , yT |
y1, . . . , yK ) and the marginal density of (y1, . . . , yK ). The log-likelihood func-
tion of (yK+1, . . . , yT ), given (y1, . . . , yK ), is

log L = − T −K
2

log 2π − 1

2

T∑
t=K+1

log (x′
t
t |t−1xt + σ 2

u )

− 1

2

T∑
t=K+1

(yt − x′
t�t |t−1)2

x′
t
t |t−1xt + σ 2

u

.

(6.4.27)

The first K observations are used to compute 
K|K and �K|K [equations
(6.4.24) and (6.4.25)] as functions of σ 2

u , �, and H . Hence, the data �t |t−1
and 
t |t−1 (t = K + 1, . . . , T ) required to evaluate log L are functions of σ 2

u ,
�, and H , as given by (6.4.13), (6.4.15), (6.4.12), and (6.4.11). To find the
maximum of (6.4.27), numerical methods will have to be used.

When we estimate the model (6.4.1) and (6.4.2) using panel data, all the
derivations in Section 6.4.2 remain valid if we replace yt , xt , ut , and σ 2

u by the
N × 1 vector yt = (y1t , . . . , yNt )′, theN ×K matrixXt = (x1t , . . . , xNt )′, the
N × 1 vector ut = (u1t , . . . , uNt )′, and σ 2

u IN in appropriate places. The MLE
can be carried out in the same way as outlined in this section, except that
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the likelihood function (6.4.27) is replaced by

Log L = const − 1

2

∑
t

log | X′
t
t |t−1Xt + σ 2

u IN |

− 1

2

∑
t

(yt −Xt�t |t−1)′

· (Xt
t |t−1X
′
t + σ 2

u IN )−1(yt −Xt�t |t−1).

(6.4.27′)

However, we no longer need to use the first K period observations to start the
iteration. IfN > K , we need to use only the first-period cross-sectional data to
obtain �1|1 and 
1|1. Additional details with regard to the computation can be
found in Harvey (1978) and Harvey and Phillips (1982).

6.4.4 Tests for Parameter Constancy

A simple alternative to the null hypothesis of constancy of regression coeffi-
cients over time is

�t = �t−1 + �t , (6.4.28)

where �t is assumed independently normally distributed, with mean 0 and a
diagonal covariance matrix �. Regarding �0 as fixed, we have

�t = �0 +
t∑
s=1

�s . (6.4.29)

Thus, the regression model becomes

yt = x′
t�t + ut = x′

t�0 + ut + x′
t

(
t∑
s=1

�s

)
= x′

t�0 + u∗
t ,

(6.4.30)

where u∗
t = ut + x′

t (
∑t
s=1 �s) has variance

Eu∗2
t = σ 2

u + tx′
t�xt . (6.4.31)

For � = diag{ψkk}, (6.4.31) becomes

Eu∗2
t = σ 2

u + t
K∑
k=1

x2
ktψkk, t = 1. . . . , T . (6.4.32)

The null hypothesis states that � = 0. Hence, the Breusch and Pagan
(1979) Lagrangian-multiplier test applied here is to regress û2

t /σ̂
2
u on

t(1, x2
2t , . . . , x

2
Kt ), t = 1, . . . , T , where ût is the least-squares residual ût =

yt − �̂′xt , �̂ = (
∑T
t=1 xtx′

t )
−1(
∑T
t=1 xt yt ), and σ̂ 2

u =∑T
t=1 û

2
t /T . Under the
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null hypothesis, one-half the explained sum of squares of this regression is
asymptotically χ2 distributed, with K degrees of freedom.14

When panel data are available, it is possible to test for parameter constancy
indirectly using the classic ANCOVA test. By the assumption that the parameter
vector �t , is constant over cross-sectional units in the same period, an indirect
test is to postulate the null hypothesis,

H0 : �1 = �2 = · · · = �T = �.

If the disturbances of the regression model yit = �′
txit + uit are independently

normally distributed over i and t , then the test statistic F ′
3 from Chapter 2 has

an F distribution with (T − 1)K and N (T −K) degrees of freedom under the
null.

If the null hypothesis is rejected, we can use the information that under
mild regularity conditions plimN→∞�̂t = �t , t = 1, . . . , T , to investigate the
nature of variation in the parameters over time. We can apply the Box–Jenkins
(1970) method on �̂t to identify a suitable stochastic process with which to
model the parameter variation.

6.5 COEFFICIENTS THAT ARE FUNCTIONS OF
OTHER EXOGENOUS VARIABLES

Sometimes, instead of assuming that parameters are random draws from a com-
mon distribution, an investigation of possible dependence of �it on character-
istics of the “individuals” or “time” is of considerable interest (e.g., Amemiya
1978b; Hendricks, Koenker, and Poirier 1979; Singh et al. 1976; Swamy and
Tinsley 1977; Wachter 1970). A general formulation of stochastic-parameter
models with systematic components can be expressed within the context of the
linear model. Suppose that

yi = Xi1�1 +Xi2�2i + ui , i = 1. . . . , N, (6.5.1)

and

�2i = Zi� + �2i (6.5.2)

where Xi1 and Xi2 denote the T ×K1 and T ×K2 matrices of the time-series
observations of the first K1 and last K2(= K −K1) exogenous variables for
the ith individual, �1 is a K1 × 1 vector of fixed constants, �2i is a K2 × 1
vector that varies according to (6.5.2); Zi and � are a K2 ×M matrix of
known constants and a M × 1 vector of unknown constants, respectively; and
ui and �2i are T × 1 and K2 × 1 vectors of unobservable random variables
that are assumed independent of Xi and Zi . For example, in Wachter (1970),
yi is a vector of time-series observations on the logarithm of the relative wage
rate in the ith industry. Xi1 contains the logarithm of such variables as the

14 Note that under the alternative, u∗
t is serially correlated. Hence, the Breusch and Pagan test may

not be powerful against the alternative.
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relative value-added in the ith industry and the change in the consumer price,
Xi2 consists of a single vector of time series observations on the logarithm of
unemployment, and Zi contains the degree of concentration and the degree of
unionization in the ith industry.

For simplicity, we assume that ui and �2i are uncorrelated with each other
and have 0 means. The variance–covariance matrices of ui and �2i are given
by

Euiu′
j = σij IT (6.5.3)

and

E�2i�
′
2j =

{
� if i = j,
0 if i �= j. (6.5.4)

Let
 = (σij ). We can write the variance–covariance of u = (u′
1, . . . ,u

′
N )′ and

�2 = (�′
21, . . . ,�

′
2N )′ as

Euu′ = 
 ⊗ IT (6.5.5)

and

E�2�′
2 =

⎡⎢⎣� 0
. . .

0 �

⎤⎥⎦ = �̃. (6.5.6)

Combining (6.5.1) and (6.5.2), we have

y = X1�1 + W� + X̃2�2 + u, (6.5.7)

where

y
NT×1

= (y ′
1, . . . , y′

N )′,

X1
NT×K1

= (X′
11, . . . , X

′
N1)′,

W
NT×M

= (Z′
1X

′
12, Z

′
2X

′
22, . . . , Z

′
NX

′
N2)′,

X̃2
NT×NK2

=

⎡⎢⎢⎢⎣
X12 0

X22

. . .
0 XN2

⎤⎥⎥⎥⎦ ,
and

�2
NK2×1

= (�′
21, . . . ,�

′
2N )′.
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The BLUE of �1 and � of (6.5.7) is the GLS estimator.[
�̂1

�̂

]
GLS

=
{[
X′

1

W ′

]
[
 ⊗ IT + X̃2�̃X̃

′
2]−1(X1,W )

}−1

·
{[
X′

1

W ′

]
[
 ⊗ IT + X̃2�̃X̃

′
2]−1 y

}
.

(6.5.8)

If 
 is diagonal, the variance–covariance matrix of the stochastic term of
(6.5.7) is block-diagonal, with the ith diagonal block equal to

�i = Xi2�X′
i2 + σiiIT . (6.5.9)

The GLS estimator (6.5.8) can be simplified as[
�̂1

�̂

]
GLS

=
[
N∑
i=1

[
X′
i1

Z′
iX

′
i2

]
�−1
i (Xi1, X2iZi)

]−1

·
[
N∑
i=1

[
X′
i1

Z′
iX

′
i2

]
�−1
i yi

]
.

(6.5.10)

Amemiya (1978b) suggested estimating � and σij as follows. Let⎡⎢⎣ y1
...

yN

⎤⎥⎦ =

⎡⎢⎣X11
...
XN1

⎤⎥⎦�1 +

⎡⎢⎢⎢⎣
X12

0
...
0

⎤⎥⎥⎥⎦�21 +

⎡⎢⎢⎢⎣
0
X22

...
0

⎤⎥⎥⎥⎦�22

+ · · · +

⎡⎢⎣ 0
...
XN2

⎤⎥⎦�2N +

⎡⎢⎣u1
...

uN

⎤⎥⎦ .
(6.5.11)

Apply the least-squares method to (6.5.11). Denote the resulting estimates by
�̂1 and �̂2i , i = 1, . . . , N . Then σij can be estimated by

σ̂ij = 1

T
(yi −Xi1�̂1 − Xi2�̂2i)

′(yj − Xj1�̂1 − Xj2�̂2j ), (6.5.12)

and � can be estimated by

�̂ =
(
N∑
i=1

Z′
iZi

)−1 ( N∑
i=1

Z′
i�̂2i

)
. (6.5.13)

We then estimate � by

�̂ = 1

N

N∑
i=1

(�̂2i − Zi�̂)(�̂2i − Zi�̂)′. (6.5.14)



196 Variable-Coefficient Models

Once consistent estimates of σij and � are obtained (as both N and T
approach infinity), we can substitute them into (6.5.8). The resulting two-
stage Aitken estimator of (�′

1,�
′) is consistent and asymptotically normally

distributed under general conditions. A test of the hypothesis that � = 0 can be
performed in the usual regression framework using �̂′

GLS Var (�̂GLS)−1�̂GLS,
where

Var(�̂GLS) = [W ′�̃−1W −W ′�̃−1X1(X′
1�̃

−1X1)−1X′
1�̃

−1W ]−1,

(6.5.15)

and

�̃ = X̃2�̃X̃
′
2 +
 ⊗ IT .

6.6 A MIXED FIXED- AND RANDOM-COEFFICIENTS
MODEL

6.6.1 Model Formulation

Many of the previously discussed models can be considered as special cases of
a general mixed fixed- and random-coefficients model. For ease of exposition,
we shall assume that only time-invariant cross-sectional heterogeneity exists.

Suppose that each cross-sectional unit is postulated to be different, so that

yit =
K∑
k=1

βkixkit +
m∑
�=1

γ�iw�it + uit , i = 1, . . . , N,

t = 1, . . . , T ,

(6.6.1)

where xit and wit are eachK × 1 andm× 1 vector of explanatory variables that
are independent of the error of the equation, uit . Stacking theNT observations
together, we have

y = X� +W� + u, (6.6.2)

where

X
NT×NK

=

⎛⎜⎜⎜⎝
X1 0 . . . 0
0 X2 . . . 0
...

. . .
...

0 XN

⎞⎟⎟⎟⎠ ,

W
NT×Nm

=

⎛⎜⎜⎜⎝
W1 0 . . . 0
0 W2
...

. . .
0 WN

⎞⎟⎟⎟⎠ ,



6.6 A Mixed Fixed- and Random-Coefficients Model 197

u
NT×1

= (u′
1. . . . ,u

′
N ),

�
NK×1

= (�′
1, . . . ,�

′
N )′

and
�

Nm×1
= (�′

1, . . . ,�
′
N ).

Equation (6.6.1), just like (6.6.2), assumes a different behavioral equation
relation for each cross-sectional unit. In this situation, the only advantage of
pooling is to put the model (6.6.2) into Zellner’s (1962) seemingly unrelated
regression framework to gain efficiency of the estimates of the individual
behavioral equation.

The motivation of a mixed fixed- and random-coefficients model is that
though there may be fundamental differences among cross-sectional units,
conditioning on these individual specific effects, one may still be able to draw
inferences on certain population characteristics through the imposition of a
priori constraints on the coefficients of xit and wit . We assume that there exist
two kinds of restrictions, stochastic and fixed restrictions (e.g., Hsiao 1991a,
Hsiao et al. 1993) in the form:

A.6.6.1. The coefficients of xit are assumed to be subject to stochastic restric-
tions of the form:

� = A1�̄ + 	, (6.6.3)

where A1 is an NK × L matrix with known element, �̄ is an L× 1
vector of constants, and 	 is assumed to be (normally distributed)
random variables with mean 0 and nonsingular constant covariance
matrix C and is independent of xit .

A.6.6.2. The coefficients of wit are assumed to be subject to

� = A2�̄, (6.6.4)

where A2 is an Nm× n matrix with known elements, and �̄ is an
n× 1 vector of constants.

SinceA2 is known, we may substitute (6.6.4) into (6.6.2) and write
the model as

y = X� + W̃ �̄ + u (6.6.5)

subject to (6.6.3), where W̃ = WA2.
A.6.6.2 allows for various possible fixed-parameter configurations. For

instance, if � is different across cross-sectional units, we can letA2 = IN ⊗ Im.
On the other hand, if we wish to constrain �i = �j , we can let A2 = eN ⊗ Im.

Many of the linear panel data models with unobserved individual specific,
but time-invariant heterogeneity can be treated as the special case of the model
(6.6.2)–(6.6.4). These include

(1) A common model for all cross-sectional units. If there is no
interindividual difference in behavioral patterns, we may let X = 0,
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A2 = eN ⊗ Im, so (6.6.2) becomes

yit = w′
it �̄ + uit . (6.6.6)

(2) Different models for different cross-sectional units. When each indi-
vidual is considered different, thenX = 0, A2 = IN ⊗ Im, and (6.6.2)
becomes

yit = w′
it�i + uit . (6.6.7)

(3) Variable intercept model (e.g., Kuh 1963, or Chapter 3, Section 3.2). If
conditional on the observed exogenous variables, the interindividual
differences stay constant through time. Let X = 0, and

A2 = (IN ⊗ im
...eN ⊗ I ∗

m−1), �̄ = (γ11, . . . , γN1, γ̄2, . . . , γ̄m)′,

where we arrange Wi = (eT ,wi2, . . . ,wim), i = 1, . . . , N . im =
(1, 0, . . . , 0)′,

I ∗
m−1

m×(m−1)

= (0
...Im−1)′,

then (6.6.2) becomes

yit = γi1 + γ̄2wit2 + · · · + γ̄mwitm + uit . (6.6.8)

(4) Error components model (e.g., Balestra and Nerlove 1966; Wallace
and Hussain 1969; or Chapter 3, Section 3.3). When the effects of
the individual-specific, time-invariant omitted variables are treated as
random variables just like the assumption on the effects of other omit-
ted variables, we can let Xi = eT ,	 ′ = (α1, . . . , αN ), A1 = eN,C =
σ 2
α IN , β̄ be an unknown constant, and wit not contain an intercept

term. Then (6.6.2) becomes

yit = β̄ + �̄′wit + αi + uit (6.6.9)

(5) Random coefficients model (Swamy 1970, or Chapter 6, Sec-
tion 6.2.2). Let Z = 0, A1 = eN ⊗ IK, C = IN ⊗
, we have model
(6.2.7).

6.6.2 A Bayes Solution

The formulation of (6.6.5) subject to (6.6.3) can be viewed from a Bayesian
perspective as there exist informative prior on � (6.6.3), but not on �̄. In the
classical sampling approach, inferences are made by typically assuming that
the probability law generating the observations, y, f (y,�), is known, but not
the vector of constant parameters �. Estimators �̂(y) of the parameters � are
chosen as functions of y so that their sampling distributions, in repeated exper-
iments, are, in some sense, concentrated as closely as possible about the true
values of �. In the Bayesian approach, a different line is taken. First, all quan-
tities, including the parameters, are considered random variables. Second, all
probability statements are conditional, so that in making a probability statement



6.6 A Mixed Fixed- and Random-Coefficients Model 199

it is necessary to refer to the conditioning event as well as the event whose prob-
ability is being discussed. Therefore, as part of the model, a prior distribution
of the parameter �, p(�), is introduced. The prior is supposed to express a state
of knowledge (or ignorance) about � before the data are obtained. Given the
probability model f (y; �), the prior distribution, and the data y, the probability
distribution of � is revised to p(� | y), which is called the posterior distribution
of �, according to Bayes’ theorem (e.g., Intriligator, Bodkin, and Hsiao 1996).15

P (� | y) ∝ P (�)f (y | �), (6.6.10)

where the sign “∝” denoting “is proportional to,” with the factor of
proportionality being a normalizing constant.

Under the assumption that

A.6.6.3. u ∼ N (0,�),

we may write the model (6.6.5) as

A.1 Conditional on X, W̃ ,�, and �̄

y ∼ N (X� + W̃ �̄,�). (6.6.11)

A.2 The prior distributions of � and �̄ are independent,

P (�, �̄) = P (�) · P (�̄). (6.6.12)

A.3 P (�) ∼ N (A1�̄, C).
A.4 There is no information about �̄ and �̄; therefore P (�̄) and P (�̄) are

independent and

P (�̄) ∝ constant,

P (�̄) ∝ constant.

Conditional on � and C, repeatedly applying the formulas in Appendix 6,
yields (Hsiao et al. 1993)

(1) The posterior distribution of �̄ and �̄ given y is

N

((
β̄∗

�̄∗

)
,D1

)
, (6.6.13)

where

D1 =
[(
A′

1X
′

W̃ ′

)
(�+XCX′)−1(XA1, W̃ )

]−1

, (6.6.14)

and (
�̄

∗

�̄∗

)
= D1

[
A′

1X
′

W̃ ′

]
(�+XCX′)−1 y (6.6.15)

15 According to Bayes’ theorem, the probability of B given A, written as P (B | A), equals P (B |
A) = P (A|B)P (B)

P (A) which is proportional to P (A | B)P (B).
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(2) The posterior distribution of � given �̄ and y is N (�∗,D2), where

D2 = {X′[�−1 −�−1W̃ (W̃ ′�−1W̃ )−1W̃ ′�−1]X + C−1}−1,

(6.6.16)

�∗ = D2{X′[�−1 −�−1W̃ (W̃ ′�−1W̃ )−1W̃ ′�−1]y + C−1A1�̄}.
(6.6.17)

(3) The (unconditional) posterior distribution of � is N (�∗∗,D3), where

D3 = {X′[�−1 −�−1W̃ (W̃ ′�−1W̃ )−1W̃ ′�−1]X + C−1

− C−1A1(A′
1C

−1A1)−1A′
1C

−1}−1,
(6.6.18)

�∗∗ = D3{X′[�−1 −�−1W̃ (W̃ ′�−1W̃ )−1W̃ ′�−1]y} (6.6.19)

= D2{X′[�−1 −�−1W̃ (W̃ ′�−1W̃ )−1W̃ ′�−1]X�̂ + C−1A1�̄
∗},

where �̂ is the GLS estimate of (6.6.5),

�̂ = {X′[�−1 −�−1W̃ (W̃ ′�−1W̃ )−1W̃ ′�−1]X}−1

· {X′[�−1 −�−1W̃ (W̃ ′�−1W̃ )−1W̃ ′�−1]y}.
(6.6.20)

Given a quadratic loss function of the error of the estimation, a Bayes point
estimate is the posterior mean. The posterior mean of �̄ and �̄ (6.6.15) is the
GLS estimator of the model (6.6.5) after substituting the restriction (6.6.3),

y = XA1�̄ + W̃ �̄ + v, (6.6.21)

where v = X	 + u. However, the posterior mean of � is not the GLS estimator
of (6.6.5). It is the weighted average between the GLS estimator of � and the
overall mean �̄ (6.6.17) or �̄

∗
(6.6.19), with the weights proportional to the

inverse of the precision of respective estimates. The reason is that although
both (6.6.2) and (6.6.5) allow the coefficients to be different across cross-
sectional units, (6.6.3) has imposed additional prior information that � are
randomly distributed with mean A1�̄. For (6.6.2), the best linear predictor for
an individual outcome is to substitute the best linear unbiased estimator of the
individual coefficients into the individual equation. For model of (6.6.5) and
(6.6.3), because the expected �i is the same across i and the actual difference
can be attributed to a chance outcome, additional information about �i may be
obtained by examining the behavior of others, hence (6.6.17) or (6.6.19).

In the special case of error components model (6.6.9),X = IN ⊗ eT . Under
the assumption that wit contains an intercept term (i.e., β̄ = 0) and uit is i.i.d.,
the Bayes estimator ((6.6.15)) of �̄ is simply the GLS estimator of (6.6.21), �̄∗.
The Bayes estimator of αi ((6.6.17)) is

α∗∗
i =

(
T σ 2

α

T σ 2
α + σ 2

u

)
ˆ̄vi, (6.6.22)
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where ˆ̄vi = 1
T

∑T
τ=1 v̂it and v̂it = yit − �̄∗wit . Substituting �̄∗, and α∗∗

i for the
unknown �̄, and αi in (6.6.9), Wansbeek and Kapteyn (1978) and Taub (1979)
show that

ŷi,T+S = �̄∗′
wi,t+s + α∗∗

i (6.6.23)

is the best linear predictor (BLUP) for the ith individual s periods ahead.16

6.6.3 Random or Fixed Differences?

6.6.3.1 An Example of the Contrast between Individual and Pooled
Parameter Estimates

In a classical framework, it makes no sense to predict the independently drawn
random variable �i (or 	 i). However, in panel data, we actually operate with
two dimensions – a cross-sectional dimension and a time series dimension.
Even though �i is an independently distributed random variable across i, once
a particular �i is drawn, it stays constant over time. Therefore, it makes sense
to predict �i . The classical predictor of �i is the GLS estimator of the model
(6.6.5). The Bayes predictor (6.6.19) is the weighted average between the
GLS estimator of � for the model (6.6.5) and the overall mean A1�̄ if �̄ is
known or A1�̄

∗
if �̄ is unknown with the weights proportional to the inverse

of the precisions of respective estimates. The Bayes estimator of the individual
coefficients, �i , “shrinks” the GLS estimator of �i toward the grand mean �̄
or �̄

∗
. The reason for doing so stems from de Finneti’s (1964) exchangeability

assumption. When there are not enough time series observations to allow for
precise estimation of individual �i (i.e., T is small), additional information
about �i may be obtained by examining the behavior of others because the
expected response is assumed the same and the actual differences in response
among individuals are the work of a chance mechanism.

Table 6.1 presents the Canadian route specific estimates of the demand for
customer-dialed long distance service over 920 miles (long-haul) based on
quarterly data from 1980.I to 1989.IV (Hsiao, Appelbe, and Dineen 1993).
Some of the point-to-point individual route estimates (unconstrained model)
of the price and income coefficients have the wrong signs (Table 6.1, column
2), perhaps because of multicollinearity. However, when one invokes the repre-
sentative consumer argument by assuming that consumers respond in more or
less the same way to price and income changes, thus assuming the coefficients
of these variables across routes are considered random draws from a common
population with constant mean and variance–covariance matrix, but also allows
the route-specific effects to exist by assuming that the coefficients of the inter-
cept and seasonal dummies are fixed and different for different routes, all the

16 When uit is serially correlated, see Baltagi and Li (1992). For the asymptotic mean square error
when the coefficients and error components parameters are estimated, see Baillie and Baltagi
(1999).
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Table 6.1. Long-haul regression coefficientsa

Price coefficient,

Route unconstrained Mixed coefficients

1 −0.0712(−0.15) −0.2875(N/A)
2 0.1694(0.44) −0.0220(N/A)
3 −1.0142(−5.22) −0.7743(N/A)
4 −0.4874(−2.29) −0.1686(N/A)
5 −0.3190(−2.71) −0.2925(N/A)
6 0.0365(0.20) −0.0568(N/A)
7 −0.3996(−3.92) −0.3881(N/A)
8 −0.1033(−0.95) −0.2504(N/A)
9 −0.3965(−4.22) −0.2821(N/A)

10 −0.6187(−4.82) −0.5934(N/A)

Average N/A −0.3116

Route Income coefficient

1 1.4301(3.07) 0.4740(N/A)
2 −0.348(−0.09) 0.2679(N/A)
3 0.3698(1.95) 0.3394(N/A)
4 0.2497(0.70) 0.3145(N/A)
5 0.5556(2.71) 0.3501(N/A)
6 0.1119(0.95) 0.1344(N/A)
7 0.9197(8.10) 0.5342(N/A)
8 0.3886(3.88) 0.5255(N/A)
9 0.6688(6.16) 0.5648(N/A)

10 0.1928(2.39) 0.2574(N/A)

Average N/A 0.3762

a t-statistics in parentheses.
Source: Hsiao, Appelbe, and Dineen (1993, Table 3).

estimated route specific price and income coefficients have the correct signs
(Table 6.1, column 3).

6.6.3.2 An Example of Prediction Comparison

When homogeneity is rejected by the data, whether to treat unobserved hetero-
geneity as fixed or random has paramount importance in panel data modeling.
For instance, in a study of Ontario, Canada regional electricity demand, Hsiao
et al. (1989) estimate a model of the form

yit = γiyi,t−1 + �′
idit + �′

ixit + uit , (6.6.24)

where yit denotes the logarithm of monthly kilowatt-hour or kilowatt demand
for region i at time t ; dit denotes 12 monthly dummies; and xit denotes climatic
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Table 6.2. Root-mean-square prediction error of log kilowatt-hours
(one-period-ahead forecast)

Root Mean Square Error

Region- Random
Municipality specific Pooled coefficients Mixed

Hamilton 0.0865 0.0535 0.0825 0.0830
Kitchener–Waterloo 0.0406 0.0382 0.0409 0.0395
London 0.0466 0.0494 0.0467 0.0464
Ottawa 0.0697 0.0523 0.0669 0.0680
St. Catharines 0.0796 0.0724 0.0680 0.0802
Sudbury 0.0454 0.0857 0.0454 0.0460
Thunder Bay 0.0468 0.0615 0.0477 0.0473
Toronto 0.0362 0.0497 0.0631 0.0359
Windsor 0.0506 0.0650 0.0501 0.0438
Unweighted average 0.0558 0.0586 0.0568 0.0545
Weighted averagea 0.0499 0.0525 0.0628 0.0487

a The weight is kilowatt-hours of demand in the municipality in June 1985.
Source: Hsiao et al. (1989, p. 584).

factor and the logarithm of income, own price, and price of its close substitutes,
all measured in real terms. Four different specifications are considered:

1. The coefficients �′
i = (γi,�

′
i ,�

′
i) are fixed and different for different

region.
2. The coefficients �i = �′ = (γ,�′,�′) for all i.
3. The coefficient vectors �i are randomly distributed with common

mean � and covariance matrix 
.
4. The coefficients �i are randomly distributed with common mean �̄

and covariance matrix
11, and the coefficients γi and �i are fixed and
different for different i.

Monthly data for Hamilton, Kitchener-Waterloo, London, Ottawa, St.
Catherines, Sudbury, Thunder Bay, Toronto, and Windsor from January 1967
to December 1982 are used to estimate these four different specifications.
Comparisons of the one-period ahead root mean square prediction error√√√√ T+f∑

t=T+1

(yit − ŷit )2/f

from January 1983 to December 1986 are summarized in Tables 6.2 and 6.3.
As one can see from these tables, the simple pooling (model 2) and random-
coefficients (model 3) formulations on average yield less precise prediction for
regional demand. The mixed fixed- and random-coefficients model (model 4)
performs the best. It is interesting to note that combining information across
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Table 6.3. Root-mean-square prediction error of log kilowatts (one-period-
ahead forecast)

Root Mean Square Error

Regional Random
Municipality specific Pooled coefficients Mixed

Hamilton 0.0783 0.0474 0.0893 0.0768
Kitchener–Waterloo 0.0873 0.0440 0.0843 0.0803
London 0.0588 0.0747 0.0639 0.0586
Ottawa 0.0824 0.0648 0.0846 0.0768
St. Catharines 0.0531 0.0547 0.0511 0.0534
Sudbury 0.0607 0.0943 0.0608 0.0614
Thunder Bay 0.0524 0.0597 0.0521 0.0530
Toronto 0.0429 0.0628 0.0609 0.0421
Windsor 0.0550 0.0868 0.0595 0.0543
Unweighted average 0.0634 0.0655 0.0674 0.0619
Weighted averagea 0.0558 0.0623 0.0673 0.0540

a The weight is kilowatt-hours of demand in the municipality in June 1985.
Source: Hsiao et al. (1989, p. 584).

regions together with a proper account of regional-specific factors is capable
of yielding better predictions for regional demand than the approach of simply
using regional-specific data (model 1).

6.6.3.3 Model Selection

The preceding example demonstrates that the way in which individual hetero-
geneity is taken into account makes a difference in the accuracy of inference.
The various estimation methods discussed so far presuppose that we know
which coefficients should be treated as fixed (and different) and which coeffi-
cients should be treated as random. In practice, we have very little prior infor-
mation on selecting the appropriate specifications. Various statistical tests have
been suggested to select an appropriate formulation (e.g., Breusch and Pagan
1979; Hausman 1978 or Chapter 6, Section 6.2.2.4). However, all these tests
essentially exploit the implication of certain formulation in a specific frame-
work. They are indirect in nature. The distribution of a test statistic is derived
under a specific null, but the alternative is composite. The rejection of a null
does not automatically imply the acceptance of a specific alternative. It would
appear more appropriate to treat the fixed coefficients, random coefficients,
or various forms of mixed fixed- and random-coefficients models as different
models and use model selection criteria to select an appropriate specification
(Hsiao and Sun 2000). For instance, well known model selection criterion such
as Akaike (1973) information criteria or Schwarz (1978) Bayesian information
criteria that selects the model Hj among j = 1. . . . , J different specifications
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if it yields the smallest value of

−2 logf (y | Hj ) + 2mj, j = 1. . . . , J, (6.6.25)

or

−2 logf (y | Hj ) +mj log NT, j = 1. . . . , J, (6.6.26)

can be used, where log f (y | Hj ) and mj denote the log-likelihood values of
y and the number of unknown parameters of model Hj . Alternatively, Hsiao
(1995) and Min and Zellner (1993) suggest selecting the model that yields
the highest predictive density. In this framework, time series observations are
divided into two periods, 1 to T1, denoted by y1, and T1 + 1 to T , denoted by
y2. The first T1 observations are used to obtain the probability distribution of
the parameters associated with Hj , say �j , P (�j | y1). The predictive density
is then evaluated as∫

f (y2 | �j )p(�j | y1)d�j , (6.6.27)

where f (y2 | �j ) is the density of y2 conditional on �j . Given the sensitivity
of Bayesian approach to the choice of prior distribution the advantage of using
(6.6.27) is that the choice of a model does not have to depend on the prior. One
can use the noninformative (or diffuse) prior to derive P (�j | y1). It is also
consistent with the theme that “a severe test for an economic theory, the only
test and the ultimate test is its ability to predict” (Klein 1988; p. 21; see also
Friedman 1953).

When y2 contains only a limited number of observations, the choice of
model in terms of predictive density may become heavily sample dependent.
If too many observations are put in y2, then a great deal of sample information
is not utilized to estimate unknown parameters. One compromise is to modify
(6.6.27) by recursively updating the estimates,∫

f (yT | �j , yT−1)P (�j | yT−1)d�j

·
∫
f (yT−1 | �j , yT−2)P (�j | yT−2)d�j

. . .

∫
f (yT1+1 | �j , y1)P (�j | y1)d�j ,

(6.6.28)

where P (�j | yT ) denotes the posterior distribution of � given observations
from 1 to T . While the formula may look formidable, it turns out that the Bayes
updating formula is fairly straightforward to compute. For instance, consider
the model (6.6.5). Let � = (�, �̄) and �t and Vt denote the posterior mean and
variance of � based on the first t-observations; then

�t = Vt−1(Q′
t�

−1 yt + V −1
t−1�t−1), (6.6.29)

Vt = (Q′
t�

−1Qt + V −1
t−1)−1, t = T1 + 1, . . . , T , (6.6.30)
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and

P (yt+1 | yt ) =
∫
P (yt+1 | θ, yt )P (� | yt )d�

∼ N (Qt+1�t , �+Qt+1VtQ
′
t+1),

(6.6.31)

where y′
t = (y1t , y2t , . . . , yNt ),Qt = (x′

t ,w
′
t ), xt = (x1t , . . . , xNt ), wt =

(w1t , . . . ,wNt ), � = Eutu′
t , and u′

t = (u1t , . . . , uNt ) (Hsiao et al. 1993).
Hsiao and Sun (2000) have conducted limited Monte Carlo studies to eval-

uate the performance of these model selection criteria in selecting the random,
fixed, and mixed random–fixed coefficients specification. They all appear to
have a very high percentage in selecting the correct specification.

6.7 DYNAMIC RANDOM-COEFFICIENTS MODELS

For ease of exposition and without loss of the essentials, instead of considering
generalizing (6.6.5) into the dynamic model, in this section we consider the
generalization of random coefficients model (6.2.1) to the dynamic model of
the form17

yit = γiyi,t−1 + �′
ixit + uit , | γi |< 1, i = 1, . . . , N,

t = 1, . . . , T ,
(6.7.1)

where xit is a K × 1 vector of exogenous variables, and the error term uit is
assumed to be independently, identically distributed (i.i.d.) over t with mean
0 and variance σ 2

ui
and is independent across i. The coefficients �i = (γi,�

′
i)

′

are assumed to be independently distributed across i with mean �̄ = (γ̄ , �̄
′
)′

and covariance matrix 
. Let

�i = �̄ + 	 i , (6.7.2)

where 	 i = (αi1,	 ′
i2); we have

E	 i = 0, E	 i	
′
j = 
 if i = j and 0 otherwise, (6.7.3)

17 We are concerned only with the estimation of the short-run adjustment coefficient γ . For a
discussion of estimating the long-run coefficient, see Pesaran and Smith (1995); Pesaran and
Zhao (1999); Pesaran, Shin, and Smith (1999); and Phillips and Moon (1999, 2000).
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and18

E	 ix′
j t = 0. (6.7.4)

Stacking the T time series observations of the ith individuals in matrix form
yields

yi
T×1

= Qi�i + ui , i = 1, . . . , N.
(6.7.5)

where yi = (yi1. . . . , yiT )′,Qi = (yi,−1, Xi), yi,−1 = (yi0, . . . , yi,T−1)′, Xi =
(xi1. . . . , xiT )′,ui = (ui1. . . . , uiT )′, and for ease of exposition, we assume
that yi0 are observable.19

We note that because yi,t−1 despends on γi, EQi	 ′
i �= 0, that is, the indepen-

dence between the explanatory variables and 	 i (6.2.6) is violated. Substituting
�i = �̄ + 	 i into (6.7.5) yields

yi = Qi �̄ + vi , i = 1. . . . , N, (6.7.6)

where

vi = Qi	 i + ui . (6.7.7)

18 The strict exogeneity condition (6.7.4) of xit is crucial in the identification of dynamic random-
coefficients model. Chamberlain (1993) has given an example of the lack of identification of γ
in a model of the form

yit = γyi,t−1 + �ixit + αi + uit ,

where xit takes either 0 or 1. Because E(αi | xi , yi,−1) is unrestricted, the only moments that
are relevant for the identification of γ are

E(
yit − γ
yi,t−1 | xt−1
i , yt−2

i ) = E(βi
xit | xt−1
i , yt−2

i ), t = 2, . . . , T ,

where xti = (xi1, . . . , xit ), yti = (yi0, . . . , yit ). Let wti = (xti , yti ), the above expression is equiv-
alent to the following two conditions:

D(
yit − γ
yi,t−1 | wt−2
i , xi,t−1 = 0)

= E(βi | wt−2
i , xi,t−1 = 0)Pr (xit = 1 | xt−2

i , xi,t−1 = 0),

and

E(
yit − γ
yi,t−1 | xt−2
i , xi,t−1 = 1)

= −E(�i | wt−2
i , xi,t−1 = 1)Pr (xit = 0 | wt−2

i , xi,t−1 = 1)

If E(βi | wt−2
i , xi,t−1 = 0) and E(βi | wt−2

i , xi,t−1 = 1) are unrestricted and T is fixed, the
autoregressive parameter γ cannot be identified from the above two equations.

19 We assume that T (>3) is large enough to identify γ and β. For an example of lack of identifi-
cation when T = 3 and yit is binary, see Chamberlain (1993) or Arellano and Honoré (2001);
see also Chapter 7.
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Since

yi,t−1 =
∞∑
j=0

(γ̄ + αi1)j x′
i,t−j−1(�̄ + 	 i2)

+
∞∑
j=0

(γ̄ + αi1)jui,t−j−1, (6.7.8)

it follows that E(vi | Qi) �= 0. Therefore, contrary to the static case, the least-
squares estimator of the common mean, �̄ is inconsistent.

Equations (6.7.7) and (6.7.8) also demonstrate that the covariance matrix
of vi , V , is not easily derivable. Thus, the procedure of premultiplying (6.7.6)
by V −1/2 to transform the model into the one with serially uncorrelated error
is not implementable. Neither does the instrumental variable method appear
implementable because the instruments that are uncorrelated with vi are most
likely uncorrelated withQi as well.

Pesaran and Smith (1995) have noted that as T → ∞, the least-squares
regression of yi on Qi yields a consistent estimator of �i , �̂i . They suggest a
mean group estimator of �̄ by taking the average of �̂i across i,

ˆ̄� = 1

N

N∑
i=1

�̂i . (6.7.9)

The mean group estimator (6.7.9) is consistent and asymptotically normally
distributed so long as

√
N/T → 0 as both N and T → ∞ (Hsiao, Pesaran,

and Tahmiscioglu 1999).
However, panels with large T are typically the exception in economics.

Nevertheless, under the assumption that yi0 are fixed and known and 	 i and uit
are independently normally distributed, we can implement the Bayes estimator
of �̄ conditional on σ 2

i and 
 using the formula (6.6.13) just as in the mixed
model case discussed in Section 6.6. The Bayes estimator condition on 
 and
σ 2
i is equal to

ˆ̄�B =
{
N∑
i=1

[
σ 2
i (Q′

iQi)
−1 +
]−1

}−1 N∑
i=1

[
σ 2
i (Q′

iQi)
−1 +
]−1

�̂i ,

(6.7.10)

which is a weighted average of the least-squares estimator of individual units,
with the weights being inversely proportional to individual variances. When
T → ∞, N → ∞ and

√
N/T 3/2 → 0, the Bayes estimator is asymptotically

equivalent to the mean group estimator (6.7.9).
In practice, the variance components, σ 2

i and 
, are rarely known, so the
Bayes estimator (6.7.10) is rarely feasible. One approach is to substitute the
consistently estimated σ 2

i and 
, say (6.2.11) and (6.2.12), into the formula
(6.7.10), and treat them as if they were known. For ease of reference, we shall
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call (6.7.10) with known σ 2
i and
 the infeasible Bayes estimator. We shall call

the estimator obtained by substituting σ 2
i and 
 in (6.7.10) by their consistent

estimates, say (6.2.11) and (6.2.12), the empirical Bayes estimator.
The other approach is to follow Lindley and Smith (1972) by assuming that

the prior distributions of σ 2
i and 
 are independent and are distributed as

P
(

−1, σ 2

1 , . . . , σ
2
N

) = W (
−1 | (ρR)−1, ρ)
N∏
i=1

σ−1
i , (6.7.11)

whereW represents the Wishart distribution with scale matrix (ρR) and degrees
of freedom ρ (e.g., Anderson 1985). Incorporating this prior into the model
(6.7.1)–(6.7.2), we can obtain the marginal posterior densities of the parameters
of interest by integrating outσ 2

i and
 from the joint posterior density. However,
the required integrations do not yield closed form solutions. Hsiao, Pesaran, and
Tahmiscioglu (1999) have suggested using Gibbs sampler to calculate marginal
densities.

The Gibbs sampler is an iterative Markov Chain Monte Carlo method that
requires only the knowledge of the full conditional densities of the parameter
vector (e.g., Gelfand and Smith 1990). Starting from some arbitrary initial
values, say (�(0)

1 ,�
(0)
2 , . . . ,�

(0)
k ) for a parameter vector � = (�1. . . . ,�k), it

samples alternatively from the conditional density of each component of the
parameter vector conditional on the values of other components sampled in the
latest iteration. That is:

(1) Sample �
(j+1)
1 from P (�1 | �

(j )
2 ,�

(j )
3 , . . . ,�

(j )
k , y)

(2) Sample �
(j+1)
2 from P (�2 | �

(j+1)
1 ,�

(j )
3 , . . . ,�

(j )
k , y)

...
(k) Sample �

(j+1)
k from P (�k | �

(j+1)
1 , . . . ,�

(j+1)
k−1 , y)

The vectors �(0),�(1), . . . ,�(k) form a Markov Chain, with transition prob-
ability from stage �(j ) to the next stage �(j+1) being

K(�(j ),�(j+1)) = P (�1 | �
(j )
2 , . . . ,�

(j )
k , y

)
P
(
�2 | �

(j+1)
1 ,�

(j )
3 , . . . ,�

(j )
k , y

)
. . . P

(
�k | �

(j+1)
1 , . . . ,�

(j+1)
k−1 , y

)
.

As the number of iterations j approaches infinity, the sampled values in effect
can be regarded as drawing from true joint and marginal posterior densities.
Moreover, the ergodic averages of functions of the sample values will be
consistent estimations of their expected values.

Under the assumption that the prior of θ̄ isN (�̄
∗
, �), the relevant conditional

distributions that are needed to implement the Gibbs sampler for (6.7.1)–(6.7.2)
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are easily obtained from

P
(
�i | y, �̄,
−1, σ 2

1 , . . . , σ
2
N

)
∼ N {Ai(σ−2

i Q
′
i yi +
−1θ̄ ), Ai

}
, i = 1, . . . , N,

P (�̄ | y,�1, . . . ,�N,

−1, σ 2

1 , . . . , σ
2
N ) ∼ N

{
D(N
−1 ˆ̄� +�−1�∗), B

}
P
(

−1 | y,�1, . . . ,�N, �̄, σ

2
1 , . . . , σ

2
N

)
∼ W

⎡⎣( N∑
i=1

(�i − �̄)(�i − �̄)′ + ρR
)−1

, ρ +N
⎤⎦ ,

P
(
σ 2
i | yi ,�1, . . . ,�N, �̄,


−1
)

∼ IG[T/2, (yi −Qi�i)′(yi −Qi�i)/2], i = 1. . . . , N,

where Ai = (σ−2
i Q

′
iQi +
−1)−1,D = (N
−1 +�−1)−1, ˆ̄� = 1

N

∑N
i=1 �i ,

and IG denotes the inverse gamma distribution.
Hsiao, Pesaran, and Tahmiscioglu (1999) have conducted Monte Carlo

experiments to study the finite sample properties of (6.7.10), referred as infeasi-
ble Bayes estimator; the Bayes estimator obtained through the Gibbs sampler,
referred as hierarchical Bayes estimator; the empirical Bayes estimator; the
group mean estimator (6.7.8); the bias corrected group mean estimator obtained
by directly correcting the finite T bias of the least squares estimator, �̂i , using
the formula of Kiviet (1995); Kiviet and Phillips (1993); and then taking the
average; and the pooled least-squares estimator. Table 6.4 presents the bias of
the different estimators of γ̄ forN = 50 and T = 5 or 20. The infeasible Bayes
estimator performs very well. It has small bias even for T = 5. For T = 5, its
bias falls within the range of 3 to 17 percent. For T = 20, the bias is at most
about 2 percent. The hierarchical Bayes estimator also performs well,20 fol-
lowed by the empirical Bayes estimator when T is small but improves quickly
as T increases. The empirical Bayes estimator gives very good results even for
T = 5 in some cases but the bias also appears to be quite high in certain other
cases. As T gets larger its bias decreases considerably. The mean group and the
bias corrected mean group estimator both have large bias when T is small, with
the bias-corrected mean group estimator performing slightly better. However,
the performance of both improve as T increases, and both are still much better
than the least-squares estimator. The least-squares estimator yields significant
bias and its bias persists as T increases.

The Bayes estimator is derived under the assumption that the initial obser-
vations, yi0, are fixed constants. As discussed in Chapter 4 or Anderson and
Hsiao (1981, 1982), this assumption is clearly unjustifiable for a panel with

20 The �−1 = 0, ρ = 2 and R equal to the Swamy estimate of 
 are used to implement the
hierarchical Bayes estimator.



Table 6.4. Bias of the short-run coefficient γ̄

Bias

Bias-corrected Infeasible Empirical Hierarchical
T γ̄ Pooled OLS Mean group mean group Bayes Bayes Bayes

5 1 0.3 0.36859 −0.23613 −0.14068 0.05120 −0.12054 −0.02500
2 0.3 0.41116 −0.23564 −0.14007 0.04740 −0.11151 −0.01500
3 0.6 1.28029 −0.17924 −0.10969 0.05751 −0.02874 0.02884
4 0.6 1.29490 −0.18339 −0.10830 0.06879 −0.00704 0.06465
5 0.3 0.06347 −0.26087 −0.15550 0.01016 −0.18724 −0.10068
6 0.3 0.08352 −0.26039 −0.15486 0.01141 −0.18073 −0.09544
7 0.6 0.54756 −0.28781 −0.17283 0.05441 −0.12731 −0.02997
8 0.6 0.57606 −0.28198 −0.16935 0.06258 −0.10366 −0.01012

20 9 0.3 0.44268 −0.07174 −0.01365 0.00340 −0.00238 0.00621
10 0.3 0.49006 −0.06910 −0.01230 0.00498 −0.00106 0.00694
11 0.35 0.25755 −0.06847 −0.01209 −0.00172 −0.01004 −0.00011
12 0.35 0.25869 −0.06644 −0.01189 −0.00229 −0.00842 0.00116
13 0.3 0.07199 −0.07966 −0.01508 −0.00054 −0.01637 −0.00494
14 0.3 0.09342 −0.07659 −0.01282 0.00244 −0.01262 −0.00107
15 0.55 0.26997 −0.09700 −0.02224 −0.00062 −0.01630 0.00011
16 0.55 0.29863 −0.09448 −0.02174 −0.00053 −0.01352 0.00198

Source: Hsiao, Pesaran, and Tahmiscioglu (1999).
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finite T . However, contrary to the sampling approach where the correct mod-
eling of initial observations is quite important, the Bayesian approach appears
to perform fairly well in the estimation of the mean coefficients for dynamic
random-coefficients models even when the initial observations are treated as
fixed constants. The Monte Carlo study also cautions against the practice of
justifying the use of certain estimators based on their asymptotic properties.
Both the mean group and the corrected mean group estimators perform poorly
in panels with very small T . The hierarchical Bayes estimator appears prefer-
able to the other consistent estimators unless the time dimension of the panel
is sufficiently large.

6.8 TWO EXAMPLES

6.8.1 Liquidity Constraints and Firm Investment Expenditure

The effects of financial constraints on company investment have been subject to
intensive debate by economists. At one extreme, Jorgenson (1971) claims that
“the evidence clearly favors the Modigliani-Miller theory (1958, 61). Internal
liquidity is not an important determinant of the investment, given the level of
output and external funds.” At the other extreme, Stiglitz and Weiss (1981)
argue that because of imperfections in the capital markets, costs of internal and
external funds generally will diverge, and internal and external funds generally
will not be perfect substitutes for each other. Fazzari, Hubbard, and Petersen
(1988), Bond and Meghir (1994), etc. tested for the importance of internal
finance by studying the effects of cash flow across different groups of companies
like identifying groups of firms according to company retention practices. If the
null hypothesis of perfect capital market is correct, then no difference should
be found in the coefficient of cash flow variable across groups. However, these
authors find that cash flow coefficient is large for companies with low dividend
payout rates.

However, there is no sound theoretical basis for assuming that only low
dividend payout companies are subject to financial constraints. The finding that
larger companies have larger cash flow coefficients is inconsistent with both
the transaction costs and asymmetric information explanations of liquidity
constraints. Whether firm heterogeneity can be captured by grouping firms
according to some indicators remains open to question.

Hsiao and Tahmiscioglu (1997) use COMPUSTAT annual industrial files of
561 firms in manufacturing sector for the period 1971–1992 to estimate the
following five different investment expenditure models with and without using
liquidity models:(

I

K

)
it

= α∗
i + γi

(
I

K

)
i,t−1

+ βi1
(
LIQ

K

)
i,t−1

+ εit , (6.8.1)(
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)
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)
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(
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K

)
i,t−1

+ βi2qit + εit , (6.8.2)
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(
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)
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(
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K

)
i,t−1

+ εit . (6.8.5)

where Iit is firm i’s capital investment at time t , LIQit is a liquidity variable
(defined as cash flow minus dividends); Sit is sales, qit is Tobin’s q (Brainard
and Tobin 1968; Tobin 1969), defined as the ratio of the market value of the firm
to the replacement value of capital; and Kit is the beginning-of-period capital
stock. The coefficient βi1 measures the short-run impact of liquidity variable on
firm i’s investment in each of these three specifications. Models 4 and 5 ((6.8.4)
and (6.8.5)) are two popular variants of investment equations that do not use the
liquidity variable as an explanatory variable – the Tobin q model (e.g., Hayashi
1982; Summers 1981) and the sales capacity model (e.g., Kuh 1963). The sale
variable can be regarded as a proxy for future demand for the firm’s output. The
q theory relates investment to marginal q, which is defined as the ratio of the
market value of new investment goods to their replacement cost. If a firm has
unexploited profit opportunities, then an increase of its capital stock of $1 will
increase its market value by more than $1. Therefore, firm managers can be
expected to increase investment until marginal q equals 1. Thus, investment will
be an increasing function of marginal q. Because marginal q is unobservable,
it is common in empirical work to substitute it with average or Tobin’s q.

Tables 6.5 and 6.6 present some summary information from the firm by firm
regressions of these five models. Table 6.5 shows the percentage of significant
coefficients at the 5 percent significance level for a one-tailed test. Table 6.6
shows the first and third quartiles of the estimated coefficients. The estimated
coefficients vary widely from firm to firm. The F -test of slope homogeneity
across firms while allowing for firm-specific intercepts is also rejected (see
Table 6.5).

The approach of relating the variation of βi1 to firm characteristics such
as dividend payout rate, company size, sales growth, capital intensity, stan-
dard deviation of retained earnings, debt-to-equity ratio, measures of liquidity
stocks from the balance sheet, number of shareholders, and industry dummies
is unsuccessful. These variables as a whole do not explain the variation of
estimated βi1 well. The maximum R̄2 is only 0.113. Many of the estimated
coefficients are not significant under various specifications. Neither can one
substitute functions of the form (6.5.2) into (6.8.1)–(6.8.5) and estimate the
coefficients directly because of perfect multicollinearity. So Hsiao and Tah-
miscioglu (1997) classify firms into reasonably homogeneous groups using the
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Table 6.5. Individual firm regressions (percentage of firms with significant
coefficients)

Percentage of firms

Model 1 2 3 4 5

Coefficient for:
(LIQ/K)t−1 46 36 31
q 31 38
(S/K)t−1 27 44

Percentage of firms
with significant
autocorrelation 14 12 13 20 15

Actual F 2.47 2.98 2.01 2.66 2.11
Critical F 1.08 1.08 1.08 1.06 1.06

Note: The number of firms is 561. The significance level is 5 percent for a one-tailed test. Actual
F is the F statistic for testing the equality of slope coefficients across firms. For the F test, the
5 percent significance level is chosen. To detect serial correlation, Durbin’s t-test at the 5 percent
significance level is used.
Source: Hsiao and Tahmiscioglu (1997, Table 1).

capital intensity ratio of 0.55 as a cut-off point. Capital intensity is defined as
the minimum value of the ratio of capital stock to sales over the sample period.
It is the most statistically significant and most stable variable under different
specifications.

Table 6.7 presents the variable intercept estimates for the groups of less
and more capital intensive firms. The liquidity variable is highly significant in
all three variants of the liquidity model. There are also significant differences
in the coefficients of the liquidity variable across the two groups. However,
Table 6.7 also shows that the null hypothesis of the equality of slope coefficients
conditioning on the firm-specific effects is strongly rejected for all specifications

Table 6.6. Coefficient heterogeneity: slope estimates at first and third
quartiles across a sample of 561 firms

Slope estimates

Model (I/K)i,t−1 (LIQ/K)i,t−1 qit (S/K)i,t−1

1 .026, .405 .127, .529
2 −.028, .359 .062, .464 0, .039
3 .100, .295 .020, .488 −.005, .057
4 .110, .459 .007, .048
5 −.935, .367 .012, .077

Source: Hsiao and Tahmiscioglu (1997, Table 2).
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Table 6.7. Variable intercept estimation of models for less- and more-
capital-intensive firms

Variable intercept estimate

Variable Less-capital-intensive firms More-capital-intensive firms

(I/K)i,t−1 .265 .198 .248 .392 .363 .364
(.011) (.012) (.011) (.022) (.023) (.022)

(LIQ/K)i,t−1 .161 .110 .119 .308 .253 .278
(.007) (.007) (.007) (.024) (.027) (.025)

(S/K)i,t−1 .023 .025
(.001) (.006)

qit .011 .009
(.0006) (.002)

Actual F 2.04 1.84 2.22 2.50 2.19 2.10
Critical F 1.09 1.07 1.07 1.20 1.17 1.17
Numerator d.f. 834 1,251 1,251 170 255 255
Denominator d.f. 6,592 6,174 6,174 1,368 1,282 1,282
Number of firms 418 418 418 86 86 86

Note: The dependent variable is (I/K)it . Less-capital-intensive firms are those with minimum
(K/S) between 0.15 and 0.55 over the sample period. For more-capital-intensive firms, the mini-
mum (K/S) is greater than 0.55. The regressions include company-specific intercepts. Actual F
is the F statistic for testing the homogeneity of slope coefficients. For the F test, a 5 percent sig-
nificance level is chosen. The estimation period is 1974–1992. Standard errors are in parentheses.
Source: Hsiao and Tahmiscioglu (1997, Table 5).

for both groups. In other words, using the capital intensity ratio of 0.55 as a
cut-off point, there is still substantial heterogeneity within the groups.

As neither there appears to have a set of explanatory variables that ade-
quately explains the variation of βi1, nor can homogeneity be achieved by
classifying firms into groups, one is left with either treating �i as fixed and
different or treating �i as random draws from a common distribution. Within
the random-effects framework, individual differences are viewed as random
draws from a population with constant mean and variance. Therefore, it is
appropriate to pool the data and try to draw some generalization about the
population. On the other hand, if individual differences reflect fundamental
heterogeneity or if individual response coefficients depend on the values of
the included explanatory variables, estimation of the model parameters based
on the conventional random effects formulation can be misleading. To avoid
this bias, heterogeneity among individuals must be treated as fixed. In other
words, one must investigate investment behavior firm by firm, and there is no
advantage of pooling. Without pooling, the shortage of degrees of freedom
and multicollinearity can render the resulting estimates meaningless and make
drawing general conclusions difficult.

Table 6.8 presents the estimates of the mixed fixed- and random-coefficients
model of the form (6.6.24) by assuming that conditional on company-specific
effects, the remaining slope coefficients are randomly distributed around a
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Table 6.8. Estimation of mixed fixed- and random-coefficient models for
less- and more-capital-intensive firms

Estimate

Variable Less-capital-intensive firms More-capital-intensive firms

(I/K)i,t−1 .230 .183 .121 .321 .302 .236
(.018) (.017) (.019) (.036) (.037) (.041)

(LIQ/K)i,t−1 .306 .252 .239 .488 .449 .416
(.021) (.023) (.027) (.065) (.067) (.079)

(S/K)i,t−1 .024 .038
(.003) (.015)

qit .019 .022
(.003) (.008)

Number of firms 418 418 418 86 86 86

Note: The dependent variable is (I/K)it . The regressions include fixed firm-specific effects. The
estimation period is 1974–1992. Standard errors are in parentheses.
Source: Hsiao and Tahmiscioglu (1997, Table 7).

certain mean within each of less and more capital-intensive groups. To evaluate
the appropriateness of these specifications, Table 6.9 presents the comparison
of the recursive predictive density of the mixed fixed- and random-coefficients
models and the fixed-coefficients model assuming that each company has dif-
ferent coefficients for the three variants of the liquidity model by dividing

Table 6.9. Least-squares estimation of aggreate money demand function

Dependent Parameter Standard
variable Sample period Variable estimate error

M2 1980.IV–2000.IV Intercept 1.30462 0.28975
Real GDP −0.15425 0.04538
RM2(-1) 1.07022 0.02790
Bond rate −0.00186 0.00069

1992.I–2000.IV Intercept −0.16272 0.85081
Real GDP 0.00847 0.06772
RM2(-1) 1.00295 0.02248
Bond rate −0.00250 0.00140

M1 1980.IV–2000.IV Intercept 0.46907 0.21852
Real GDP −0.01857 0.01700
RM(-1) 0.98964 0.01249
Bond rate −0.00566 0.00135

1992.I–2000.IV Intercept −0.68783 2.10228
Real GDP 0.08414 0.14898
RM1(-1) 0.96038 0.019999
Bond rate −0.01005 0.00283

Source: Hsiao, Shen and Fujiki (2005, Table 5).
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the sample into pre- and post-1989 periods. The numbers reported in Table 6.8
are the logarithms of (6.6.28). The results indicate that the mixed fixed- and
random-coefficients model is favored over the fixed-coefficients model for
both groups. Similar comparisons between the liquidity model, Tobin’s q,
and sales accelerator models also favor liquidity as an important explanatory
variable.

Table 6.8 shows that the estimated liquidity coefficients are highly significant
and there are significant differences between different classes of companies.
The mean coefficient of the liquidity variable turns out to be 60 to 80 percent
larger for the more capital-intensive group than for the less capital-intensive
group. The implied long-run relationships between the liquidity variable and
the fixed investment variable are also statistically significant. For instance, for
model (6.8.1), a 10% increase in liquidity capital ratio leads to a 4% increase in
fixed investment capital ratio in the long run for the less capital-intensive group
compared to a 7% increase in the ratio for the more capital-intensive group.
The mixed model also yields substantially larger coefficient estimates of the
liquidity variable than those obtained from the variable intercept model. If the
coefficients are indeed randomly distributed and the explanatory variables are
positively autocorrelated, then this is precisely what one would expect from
the within-estimates (Pesaran and Smith 1995).

In short, there are substantial differences across firms in their investment
behavior. When these differences are ignored by constraining the parameters
to be identical across firms, the impact of liquidity variable on firm investment
is seriously underestimated. The mixed fixed- and random-coefficients model
appears to fit the data well. The mixed model allows pooling and allows some
general conclusions to be drawn about a group of firms. The estimation results
and prediction tests appear to show that financial constraints are the most
important factor affecting actual investment expenditure, at least for a subset
U.S. manufacturing companies.

6.8.2 Aggregate versus Disaggregate Analysis

A model is a simplification of the real world. The purpose is to capture the
essential factors that affect the outcomes. One of the tools for reducing the
real-world detail is through “suitable” aggregation. However, for aggregation
not to distort the fundamental behavioral relations among economic agents,
certain “homogeneity” conditions must hold between the micro-units. Many
economists have shown that if micro-units are heterogeneous, aggregation can
lead to very different relations among macro-variables from those of the micro-
relations (e.g., Lewbel 1992, 1994; Pesaran 2003; Stoker 1993; Theil 1954;
Trivedi 1985).

For instance, consider the simple dynamic equation,

yit = γiyi,t−1 + x′
it�i + αi + uit , | γi |< 1, i = 1, . . . , N, (6.8.6)
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where the error uit is covariance stationary. Equation (6.8.6) implies a long-run
relation between yit and xit ,

yit − x′
itbi − ηi = vit (6.8.7)

where bi = (1 − γi)−1�i , ηi = (1 − γi)−1αi, vit = (1 − γi)−1uit .
Let yt =∑N

i=1 yit and xt =∑N
i=1 xit ; then a similar long-run relation

between yt and xt ,

yt − x′
tb − c = vt , (6.8.8)

holds for a stationary vt if and only if either of the following conditions hold
(Hsiao, Shen, and Fujiki 2005):

(1) 1
1−γi �i = 1

1−γj �j for all i and j ; or

(2) if 1
1−γi �i �= 1

1−γj �j , then x′
t = (x′

1t , . . . , x′
Nt ) must lie on the null

space of D for all t , where D′ = ( 1
1−γ1

�′
1 − b′, . . . , 1

1−γ
N

�′
N − b′).

Panel data provide information on micro-units. They can be used to check
if either of these two suitable aggregation conditions hold. For instance, Hsiao,
Shen, and Fujiki (2005) find that the estimated aggregate relations between
(real) money demand, (real) GDP, and (5-year) bond rate are unstable and
sensitive to the time period dovered (see Table 6.9). Depending on the sample
period covered, the estimated relations are either of wrong sign or statistically
insignificant. They find that the estimated long-run income elasticities are 75.23
for M1 and 11.04 for M2, respectively, an incredible magnitude.

Hsiao, Shen, and Fujiki (2005) attribute the “incredible” results from aggre-
gate data analysis to the “heterogeneity” among the 47 prefectures of Japan.
When micro-relations are “heterogeneous,” one way is to estimate each micro-
relation separately. However, there may not have enough time series observa-
tions to obtain reliable micro-relations. Moreover, policymakers are interested
in average relations, not individual relations. A random coefficienet framework
is a convenient formulation that take account indivdiual heterogeneity while
still allowing the estimation of average relation. Table 6.10 provides a random
coefficient model estimates of the mean relation between (real) money demand
and (real) GDP and (5-year) bond rate for teh 40 Japanese perfectures. The esti-
mated short-run income elasticity for M1 and M2 is 0.88 and 0.47, respectively.
The long-run income elasticity is 2.56 for M1 and 1.01 for M2. These results
appear to be consistent with economic theory and the broadly observed facts
about Japan. The average growth rate for M2 in the 1980s is about 9.34 percent.
The inflation rate is 1.98 percent. The real M2 growth rate is 7.36 percent. The
real growth rate of GDP during this period is 4.13 percent. Taking account the
impact of 5-year bond rate fell from 9.332 percent at 1980.I to 5.767 at 1989.IV,
the results are indeed very close to the estimated long-run income elasticites
based on disaggregate data analysis.

If “heterogeneity” is indeed present in micro-units, then shall we predict
the aggregate outcome based on the summation of estimated micro-relations
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Table 6.10. Random-coefficient estimates of Japan Prefecture money
demand equation

M1 M2

Coefficient Standard error Coefficient Standard error

Lagged money 0.656 0.034 0.533 0.069
Income 0.881 0.114 0.473 0.064
Bond Rate −0.0476 0.006 −0.009 0.003
Constant −2.125 0.038 0.043 0.239

Variance–covariance matrix ofM1(γi,�
′
i)

0.015
−0.001 0.177

0.001 −0.059 0.0005
−0.024 −0.588 −0.023 2.017

Variance–covariance matrix ofM2 equation (γi,�
′
i).

0.068
−0.031 0.062

0.002 0.0003 0.0014
−0.13 −0.107 −0.009 0.8385

Source: Hsiao, Shen and Fujiki (2005, Table 1).

or shall we predict the aggregate outcomes based on the estimated aggregate
relations? Unfortunately, there is not much work on this specific issue. In
choosing between whether to predict aggregate variables using aggregate (Ha)
or disaggregate (Hd ) equations, Griliches and Grunfeld (1960) suggest using
the criterion of:

Choose Hd if e′
ded < e′

aea; otherwise choose Ha

where ed and ea are the estimates of the errors in predicting aggregate out-
comes under Hd and Ha , respectively. Hsiao, Shen, and Fujiki (2005) pro-
vide a simulation comparison on artificially generated time series data for
each prefecture based on the observed stylized facts. Table 6.11 presents the

Table 6.11. Error sum of squares (ESS) and predicted error sum of squares
(PES) for disaggregate and aggregate data

M1 M2

Aggregate Disaggregate Aggregate Disaggregate
data data data data

EES 3.78 × 109 1.35 × 106 3.59 × 1043 7.45 × 1042

PES 2.51 × 1010 5.75 × 107 9.55 × 1045 2.04 × 1043

Source: Hsiao, Shen and Fujiki (2005, Table VIII).
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within-sample fit comparisons in the first row and the post-sample prediction
comparison in the second row. Both criteria unambiguously favour predicting
aggregate outcomes by summing the outcomes from the disaggregate equations.

6.9 CORRELATED RANDOM-COEFFICIENTS
MODELS

6.9.1 Introduction

Standard random-coefficients models assume the variation of coefficients are
independent of the variation of regressors (e.g., Chapter 6, Section 6.2.1; Hsiao
and Pesaran 2009). In recent years, a great deal of attention has been devoted
to the correlated random coefficients model (e.g., Card 1995; Heckman and
Vytlacil 1998; Heckman, Urzua, and Vytlacil, 2006; Heckman, Schmierer, and
Urzua 2010). This type of model is motivated by the measurement of treatment
effect of a policy. For instance, in the study of return to schooling, it is plausible
that there are unmeasured ability or motivation factors that affect the return to
schooling and are also correlated with the level of schooling (e.g., Card 1995;
Heckman and Vytlacil 1998). As a matter of fact, Li and Tobias (2011) find
strong evidence that the amount of schooling attained is determined, in part, by
the individual’s own return to education. Specifically a one percentage increase
in the return to schooling is associated with roughly 0.2 more years of education.

A common formulation for a correlated random-coefficients model is to let

�i = �̄ + 	 i . (6.9.1)

Substituting (6.9.1) into the regression model (6.1.2) yields

yit = x′
it �̄ + x′

it	 i + uit , (6.9.2)

where

E	 i = 0, (6.9.3)

E	 i	
′
j =

{

, if i = j.
0, if i �= j. (6.9.4)

and

E(uit | xit ,�i) = 0, (6.9.5)

However, we now assume

Exit	 ′
i �= 0. (6.9.6)

Let vit = x′
itαi + uit ; then

E(vit | xit ) �= 0. (6.9.7)
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6.9.2 Identification with Cross-Sectional Data

If only cross-sectional observations of (y, x) are available, it is not possible to
identify �̄. Nor does the existence of instruments z1 such that

cov (z1, x) �= 0, (6.9.8)

cov (z1, u) = 0 (6.9.9)

alone is sufficient to identify �̄ because the instrumental variable estimator

ˆ̄β iv =
⎡⎣( N∑

i=1

xiz′
1i

)(
N∑
i=1

z1iz′
1i

)−1 ( N∑
i=1

z1ixi

)⎤⎦−1

·
⎡⎣( N∑

i=1

xiz′
1i

)(
N∑
i=1

z1iz′
1i

)−1 ( N∑
i=1

z1iyi

)⎤⎦

= �̄ +
⎡⎣( N∑

i=1

xiz′
1i

)(
N∑
i=1

z1iz′
1i

)−1 ( N∑
i=1

z1ix′
i

)⎤⎦−1

·
⎡⎣( 1

N

N∑
i=1

xiz′
1i

)(
1

N

N∑
i=1

z1iz′
1i

)−1 (
1

N

N∑
i=1

z1ix′
i	 i +

1

N

N∑
i=1

z1iui

)⎤⎦.
(6.9.10)

Although under (6.9.9) plim 1
N

∑n
i=1 z1iui = 0,

plim
1

N

n∑
i=1

z1ix′
i	 i

= E[z1E(x′	 | z1)]

= E[z1E(x′ | z1)E(	 | x, z1)], (6.9.11)

which is not equal 0 given (6.9.8) and the assumption that E(	 | x) �= 0.
To identify �̄, the variation of xi and �i need to be independent condi-

tional on z1i . In other words, we need exclusion restrictions. Heckman and
Vytlacil (1998) consider estimating �̄ assuming the existence of instruments
zi = (z1i , z2i) such that

xi = �z1i + vi (6.9.12)

�i = �z2i + �i (6.9.13)
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where z1i and z2i are m1 × 1 and m2 × 1 vectors of instruments that satisfy

E(ui | zi) = 0, (6.9.14)

E(�i | zi) = 0, (6.9.15)

E(vi | zi) = 0, (6.9.16)

and z2 contains elements that are not in z1.
Then, under (6.9.13), if� is known, an estimator for �̄ can be obtained from

the relation,

E(�) = �̄ = �E(z2). (6.9.17)

Substituting (6.9.12) and (6.9.13) into (6.9.14) yields

yi = x′
i�i + ui

= (z′
1i�

′ + v′
i)(�z2i + �i) + ui

= (z′
1i
1z′

2i)�1 + (z′
1i
2z′

2i)�2

+ · · · + (z′
1i
Kz′

2i)�K + E(v′
i�i | zi) + ε∗

i ,

(6.9.18)

where 
′
k and �′

k denote the kth row of � and �, respectively,

�∗
i = v′

i�z2i + �′
i�z1i + [v′

i�i − E(v′
i�i | zi)] + ui. (6.9.19)

Under (6.9.12)–(6.9.16), E(�∗
i | zi) = 0.

Therefore, a consistent estimator of � exists if

E(vi�′
i | z1i , z2i) = 
vη (6.9.20)

is not a function of z1i and z2i , and

rank

[
1

N

n∑
i=1

(
z2iz′

1i ⊗ �̂
) (
�̂′ ⊗ z1iz′

2i

)] = Km2. (6.9.21)

In other words, the necessary condition for the identification of E(�i) = �̄
for the correlated random-coefficients model (6.9.1)–(6.9.7) when only cross-
sectional data are available are that there existm1 instruments for xi and nonzero
m2 instruments for �i that satisfy (6.9.12)–(6.9.16) with m2

1 > Km2,m2 > 0,
and either (6.9.20) holds or E(v′

i�i | zi) is known.
The requirements that there exist nonzero z1 and z2 with m2

1 ≥ Km2, and
(6.9.20) holds are stronger than the usual requirement for the existence of an
instrumental variable estimator. As a matter of fact, the necessary condition
requires the existence of both z1 and z2 (i.e., m1 > 0,m2 > 0). Neither is
(6.9.20) an innocuous assumption. To the best of my knowledge, the conditional
covariance independent of z holds only if v,�, and z are joint normal.
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6.9.3 Estimation of the Mean Effects with Panel Data

When only cross-sectional data are available, the identification conditions of
average effects for a correlated random-coefficients model are very stringent
and may not be satisfied for many data sets. The instrumental variable approach
requires the estimation of a large number of parameters [(m1 +m2)K]. Multi-
collinearity and shortages of degrees of freedom could lead to very unreliable
estimates. On the other hand, panel data, by blending interindividual differ-
ences with intraindividual dynamics can offer several alternatives to get around
the difficulties of the correlations between the coefficients and the regressors
without the prior conjecture of the existence of certain instruments that satisfy
the exclusion restrictions. For ease of exposition, we suppose there are T time
series observations of (yit , xit ) for each individual i. Let (y′

i , x′
i) be the stacked

T time series observations of yit and x′
it for each i.

6.9.3.1 Group Mean Estimator

We note that condition on xi ,�i is a fixed constant. Under (6.9.5), the least-
squares estimator of the equation

yit = x′
it�i + uit , t = 1, . . . , T , (6.9.22)

yields an unbiased estimator of �i , �̂i , for each i with covariance matrix
σ 2
i (X′

iXi)
−1 if uit is independently distributed over t , where Xi denotes the

T ×K stacked (x′
it ). If uit is independently distributed over i, taking the sim-

ple average of �̂i as in Hsiao, Pesaran, and Tahmiscioglu (1999),

ˆ̄� = 1

N

N∑
i=1

�̂i . (6.9.23)

yields a consistent estimator of �̄ asN → ∞. If T > K , the estimator (6.9.23)
is consistent and asymptotically normally distributed asN → ∞, and

√
N ( ˆ̄� −

�̄) is asymptotically normally distributed with mean 0 and covariance matrix

Asy Cov ( ˆ̄�) =
[

+ 1

N

N∑
i=1

σ 2
i (X′

iXi)
−1

]
, (6.9.24)

if uit is independently distributed over i and t with variance σ 2
i .

6.9.3.2 Conventional Fixed-Effects Estimator

The estimator (6.9.23) is simple to implement. However, if T < K , we cannot
estimate �i using the ith individual’s time series observations (yi, x′

i). Nev-
ertheless, the conventional fixed-effects estimator can still allow us to obtain
consistent estimator of �̄ in a number of situations.

Let ȳi = 1
T

∑T
t=1 yit and x̄i = 1

T

∑T
t=1 xit . The conventional fixed-effects

estimator first takes the deviation of each observation from its time series mean,
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and then regresses (yit − ȳi) on (xit − x̄i) (e.g., Chapter 3). Model (6.9.2) leads
to

(yit − ȳi) = (xit − x̄i)′�̄ + (xit − x̄i)′	 i + (uit − ūi), i = 1, . . . , N,
t = 1, . . . , T ,

(6.9.25)

where ūi = 1
T

∑T
t=1 uit .

The fixed-effects estimator (6.9.25) will converge to �̄ provided

plim
1

NT

N∑
i=1

T∑
t=1

(xit − x̄i)(xit − x̄i)′	 i = 0 (6.9.26)

and

plim
1

NT

N∑
i=1

T∑
t=1

(xit − x̄i)(uit − ūi) = 0 (6.9.27)

Under (6.9.5), (6.9.27) holds. Under the assumption that xit and 	 i are lin-
early related with finite variance, then xit − x̄i does not involve 	 i , and
hence (6.9.26) holds by a law of large numbers. Hence the conventional
fixed-effects estimator is

√
N consistent and asymptotically normally dis-

tributed as N → ∞. The asymptotic covariance matrix of the conventional
fixed-effects estimator (3.2.5) can be approximated using the Newey–West
heteroscedasticity-autocorrelation consistent formula (Vogelsang 2012).

When (xit ,	 i) jointly have an elliptical distribution21 (e.g., Fang and Zhang
1990; Gupta and Varga 1993), xit and 	 i are linearly related. Another case
that the fixed-effects estimator can be consistent is that (xit ,	 i) are jointly
symmetrically distributed; then 1

NT

∑N
i=1(xit − x̄i)(xit − x̄i)′	 i will converge

to 0 even though xit have a mean different from 0.

6.9.3.3 Panel Pooled Least-Squares Estimator

The conventional fixed-effects (FE) estimator (3.2.5) can yield a consistent
estimator of �̄, under certain conditions. However, if 	 and xit are not linearly
related, it is inconsistent. Moreover, if xit contains time-invariant variables,
then the mean effects of time-invariant variables cannot be identified by the
conventional fixed-effects estimator. Furthermore, the FE estimator only makes
use of within- (group) variation. Because in general the between-group variation
is much larger than within-group variation, the FE estimator could also mean a
loss of efficiency. To get around these limitations on the FE estimator as well
as allowing the case that 	 i and xit are not linearly related, Hsiao, Li, Liang,
and Xie (2012) suggest a modified specification to obtain the estimate of the
mean effects.

21 Many commonly assumed distributions such as uniform, normal, Student’s t , double exponen-
tial, etc. belong to the family of elliptical distributions.
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To illustrate the basic idea, we first assume thatE(αi | xi) is a linear function
of xi . We will show later that a similar procedure can be applied if E(	 i | xi)
is a function of a higher order of xi .

A6.9.1: (x′
i ,	

′
i) are independently, identically distributed across i with

E(	 i | xi) = a + Bxi , (6.9.28)

where a andB are theK × 1 andK × TK constant vector and matrix,
respectively.

From (6.9.3) and (6.9.28), we have

Ex[E(	 i | xi)] = a + BE(xi) = 0. (6.9.29)

It follows that

E(	 i | xi) = B(xi − Exi) (6.9.30)

Substituting

	 i = E(	 i | xi) + �i (6.9.31)

and (6.9.30) into (6.9.1) yields

yit = x′
it �̄ + x′

itB(xi − Exi) + v∗
it , (6.9.32)

where

v∗
it = x′

it�i + uit . (6.9.33)

By construction, E(v∗
it | xi) = 0. Therefore, the least-squares regres-

sion of

yi = Xi�̄ +Xi ⊗ (xi − x̄)′ vec (B ′) + vi (6.9.34)

yields
√
N consistent and asymptotically normally distributed esti-

mator of �̄ when N → ∞, where x̄ = 1
N

∑N
i=1 xi , and v∗

i =
(v∗
i1, . . . , v

∗
iT )′ as long as

1

N

N∑
i=1

[
X′
iXi X′

iXi ⊗ (x′
i − x̄′)

(xi − x̄) ⊗X′
iXi (xi − x̄) ⊗X′

iXi ⊗ (xi − x̄)′

]
(6.9.35)

is a full rank matrix.

However, because

Eviv′
i = Xi
∗X′

i + σ 2
i IT , (6.9.36)

where 
∗ = E(�i�′
i), a more efficient estimator of �̄ will be a generalized

least-squares estimator (GLS) if 
∗ and σ 2
i are known. If 
∗ and σ 2

i are
unknown, we can apply the feasible GLS (FGLS) through a two-step procedure.

Similar reasoning can be applied if E(	 i | xi) is a higher order polynomial
of xi , say

E(	 i | xi) = a + Bxi + Cxi ⊗ xi . (6.9.37)
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then from Ex[E(	 i | xi)] = 0, it follows that then the least-squares regression
of

yit = x′
it �̄ + x′

it ⊗ (xi − Exi)′ vec (B ′)

+ x′
it ⊗ [(xi ⊗ xi) − E(xi ⊗ xi)]′ vec (C ′)

+ vit ,
(6.9.38)

is consistent when N → ∞, where vit = x′
it�i + uit and �i = 	 i − E(	 i |

xi).
LS (or FGLS) regression of (6.9.38) not only requires the estimation of a

large number of parameters, but it could also raise the issue of multicollinearity.
However, if xit is stationary, a more parsimonious approximation would be to
follow Mundlak (1978a) to replace (6.9.37) by

E(	 i | xi) = a + B̃ x̄i + C̃(x̄i ⊗ x̄i), (6.9.39)

where x̄i = 1
T

∑T
t=1 xit and regressing

yit = x′
it �̄ + x′

it ⊗ (x̄i − x̄)′ vec (B̃ ′)

+ x′
it ⊗ [(x̄i ⊗ x̄i) − (x̄ ⊗ x̄)]′ vec (C̃ ′)

+ vit ,
(6.9.40)

where x̄ = 1
N

∑N
i=1 xi , (x̄ ⊗ x̄) = 1

N

∑N
i=1[x̄i ⊗ x̄i].

Remark 6.9.1: When xit contains an intercept term, (6.9.35) is not a full rank
matrix. Let x′

it = (1, x̃it ), where x̃it denotes the (1 × (K − 1)) time-varying
explanatory variables. Let 	 ′

i = (α1i , 	̃
′
i) and �̄

′ = (�̄1,
˜̄�) be the correspond-

ing partitions, Rewrite (6.9.28) in the form

E

⎛⎝α1i |
| xit

	̃ i |

⎞⎠ =
(

b̃
′
1
B̃

)
(x̃it − E x̃it ). (6.9.41)

Then

E(yi | Xi) = Xi�̄ + e(xi − E ¯̃xi)′b̃
∗
1

+ X̃i ⊗ [X̃i − E(X̃i)]
′ vec (B̂ ′),

(6.9.42)

where b̃
∗
1 = T b1, X̃i is the T × (K − 1) stacked x̃′

it and e is a (T × 1) vector
of 1’s.

Therefore a consistent estimator of �̄
′ = (�̄1,

˜̄�) can be obtained by the
least-squares regression of

yit = β̄1 + x̃′
it

˜̄� + ( ¯̃xi − ¯̃x)′b̃1
∗

+ (x̃′
it ⊗ (x̃it − ¯̃x)′) vec (B̃ ′) + vit , i = 1, . . . , N,

t = 1, . . . , T .
(6.9.43)
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6.9.3.4 Semiparametric Estimates

The application of group mean estimator (6.9.23) requires precise T > K . If
T ≤ K (Hsiao, Li, Liang, and Xie 2012) suggest a semiparametric estimator
if there exists a q-dimensional random variable zi(q < T ≤ K) such that con-
ditional on zi ,�i and xit are conditionally independent, (�i ⊥ xit | zi), and
E[xitx′

it | zi] is a full rank matrix. Then E(	 i | xi , zi) = E(	 i | zi) ≡ g(zi).
The random variable zi can contain components of xi ; it could be a function of
xi ; say, the propensity score (Rosenbaum and Rubin 1983); or an instrument for
xit and �i (e.g., Heckman and Vytlacil 2001, 2005, 2007; Heckman, Schmierer,
and Urzua 2011); or simply the time series mean of the ith individual’s xit , x̄i
(Mundlak 1978a).

yit = x′
it �̄ + x′

itg(zi) + εit
= x′

it�(zi) + εit ,
(6.9.44)

where �(zi) = �̄ + g(zi) and Eg(zi) = 0. Given �(zi) and E(�(zi)) = �̄, a
consistent estimator of �̄ is

ˆ̄�semi = 1

N

N∑
i=1

�(zi). (6.9.45)

Hsiao, Li, Liang, and Xie (2012) suggest two types of semiparametric esti-
mators for �(z): local constant and local polynomial estimation methods. The
local constant estimator of �(z) is given by

�̂LC(z) =
⎛⎝ N∑
j=1

T∑
s=1

xjsx
′
jsKh,zj z

⎞⎠−1
N∑
j=1

T∑
s=1

xjsyjsKh,zj z, (6.9.46)

whereKh,zj z = �ql=1k(
zjl−zl
hl

) is the product kernel, k(·) is the univariate kernel
function, and zjl and zl are the lth-component of zj and z, respectively.

The local polynomial estimation minimizes the kernel weighted sum of
squared errors

N∑
j=1

T∑
s=1

⎡⎣yjs −
∑

0≤|k|≤p
x ′
jsbk(z)(zj − z)k

⎤⎦2

Kh,zj z, (6.9.47)

with respect to each bk(z) which gives an estimate of b̂k(z), and kb̂k(z) estimates
Dk�(z). Thus, �̂LP = b̂0(z) is the pth order local polynomial estimator of �(z).

Simple Monte Carlo studies conducted by Hsiao et al. (2012) show that if
the exact order ofE(	 i | xi) is known, the panel pooled least-squares estimator
performs well. If E(	 i | xi) is unknown, the group mean estimator ((6.9.23)
or (6.9.45)) semiparametric estimator is robust to a variety of joint distribution
of (	 i , xit ), but not the conventional fixed-effects estimator.
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APPENDIX 6A: COMBINATION OF TWO NORMAL
DISTRIBUTIONS

Suppose that conditional on X,�, y ∼ N (X�,�) and � ∼ N (A�̄, C). Then
the posterior of � and �̄ given y is

P (�, �̄ | y) ∝

exp

[
−1

2
{(y −X�)′�−1(y −X�) + (� − A�̄)′C−1(� − A�̄)}

]
,

(6A.1)

where “∝” denotes “proportionality.” Using the identity (e.g., Rao 1971, p. 33)

(D + BFB ′)−1 = D−1 −D−1B(B ′D−1B + F−1)−1B ′D−1. (6A.2)

and

(D + F )−1 = D−1 −D−1(D−1 + F−1)−1D−1, (6A.3)

we can complete the squares of

(� − A�̄)′C−1(� − A�̄) + (y −X�)′�−1(y −X�)

= �′C−1� + �̄
′
A′C−1A�̄ − 2�′C−1A�̄

+ y′�−1 y + �′X′�−1X� − 2�′X′�−1 y.

(6A.4)

Let

Q1 = [� − (X′�−1X + C−1)−1(X�−1 y + C−1A�̄)]′(C−1 +X′�−1X)

· [� − (X′�−1X + C−1)−1(X′�−1 y + C−1A�̄)].
(6A.5)

then

�′C−1� + �′X′�−1X� − 2�′C−1A�̄ − 2�′X′�−1 y

= Q1 − (X′�−1 y + C−1A�̄)′(X′�−1X + C−1)−1(X′�−1 y + C−1A�̄).
(6A.6)

Substituting (6A.6) into (6A.4) yields

Q1 + y′[�−1 −�−1X(X′�−1X + C−1)−1X′�−1]y

+ �̄
′
A′[C−1 − C−1(X′�−1X + C−1)−1C−1]A�̄

− 2�̄
′
A′C−1(X′�−1X + C−1)−1X′�−1 y

= Q1 + y′(XCX′ +�)−1 y + �̄
′
A′X′(XCX′ +�)−1XA�̄

− 2�̄
′
A′X′(XCX′ +�)−1 y

= Q1 +Q2 +Q3

(6A.7)
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where

Q2 = {�̄ − [A′X′(XCX′ +�)−1XA]−1[A′X′(XCX′ +�)−1y]}′

· [A′X′(XCX′ +�)−1XA] (6A.8)

· {�̄ − [A′X′(XCX′ +�)−1XA]−1[A′X′(XCX′ +�)−1 y]},
Q3 = y′{(XCX′ +�)−1 − (XCX′ +�)−1XA[A′X(XCX′ +�)−1XA]−1

· A′X′(XCX′ +�)−1} y (6A.9)

Since Q3 is a constant independent of � and �̄, we can write P (�, �̄ | y) in
the form of P (� | �̄, y)P (�̄ | y), which becomes

P {�, �̄ | y} ∝ exp

{
−1

2
Q1

}
exp

{
−1

2
Q2

}
(6A.10)

where exp{− 1
2Q1} is proportional to P (� | �̄, y) and exp {− 1

2Q2} is
proportional to P (�̄ | y). That is, P (� | �̄, y) is N{(X′�−1X + C−1)−1

(X′�−1 y + C−1A�̄), (C−1 +X′�−1X)−1} and P (�̄ | y) isN{[A′X′(XCX′ +
�)−1XA]−1[A′X′(XCX′ +�)−1 y]−1, [A′X′(XCX′ +�)−1XA]−1}.

Alternatively, we may complete the square of the left side of (6A.4) with
the aim of writing P (�, �̄ | y) in the form of P (�̄ | �, y)P (� | y),

Q4 + �′[X′�−1X + C−1 − C−1A(A′CA)−1A′C−1]�

− 2�′X′�−1 y + y′�−1 y

= Q4 +Q5 +Q3,

(6A.11)

where

Q4 = [�̄ − (A′C−1A)−1A′C−1�]′(A′C−1A)

· [�̄ − (A′C−1A)−1A′C−1�], (6A.12)

Q5 = [� −D−1X′�−1 y]′D[� −D−1X′�−1 y]. (6A.13)

and

D = X′�−1X + C−1 − C−1A(A′C−1A)−1A′C−1. (6A.14)

Therefore, P (�̄ | �, y) ∼ N{(A′C−1A)−1C−1�, (A′C−1A)−1} and P (� |
y) ∼ N{D−1X′�−1 y,D−1}.



CHAPTER 7

Discrete Data

7.1 INTRODUCTION

In this chapter we consider situations in which an analyst has at his disposal
a random sample of N individuals, having recorded histories indicating the
presence or absence of an event in each of T equally spaced discrete time
periods. Statistical models in which the endogenous random variables take
only discrete values are known as discrete, categorical, qualitative-choice, or
quantal-response models. The literature, both applied and theoretical, on this
subject is vast. Amemiya (1981), Maddala (1983), and McFadden (1976, 1984)
have provided excellent surveys. Thus, the focus of this chapter is only on con-
trolling for unobserved characteristics of individual units to avoid specification
bias. In Section 7.2, we briefly review some popular parametric specifications
for cross-sectional data. Sections 7.3 and 7.4 discuss inference of panel paramet-
ric and semiparametric static models with heterogeneity, respectively. Section
7.5 discusses dynamic models. Section 7.6 discusses alternative approaches to
identify state dependence.

7.2 SOME DISCRETE-RESPONSE MODELS FOR
CROSS-SECTIONAL DATA

In this section we briefly review some widely used discrete-response models
for cross-sectional data. We suppose there are observations forK + 1 variables
(yi, xi), i = 1, . . . , N , where the dependent variable yi can take only two val-
ues, which for convenience and without any loss of generality will be the value
of 1 if an event occurs and 0 if it does not. Examples of this include purchases
of durables in a given year, participation in the labor force, the decision to enter
college, and the decision to marry.

The discrete outcome of yi can be viewed as the observed counterpart
of a latent continuous random variable crossing a threshold. Suppose that
the continuous latent random variable, y∗

i , is a linear function of a vector of
explanatory variable, xi ,

y∗
i = β ′xi + vi, (7.2.1)

230
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where the error term vi is independent of xi with mean 0. Suppose, instead of
observing y∗

i , we observe yi , where

yi =
{

1, if y∗
i > 0,

0, if y∗
i ≤ 0.

(7.2.2)

The expected value of yi is then the probability that the event will occur,

E(yi | xi) = 1 · Pr(vi > −β ′xi) + 0 · Pr(vi ≤ −β ′xi)

= Pr(vi > −β ′xi) (7.2.3)

= Pr(yi = 1 | xi).

When the probability law of generating vi follows a two-point distribution
(1 − β ′xi) and (−β ′xi), with probabilities β ′xi and (1 − β ′xi), respectively, we
have the linear-probability model

yi = β ′xi + vi (7.2.4)

with Evi = β ′xi(1 − β ′xi) + (1 − β ′xi)(−β ′xi) = 0. When the probability
density function of vi is a standard normal density function, 1√

2π
exp (− v2

2 ) =
φ(v), we have the probit model,

Pr(yi = 1 | xi) =
∫ ∞

−β ′xi
φ(vi)dvi

=
∫ β ′xi

−∞
φ(vi)dvi = �(β ′xi). (7.2.5)

When the probability density function is a standard logistic,

exp(vi)

(1 + exp(vi))2
= [(1 + exp(vi))(1 + exp(−vi))]−1

we have the logit model

Pr(yi = 1 | xi) =
∫ ∞

−β ′xi

exp(vi)

(1 + exp(vi))2
dvi = exp(β ′xi)

1 + exp(β ′xi)
. (7.2.6)

Letting F (β ′xi) = E(yi | xi), the three commonly used parametric models
for the binary choice may be summarized with a single index w as:

Linear-Probability Model

F (w) = w. (7.2.7)

Probit model

F (w) =
∫ w

−∞

1√
2π
e−

v2

2 dv = �(w) (7.2.8)

Logit model

F (w) = ew

1 + ew . (7.2.9)
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The linear-probability model is a special case of the linear regression model
with heteroscadastic variance, β ′xi(1 − β ′xi). It can be estimated by least-
squares or weighted least-squares (Goldberger 1964). But it has an obvious
defect in that β ′xi is not constrained to lie between 0 and 1 as a probability
should, whereas the probit and logit models do. The probability functions used
for the probit and logit models are the standard normal distribution and the
logistic distribution, respectively. We use cumulative standard normal because
in the dichotomy case, the probability an event occurs depends only on ( 1

σ
)β ′x,

where σ denotes the standard deviation of a normal density. There is no way to
identify the variance of a normal density. The logit probability density function
is symmetric around 0 and has a variance of π2/3. Because they are distribution
functions, the probit and logit models are bounded between 0 and 1.

The cumulative normal distribution and the logistic distribution are very
close to each other, except that the logistic distribution has sightly heavier tails
(Cox, 1970). Moreover, the cumulative normal distribution � is reasonably
well approximated by a linear function for the range of probabilities between
0.3 and 0.7. Amemiya (1981) has suggested an approximate conversion rule
for the coefficients of these three models. Let the coefficients for the linear-
probability, probit, and logit models be denoted as β̂LP , β̂�, β̂L, respectively.
Then

β̂L � 1.6 β̂�,

β̂LP � 0.4 β̂� except for the constant term, (7.2.10)

and

β̂LP � 0.4 β̂� + 0.5 for the constant term.

For random sample of N individuals, the likelihood function for these three
models can be written in general form as

L =
N∏
i=1

F (β ′xi)yi [1 − F (β ′xi)]1−yi . (7.2.11)

Differentiating the logarithm of the likelihood function yields the vector of first
derivatives and the matrix of second-order derivatives as

∂ log L

∂�
=

N∑
i=1

yi − F (�′xi)
F (�′xi)[1 − F (�′xi)]

F ′(�′xi)xi (7.2.12)

∂ log L

∂β∂β ′ =
N∑
i=1

{
−
[

yi

F 2(β ′xi)
+ 1 − yi

[1 − F (β ′xi)]2

]
[F ′(β ′xi)]2

+
[

yi − F (β ′xi)
F (β ′xi)[1 − F (β ′xi)]

]
F ′′(β ′xi)

}
xix′

i (7.2.13)
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where F ′(β ′xi) and F ′′(β ′xi) denote the first and second derivatives of F (β ′xi)
with respect toβ ′xi . If the likelihood function (7.2.11) is concave, as in the mod-
els discussed here (e.g., Amemiya 1985, p. 273), a Newton–Raphson method,

β̂(j ) = β̂(j−1) −
(
∂2logL

∂β∂β ′

)−1

β=β̂(j−1)

(
∂logL

∂β

)
β=β̂(j−1)

, (7.2.14)

or a method of scoring,

β̂(j ) = β̂(j−1) −
[
E
∂2logL

∂β∂β ′

]−1

β=β̂(j−1)

(
∂logL

∂β

)
β=β̂(j−1)

, (7.2.15)

can be used to find the maximum-likelihood estimator of β, where β̂(j ) denotes
the j th iterative solution.

In the case in which there are repeated observations of y for a specific
value of x, the proportion of y = 1 for individuals with the same characteristic,
x, is a consistent estimator of p = F (β ′x). Taking the inverse of this func-
tion yields F−1(p) = β ′x. Substituting p̂ for p, we have F−1(p̂) = β ′x + ζ ,
where ζ denotes the approximation error of using F−1(p̂) for F−1(p). Since
ζ has a nonscalar covariance matrix, we can apply the weighted-least-squares
method to estimate β. The resulting estimator, which is generally referred to as
the minimum-chi-square estimator, has the same asymptotic efficiency as the
maximum-likelihood estimator (MLE) and computationally may be simpler
than the MLE. Moreover, in finite samples, the minimum-chi-square estimator
may even have a smaller mean squared error than the MLE (e.g., Amemiya
1974, 1976, 1980a; Berkson 1944, 1955, 1957, 1980; Ferguson 1958; Ney-
man 1949). However, despite its statistical attractiveness, the minimum-chi-
square method is probably less useful than the maximum-likelihood method
in analyzing survey data than it is in the laboratory setting. Application of the
minimum-chi-square method requires repeated observations for each value of
the vector of explanatory variables. In survey data, most explanatory variables
are continuous. The survey sample size has to be extremely large for the pos-
sible configurations of explanatory variables. Furthermore, if the proportion of
y = 1 is 0 or 1 for a given x, the minimum-chi-square method for that value of x
is not defined, but those observations can still be utilized to obtain the MLE. For
this reason, we shall confine our attention to the maximum-likelihood method.1

When the dependent variable yi can assume more than two values, say yi
takes mi + 1 possible values, 0, 1, . . . , mi , we can introduce (mi + 1) binary
variables with

yij =
{

1, if yi = j,
0, otherwise,

(7.2.16)

i = 1, . . . , N, j = 0, 1, . . . , mi.

1 For a survey of the minimum-chi-square method, see Hsiao (1985b).
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Let Prob (yi = j ) = Prob (yij = 1) = Fij . If the sample is randomly drawn,
the likelihood function takes the form

L =
N∏
i=1

mi∏
j=1

F
yij
ij , (7.2.17)

which is similar to the binary case (7.2.11). The complication is in the specifi-
cation of Fij . Once Fij is specified, general results concerning the methods of
estimation and inference of the dichotomous case also apply here.

If there is a natural ordering of the outcomes, say

yi =
⎧⎨⎩

0, if the price of a home bought < $49, 999,
1, if the price of a home bought = $50, 000–$99, 999,
2, if the price of a home bought > $100, 000.

one can use a single latent response function

y∗
i = xi� + vi (7.2.18)

to characterize the ordered outcomes with

yi =
⎧⎨⎩

0 if y∗
i < c1,

1 if c1 < y
∗
i < c2,

2 if c2 < y
∗
i .

(7.2.19)

If the outcomes are unordered, for instance,

yi =
⎧⎨⎩

1, if mode of transport is car,
2, if mode of transport is bus,
3, if mode of transport is train,

then we will have to use a multivariate probability distribution to characterize
the outcomes. One way to postulate unordered outcomes is to assume that the
j th alternative is chosen because it yields higher utility than the utility of other
alternatives. Let the ith individual’s utility of choosing j th alternative be

y∗
ij = x′

iβj + vij , j = 0, 1, . . . , mi. (7.2.20)

Then

Prob(yi = j | xi) = Prob(y∗
ij > y

∗
i�, ∀ � �= j | xi)

= Fij . (7.2.21)

The probability Fij is derived from the joint distribution of (vio, . . . , vim). If
(vio, . . . , vim) follows a multivariate normal distribution, then (7.2.21) yields
a multivariate probit. If the errors vij are independently, identically distributed
with type I extreme value distribution, (7.2.21) yields a conditional logit model
(McFadden 1974). However, contrary to the univariate case, the similarity
between the probit and logit specifications no longer holds. In general, they
will lead to different inferences. The advantage of multivariate probit model
is that it allows the choice among alternatives to have arbitrary correlation.
The disadvantage is that the evaluation of Prob(yi = j ) involves multiple
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integrations that can be computationally infeasible. The advantage of the con-
ditional logit model is that the evaluation of Prob(yi = j ) does not involve mul-
tiple integration. The disadvantage is that the relative odds between two alter-
natives are independent of the presence or absence of the other alternatives-the
so-called independence of irrelevant alternatives. If the errors among alterna-
tives are not independently distributed, this can lead to grossly false predictions
of the outcomes. For discussion of model specification tests, see Hausman and
McFadden (1984), Hsiao (1992b), Lee (1982, 1987), Small and Hsiao (1985).

Because in many cases, a multi-response model can be transformed into a
dichotomous model characterized by the

∑N
i=1(mi + 1) binary variables as in

(7.2.16),2 for ease of exposition, we shall concentrate only on the dichotomous
model.3

When there is no information about the probability laws of generating vi ,
a semi-parametric approach can be used to estimate β subject to certain nor-
malization rule (e.g., Klein and Spady 1993; Manski 1985; Powell, Stock, and
Stoker 1989). However, whether an investigator takes a parametric or semi-
parametric approach, the cross-sectional model assumes that the error term vi
in the latent response function (7.2.1) is independently, identically distributed
and is independent of xi . In other words, conditional on xi , everyone has the
same probability that an event will occur. It does not allow the possibility that
the average behavior given x can be different from individual probabilities,
that is, that it does not allow Pr(yi = 1 | x) �= Pr(yj = 1 | x). The availabil-
ity of panel data provides the possibility to distinguish average behavior from
individual behavior by decomposing the error term, vit , into

vit = αi + λt + uit (7.2.22)

where αi and λt denote the effects of omitted individual-specific and time-
specific variables, respectively. Then Prob(yi = 1 | x, αi) �= Prob(yj = 1 |
x, αj ) if αi �= αj . In this chapter, we demonstrate the misspecifications that
can arise because of failure to control for unobserved characteristics of the
individuals in panel data and discuss possible remedies.

7.3 PARAMETRIC APPROACH TO STATIC MODELS
WITH HETEROGENEITY

Statistical models developed for analyzing cross-sectional data essentially
ignore individual differences and treat the sum of the individual-specific effect
and the time-varying omitted-variable effect as a pure chance event. However,
as the example in Chapter 1 shows, a discovery of a group of married women
having an average yearly labor participation rate of 50 percent could lead to

2 The variable yi0 is sometimes omitted from the specification because it is determined by yi0 =
1 −
mj=1yij . For instance, a dichotomous model is often simply characterized by a single binary
variable yi , i = 1, . . . , N .

3 It should be noted that in generalizing the results of the binary case to the multiresponse case,
we should allow for the fact that although yij and yi′j are independent for i �= i′, yij and yij ′ are
not, because Cov(yij , yij ′ ) = −FijFij ′ .
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diametrically opposite inferences. At one extreme, each woman in a homoge-
neous population could have a 50 percent chance of being in the labor force
in any given year, whereas at the other extreme 50 percent of women in a het-
erogeneous population might always work and 50 percent never work. Either
explanation is consistent with the finding relying on given cross-sectional data.
To discriminate among the many possible explanations, we need information
on individual labor-force histories in different subintervals of life cycle. Panel
data, having information on intertemporal dynamics of individual entities, pro-
vide the possibility to separate a model of individual behavior from a model of
average behavior of a group of individuals.

Suppose there are sample observations (yit , xit ) for i = 1, . . . , N and t =
1, . . . , T , where yit is binary with yit = 1 if y∗

it given by (7.2.1) is greater than 0
and 0 otherwise. For simplicity, we shall assume that the heterogeneity across
cross-sectional units is time invariant,4 and these individual-specific effects
are captured by decomposing the error term vit in (7.2.1) as αi + uit . When
αi are treated as fixed, Var (vit | αi) = Var(uit ) = σ 2

u . When αi are treated as
random, we assume thatEαi = Eαiuit = 0, and Var(vit ) = σ 2

u + σ 2
α . However,

as discussed earlier, when the dependent variables are binary, the scale factor
is not identifiable. Thus, for ease of exposition, we normalize the variance of
u, σ 2

u , to be equal to 1 for the parametric specifications discussed in Section 7.2.
The existence of such unobserved permanent components allows individuals

who are homogeneous in terms of their observed characteristics to be hetero-
geneous in response probabilities, F (β ′xit + αi). For example, heterogeneity
will imply that the sequential-participation behavior of a woman, F (β ′x + αi),
within a group of women with observationally identical x differ systematically
from F (β ′x) or the average behavior of the group,

∫
F (β ′x + α)dH (α | x),

where H (α | x) gives the population probability (or empirical distribution) for
α conditional on x.5 In this section, we discuss the statistical inference of the
common parameters β based on a parametric specification of F (·).

7.3.1 Fixed-Effects Models

7.3.1.1 Maximum-Likelihood Estimator

If the individual specific effect, αi , is assumed to be fixed,6 then both αi and β
are unknown parameters to be estimated for the model Prob(yit = 1 | xit , αi) =
F (β ′xit + αi). When T is finite, there is only a limited number of observations
to provide information on αi . Thus, we have the familiar incidental-parameter
problem (Neyman and Scott 1948). Any estimation of the αi is meaningless

4 For a random-coefficient formulation of probit models, see Hausman and Wise (1978).
5 Note that, in general,

∫
F (�′x + α)dH (α | x) �= F [�′x + E(α | x)].

6 Note that for notational ease, we now use only αi instead of both αi and α∗
i . Readers should

bear in mind that whenever αi are treated as fixed, they are not viewed as the deviation from the
common mean μ; rather, they are viewed as the sum of μ and the individual deviation. On the
other hand, when αi are treated as random, we assume that Eαi = 0.
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if we intend to judge the estimators by their large-sample properties. We shall
therefore concentrate on estimation of the common parameters, β.

Unfortunately, contrary to the linear-regression case where the individual
effects αi can be eliminated by taking a linear transformation such as first
difference, in general, it is hard to find simple transformation to eliminate the
incidental parameters from a nonlinear model. The MLEs for αi and β are not
independent of each other for the discrete-choice models. When T is fixed, the
inconsistency of α̂i is transmitted into the MLE for β. Hence, even if β is the
same for all i and t the MLE of β remains inconsistent if T is finite no matter
how large N is.

We demonstrate the inconsistency of the MLE for β by considering a logit
model. The log-likelihood function for this model is

log L = −
N∑
i=1

T∑
t=1

log [1 + exp (β ′xit + αi)] +
N∑
i=1

T∑
t=1

yit (β
′xit + αi).

(7.3.1)

For ease of illustration, we consider a special case of T = 2, one explanatory
variable, with xi1 = 0, and xi2 = 1. Then the first-derivative equations are

∂ log L

∂β
=

N∑
i=1

2∑
t=1

[
− eβxit+αi

1 + eβxit+αi + yit
]

xit

=
N∑
i=1

[
− eβ+αi

1 + eβ+αi + yi2
]

= 0,
(7.3.2)

∂ log L

∂αi
=

2∑
t=1

[
− eβxit+αi

1 + eβxit+αi + yit
]

= 0 (7.3.3)

Solving (7.3.3), we have

α̂i = ∞ if yi1 + yi2 = 2,
α̂i = −∞ if yi1 + yi2 = 0,
α̂i = − β

2 if yi1 + yi2 = 1.
(7.3.4)

Inserting (7.3.4) into (7.3.2) and lettingn1 denote the number of individuals with
yi1 + yi2 = 1 and letting n2 denote the number of individuals with yi1 + yi2 =
2, we have7

N∑
i=1

eβ+αi

1 + eβ+αi = n1
eβ/2

1 + eβ/2 + n2 =
N∑
i=1

yi2. (7.3.5)

Therefore,

β̂ = 2

{
log

(
N∑
i=1

yi2 − n2

)
− log

(
n1 + n2 −

N∑
i=1

yi2

)}
. (7.3.6)

7 The number of individuals with yi1 + yi2 = 0 is N − n1 + n2.
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By a law of large numbers (Rao 1973, Chapter 2),

plimN→∞
1

N

(
N∑
i=1

yi2 − n2

)

= 1

N

N∑
i=1

Prob(yi1 = 0, yi2 = 1 | β, αi)

= 1

N

N∑
i=1

eβ+αi

(1 + eαi )(1 + eβ+αi )
,

(7.3.7)

plimN→∞
1

N

(
n1 + n2 −

N∑
i=1

yi2

)

= 1

N

N∑
i=1

Prob(yi1 = 1, yi2 = 0 | β, αi)

= 1

N

N∑
i=1

eαi

(1 + eαi )(1 + eβ+αi )
.

(7.3.8)

Substituting α̂i = β
2 into (7.3.7) and (7.3.8) yields

plimN→∞β̂ = 2β, (7.3.9)

which is not consistent.

7.3.1.2 Conditions for the Existence of a Consistent Estimator

Neyman and Scott (1948) have suggested a general principle to find a consistent
estimator for the (structural) parameter β in the presence of the incidental
parameters αi .8 Suppose the dimension of β is K , their idea is to find K
functions

�Nj (y1, . . . , yN | β), j = 1, . . . , K. (7.3.10)

that are independent of the incidental parameters αi and have the property
that when β are the true values �Nj (y1, . . . , yN | β) converges to some known
constant, say 0, in probability asN tends to infinity. Then an estimator β̂ derived
by solving �Nj

(
y1, . . . , yN | β̂) = 0 is consistent under suitable regularity

conditions. For instance, β̂∗ = (1/2)β̂ for the foregoing example of a fixed-
effect logit model (7.3.1)–(7.3.3) is such an estimator.

In the case of a linear-probability model, either taking first difference over
time or taking difference with respect to the individual mean eliminates the

8 We call � the structural parameter because the value of � characterizes the structure of the
complete sequence of random variables. It is the same for all i and t . We call αi an incidental
parameter to emphasize that the value of αi changes when i changes.
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individual-specific effect. The least-squares regression of the differenced equa-
tions yields a consistent estimator for β when N tends to infinity.

But in the general nonlinear models, simple forms of �(·) are not always
easy to find. For instance, in general, we do not know the probability limit
of the MLE of a fixed-effects logit model. However, if a minimum sufficient
statistic τi for the incidental parameter αi exists and is not dependent on the
structural parameter β, the conditional density,

f ∗(yi | β, τi) = f (yi | β, αi)
g(τi | β, αi) for g(τi | β, αi) > 0, (7.3.11)

no longer depends on αi .9 Andersen (1970, 1973) has shown that maximizing
the conditional density of y1, . . . , yN , given τ1, . . . , τN ,

N∏
i=1

f ∗(yi | β, τi), (7.3.12)

yields the first-order conditions �Nj (y1, . . . , yN | β̂, τ1, τ2, . . . , τN ) = 0, for
j = 1, . . . , K . Solving these functions will give a consistent estimator of the
common (structural) parameter β under mild regularity conditions.10

To illustrate the conditional maximum-likelihood method, we use the logit
model as an example. The joint probability of yi is

Prob
(
yi
) = exp {αi

∑T
t=1 yit + β ′∑T

t=1 xit yit }∏T
t=1[1 + exp (β ′xit + αi)]

. (7.3.13)

The logit form has the property that the denominator of Prob(yit ) is always [1 +
exp (�′xit + αi)] independent of whether yit = 1 or 0. On the other hand, for
any sequence of dummy variable dijt ,Dij = (dij1, dij2, . . . , dijT ) where dijt =
0 or 1, the numerator of Prob(Dij ) always has the form exp(αi

∑T
t=1 dijt ) ·

exp [�′∑T
t=1 xit dij t ]. It is clear that

∑T
t=1 yit is a minimum sufficient statistic

for αi . The conditional probability for yit given
∑T
t=1 yit is

Prob

(
yi |

T∑
t=1

yit

)
=

exp
[
β ′∑T

t=1 xit yit
]

∑
Dij∈B̄i exp {β ′∑T

t=1 xit dij t }
, (7.3.14)

where B̄i = {Dij = (dij1, . . . , dijT ) | dijt = 0 or 1, and
∑T
t=1 dijt =∑T

t=1 yit ,

j = 1, 2, . . . , T !
s!(T−s)! }, is the set of all possible distinct sequence

9 Suppose that the observed random variables y have a certain joint distribution function that
belongs to a specific family J of distribution functions. The statistic S(y) (a function of the
observed sample values y) is called a sufficient statistic if the conditional expectation of any
other statistic H (y), given S(y), is independent of J . A statistic S∗(y) is called a minimum
sufficient statistic if it is a function of every sufficient statistic S(y) for J . For additional
discussion, see Zacks (1971, Chapter 2).

10 When uit are independently normally distributed, the LSDV estimator of � for the linear static
model is the conditional MLE (Cornwell and Schmidt 1984).
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(dij1, dij2, . . . , dijT ) satisfying
∑T
t=1 dijt =∑T

t=1 yit = s. There are T + 1 dis-
tinct alternative sets corresponding to

∑T
t=1 yit = 0, 1, . . . , T . Groups for

which
∑T
t=1 yit = 0 or T contribute 0 to the likelihood function, because the

corresponding probability in this case is equal to 1 (with αi = −∞ or ∞). So
only T − 1 alternative sets are relevant. The alternative sets for groups with∑T
t=1 yit = s have (

T

S
) elements, corresponding to the distinct sequences of T

trials with s success.
Equation (7.3.14) is in a conditional logit form (McFadden 1974), with

the alternative sets (B̄i) varying across observations i. It does not depend on
the incidental parameters, αi . Therefore, the conditional maximum-likelihood
estimator of β is consistent under mild conditions. For example, with T = 2,
the only case of interest is yi1 + yi2 = 1. The two possibilities are ωi = 1, if
(yi1, yi2) = (0, 1), and ωi = 0, if (yi1, yi2) = (1, 0).

The conditional probability of ωi = 1 given yi1 + yi2 = 1 is

Prob (ωi = 1 | yi1 + yi2 = 1) = Prob (ωi = 1)

Prob (ωi = 1) + Prob (ωi = 0)

= exp [β ′(xi2 − xi1)]

1 + exp[β ′(xi2 − xi1)]

= F [β ′(xi2 − xi1)].

(7.3.15)

Equation (7.3.15) is in the form of a binary logit function in which the two
outcomes are (0,1) and (1,0), with explanatory variables (xi2 − xi1). The con-
ditional log-likelihood function is

logL∗ =
∑
i∈B̃1

{ωi log F [β ′(xi2 − xi1)]

+ (1 − ωi) log (1 − F [β ′(xi2 − xi1)])}, (7.3.16)

where B̃1 = {i | yi1 + yi2 = 1}.
Although B̃1 is a random set of indices, Chamberlain (1980) has shown

that the inverse of the information matrix based on the conditional-likelihood
function provides an asymptotic covariance matrix for the conditional MLE of
β whenN tends to infinity. This can be made more explicit by defining di = 1,
if yi1 + yi2 = 1, and di = 0, otherwise, for the foregoing case in which T = 2.
Then we have

JB̃1
= ∂2log L∗

∂β∂β ′ = −
N∑
i=1

diF [β ′(xi2 − xi1)]

{1 − F [β ′(xi2 − xi1)]}(xi2 − xi1) · (xi2 − xi1)′. (7.3.17)
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The information matrix is

J = E(JB̃1
) = −

N∑
i=1

PiF [β ′(xi2 − xi1)] (7.3.18)

{1 − F [β ′(xi2 − xi1)]}(xi2 − xi1) · (xi2 − xi1)′,

where Pi = E(di | αi) = F (β ′xi1 + αi)[1 − F (β ′xi2 + αi)] + [1 − F (β ′xi1 +
αi)] F (β ′xi2 + αi). Because di are independent, with Edi = Pi , and both F
and the variance of di are uniformly bounded, by a strong law of large numbers,

1

N
JB̃1

− 1

N
J almost surely → 0 as N → ∞ (7.3.19)

if
N∑
i=1

1

i2
mim′

i <∞,

where mi replaces each element of (xi2 − xi1) by its square. The condition for
convergence clearly holds if xit is uniformly bounded.

For the case of T > 2, there is no loss of generality in choosing the sequence
Di1 = (di11, . . . , di1T ,

∑T
t=1 di1t =∑T

t=1 yit = s, 1 ≤ s ≤ T − 1), as the nor-
malizing factor. Hence we may rewrite the conditional probability (7.3.14)
as

Prob

(
yi |

T∑
t=1

yit

)
= exp {β ′∑T

t=1 xit (yit − di1t )}
1 +∑Dij ε(B̄i−Di1) exp {β ′∑T

t=1 xit (dijt − di1t )}
(7.3.20)

Then the conditional log-likelihood function takes the form

log L∗ =
∑
i∈C

{
β ′

T∑
t=1

xit (yit − di1t )

− log

⎡⎣1 +
∑

Dij∈(B̃i−Di1)

exp

{
β ′

T∑
t=1

xit (dijt − di1t )
}⎤⎦⎫⎬⎭

(7.3.21)

where C = {i |∑T
t=1 yit �= T ,∑T

t=1 yit �= 0}.
Although we can find simple transformations of linear-probability and logit

models that will satisfy the Neyman–Scott principle, we cannot find simple
functions for the parameters of interest that are independent of the nuisance
parameters αi for probit models. That is, there does not appear to exist a
consistent estimator of β for the fixed-effects probit models.
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7.3.1.3 Some Monte Carlo Evidence

Given that there exists a consistent estimator of β for the fixed-effects logit
model, but not for the fixed-effects probit model, and that in the binary case
probit and logit models yield similar results, it appears that a case can be made
for favoring the logit specification because of the existence of a consistent
estimator for the structural parameter β. However, in the multivariate case,
logit and probit models yield very different results. In this situation it will
be useful to know the magnitude of the bias if the data actually call for a
fixed-effects probit specification.

Heckman (1981b) conducted a limited set of Monte Carlo experiments to get
some idea of the order of bias of the MLE for the fixed-effects probit models.
His data were generated by the model

y∗
it = βxit + αi + uit , i = 1, 2, . . . , N, t = 1, . . . , T , (7.3.22)

and

yit =
{

1, if y∗
it > 0,

0, otherwise.

The exogenous variable xit was generated by a Nerlove (1971a) process,

xit = 0.1t + 0.5xi,t−1 + εit , (7.3.23)

where εit is a uniform random variable having mean 0 and range −1/2 to 1/2.
The variance σ 2

u was set at 1. The scale of the variation of the fixed effect, σ 2
α ,

is changed for different experiments. In each experiment, 25 samples of 100
individuals (N = 100) were selected for eight periods (T = 8).

The results of Heckman’s experiment with the fixed-effects MLE of probit
models are presented in Table 7.1. For β = −0.1, the fixed-effects estimator
does well. The estimated value comes very close to the true value. For β = −1
or β = 1, the estimator does not perform as well, but the bias is never more
than 10 percent and is always toward 0. Also, as the scale of the variation in
the fixed-effects decreases, so does the bias.11

7.3.2 Random-Effects Models

When the individual specific effects αi are treated as random, we may still
use the fixed effects estimators to estimate the structural parameters β. The
asymptotic properties of the fixed effects estimators of β remain unchanged.
However, if αi are random, but are treated as fixed, the consequence, at its
best, is a loss of efficiency in estimating β, but it could be worse, namely,

11 Similar results also hold for the MLE of the fixed-effects logit model. Wright and Douglas
(1976), who used Monte Carlo methods to investigate the performance of the MLE, found
that when T = 20, the MLE is virtually unbiased, and its distribution is well described by a
limiting normal distribution, with the variance–covariance matrix based on the inverse of the
estimated-information matrix.
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Table 7.1. Average values of β̂ for the
fixed-effects probit model

β̂

σ 2
α β = 1 β = −0.1 β = −1

3 0.90 −0.10 −0.94
1 0.91 −0.09 −0.95
0.5 0.93 −0.10 −0.96

Source: Heckman (1981b, Table 4.1).

the resulting fixed effects estimators may be inconsistent as discussed in
Section 7.3.1.

When αi are independent of xi and are a random sampling from a univariate
distribution G, indexed by a finite number of parameters δ, the log-likelihood
function becomes

log L =
N∑
i=1

log
∫ T∏

t=1

F (β ′xit + α)yit [1 − F (β ′xit + α)]1−yit dG(α | δ).

(7.3.24)

where F (·) is the distribution of the error term conditional on both xi and αi .
Equation (7.3.24) replaces the probability function for y conditional on α by a
probability function that is marginal on α. It is a function of a finite number of
parameters (β ′, δ′). Thus, maximizing (7.3.24), under weak regularity condi-
tions, will give consistent estimators for β and δ asN tends to infinity provided
the distribution (or conditional distribution) of α is correctly specified. IfG(α)
is misspecified, maximizing (7.3.24) will yield inconsistent estimates when
T is fixed. However, when T → ∞, the random effects estimator becomes
consistent, irrespective of the form of the postulated distribution of individual
effects. The reason is that:

log f (yi | xi , β, αi) =
T∑
t=1

log f (yit | xit , β, αi)

is a sum of T time series observation, so that the distribution of α becomes
negligible compared to that of the likelihood as the number of time periods
increases (Arellano and Bonhomme 2009).

If αi is correlated with xit , maximizing (7.3.24) will not eliminate the
omitted-variable bias. To allow for dependence between α and x, we must spec-
ify a distribution for α conditional on x,G(α | x) and consider the marginal
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log-likelihood function

log L =
N∑
i=1

log
∫ T∏

t=1

F (β ′xit + α)yit [1 − F (β ′xit + α)]1−yit dG(α | x)

(7.3.24′)

A convenient specification suggested by Chamberlain (1980, 1984) is to
assume that αi =∑T

t=1 a′
txit + ηi = a′xi + ηi where a′ = (a′

1, . . . , aT ) and
x′
i = (x′

i1, . . . , x
′
iT ), and ηi is the residual. However, there is a very important

difference in this step compared with the linear case. In the linear case it was
not restrictive to decompose αi into its linear projection on xi and an orthog-
onal residual. Now we are assuming that the regression function E(αi | xi) is
actually linear, that ηi is independent of xi , and that ηi has a specific probability
distribution.

Given these assumptions, the log-likelihood function under our random-
effects specification is

log L =
N∑
i=1

log
∫ T∏

t=1

F (β ′xit + a′xi + η)yit (7.3.25)

· [1 − F (β ′xit + a′xi + η)]1−yit dG∗(η),

where G∗ is a univariate distribution function for η. For example, if F is a
standard normal distribution function and we choose G∗ to be the distribution
function of a normal random variable with mean 0 and variance σ 2

η , then our
specification gives a multivariate probit model:

yit = 1 if β ′xit + a′xi + ηi + uit > 0, t = 1, . . . , T ,

= 0 if β ′xit + a′xi + ηi + uit ≤ 0, (7.3.26)

where ui + eηi is independent normal, with mean 0 and variance–covariance
matrix IT + σ 2

η ee′.
The difference between (7.3.25) and (7.3.24) is only in the inclusion of the

term a′xi to capture the dependence between the incidental parameters αi and
xi . Therefore, the essential characteristics with regard to estimation of (7.3.24)
or (7.3.25) are the same. So we shall discuss only the procedure to estimate the
model (7.3.24).

Maximizing (7.3.25) involves integration of T dimensions, which can be
computationally cumbersome. An alternative approach that simplifies the com-
putation of the MLE to a univariate integration is to note that conditional on
αi , the error terms, vit = αi + uit are independently normally distributed with



7.3 Parametric Approach to Static Models with Heterogeneity 245

mean αi and variance 1, denoted by φ(vit | αi) (Heckman 1981a). Then

Pr(yi1, . . . , yiT ) =
∫ bi1

ci1

. . .

∫ biT

ciT

T∏
t=1

φ(vit | αi)G(αi | xi)dαidvi1, . . . , dviT ,

=
∫ ∞

−∞
G(αi | xi)

T∏
t=1

[�(bit | αi) −�(cit | αi)]dαi,

(7.3.27)

where �(· | αi) is the cumulative distribution function (cdf) of normal density
with mean αi and variance 1, φ(· | αi), cit = −β ′xit , bit = ∞ if yit = 1 and
cit = −∞, bit = −β ′xit if yit = 0,G(αi | xi) is the probability density func-
tion of αi given xi . If G(αi | xi) is assumed to be normally distributed with
variance σ 2

α , and the expression (7.3.27) reduces a T -dimensional integration
to a single integral whose integrand is a product of one normal density and T
differences of normal cumulative density functions for which highly accurate
approximations are available. For instance, Butler and Moffitt (1982) suggests
using Gaussian quadrature to achieve gains in computational efficiency. The
Gaussian quadrature formula for evaluation of the necessary integral is the
Hermite integration formula

∫∞
−∞ e

−z2
g(z)dz ≈∑l

j=1wjg(zj ), where l is the
number of evaluation points, wj is the weight given to the j th point, and g(zj )
is g(z) evaluated at the j th point of z. The points and weights are available
from Abramowitz and Stegun (1965) and Stroud and Secrest (1966).

A key question for computational feasibility of the Hermite formula is
the number of points at which the integrand must be evaluated for accurate
approximation. Several evaluations of the integral using four periods of arbitrary
values of the data and coefficients on right-hand-side variables by Butler and
Moffitt (1982) show that even two-point integration is highly accurate. Of
course, in the context of a maximization algorithm, accuracy could be increased
by raising the number of evaluation points as the likelihood function approaches
its optimum.

Although maximizing (7.3.25) or (7.3.24) provides a consistent and efficient
estimator for β, computationally it is much more involved. However, if both
uit and ηi (or αi) are normally distributed, a computationally simple approach
that avoids numerical integration is to make use of the fact that the distribution
for yit conditional on xi but marginal on αi also has a probit form:

Prob (yit = 1) = � [(1 + σ 2
η )−1/2(β ′xit + a′xi)

]
. (7.3.28)

Estimating each of t cross-sectional univariate probit specifications by
maximum-likelihood gives the estimated coefficients of xit and xi as 
̂t , t =
1, 2, . . . , T , which will converge to12

� = (1 + σ 2
η )−1/2(IT ⊗ β ′ + ea′) (7.3.29)

12 In the case in which αi are uncorrelated with xi , we have a = 0 and σ 2
η = σ 2

α .
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as N tends to infinity where � denotes the T × (T + 1)K stacked 
′
t . There-

fore, consistent estimators (1 + σ 2
η )−1/2β ′ and (1 + σ 2

η )−1/2 a′ can be easily
derived from (7.3.29). One can then follow Heckman’s (1981a) suggestion by
substituting these estimated values into (7.3.25) and optimizing the functions
with respect to σ 2

η conditional on (1 + σ 2
η )−1/2β and (1 + σ 2

η )−1/2a.
A more efficient estimator that avoids numerical integration is to impose the

restriction (7.3.29) by 
 = vec (�′) = f(θ ), where θ ′ = (β ′, a′, σ 2
η ), and use

a genralized method of moments (GMM) or minimum-distance estimator (see
Chapter 3, Section 3.9), just as in the linear case. Chamberlain (1984) suggests
that we choose θ̂ to minimize13

(
̂ − f(θ ))′�̂−1(
̂ − f(θ )) (7.3.30)

where �̂ is a consistent estimator of

� = J−1
J−1, (7.3.31)

where

J =

⎡⎢⎢⎢⎣
J1 0 . . . 0
0 J2
...

. . .
0 JT

⎤⎥⎥⎥⎦ ,

Jt = E
{

φ2
it

�it (1 −�it )xix′
i

}
,


 = E[�i ⊗ xix′
i],

and where the t, s element of the T × T matrix �i is ψits = cit cis , with

cit = yit −�it
�it (1 −�it )φit , t = 1, . . . , T .

The standard normal distribution function�it and the standard normal density
function φit are evaluated at 
′xi . We can obtain a consistent estimator of �
by replacing expectations by sample means and using 
̂ in place of 
.

7.4 SEMIPARAMETRIC APPROACH TO
STATIC MODELS

The parametric approach of estimating discrete choice model suffers from two
drawbacks: (1) conditional on x, the probability law of generating (uit , αi)

13 � is the asymptotic variance–covariance matrix of 
̂ when no restrictions are imposed on the
variance–covariance matrix of the T × 1 normal random variable ui + eηi . We can relax the
serial-independence assumption onuit and allowEuiu′

i to be an arbitrary positive definite matrix
except for scale normalization. In this circumstance, � = diag {(σ 2

u1 + σ 2
η )−1/2, . . . , (σ 2

uT +
σ 2
η )−1/2}[IT ⊗ β ′ + ea′].



7.4 Semiparametric Approach to Static Models 247

is known a priori or conditional on x and αi , the probability law of uit is
known a priori. (2) When αi are fixed it appears that apart from logit and linear
probability model, there does not exist a simple transformation that can get
rid of the incidental parameters. The semiparametric approach not only avoids
making specific distribution of uit but also allows consistent estimator of β up
to a scale whether αi is treated as fixed or random.

7.4.1 Maximum Score Estimator

Manski (1975, 1985, 1987) suggests a maximum score estimator that maxi-
mizes the sample average function

HN (b) = 1

N

N∑
i=1

T∑
t=2

sgn(
x′
itb)
yit (7.4.1)

subject to the normalization condition b′b=1, where 
xit = xit −
xi,t−1,
yit = yit − yi,t−1, sgn(w) = 1 if w > 0, 0 if w = 0, and −1 if w < 0.
This is because under fairly general conditions (7.4.1) converges uniformly to

H (b) = E[sgn(
x′
itb)
yit ], (7.4.2)

where H (b) is maximized at b = β∗, where β∗ = β
‖β‖ and ‖ β ‖ is the square

root of the Euclidean norm
∑K
k=1 β

2
k .

To see this, we note that the binary choice model can be written in the form

yit =
{

1 if y∗
it > 0,

0 if y∗
it ≤ 0,

(7.4.3)

where y∗
it is given by (7.2.1) with vit = αi + uit . Under the assumption that

uit is independently, identically distributed and is independent of xi and αi for
given i (i.e., xit is strictly exogenous), we have

x′
itβ > x′

i,t−1β ⇐⇒ E(yit | xit ) > E(yi,t−1 | xi,t−1),

x′
itβ = x′

i,t−1β ⇐⇒ E(yit | xit ) = E(yi,t−1 | xi,t−1),

x′
itβ < x′

i,t−1β ⇐⇒ E(yit | xit ) < E(yi,t−1 | xi,t−1).

(7.4.4)

Rewrite (7.4.4) in terms of first differences, we have the equivalent representa-
tion


x′
itβ > 0 ⇐⇒ E[(yit − yi,t−1) > 0 | 
xit ]


x′
itβ = 0 ⇐⇒ E[(yit − yi,t−1) = 0 | 
xit ],


x′
itβ < 0 ⇐⇒ E[(yit − yi,t−1) < 0 | 
xit ].

(7.4.5)

It is obvious that (7.4.5) continues to hold when β̃ = βc where c > 0.
Therefore, we shall only consider the normalized vector β∗ = β

‖β‖ .
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Then, for any b (satisfying b′b = 1) such that b �= β∗,

H (β∗) −H (b) = E{[sgn(
x′
itβ

∗) − sgn(
x′
itb)](yit − yi,t−1)} (7.4.6)

= 2
∫
Wb

sgn(
x′
itβ

∗)E[yt − yt−1 | 
x]dF
x,

where Wb = [
x : sgn(
x′β∗) �= sgn(
x′b)], and F
x denotes the distribu-
tion of 
x. Because of (7.4.5), the relation (7.4.6) implies that for all 
x,

sgn (
x′β∗)E[yt − yt−1 | 
x] =| E[yt − yt−1 | 
x] | .
Therefore under the assumption that x’s are unbounded,14

H (β∗) −H (b) = 2
∫
Wb

|E[yt − yt−1 | 
x] |dF
x ≥ 0. (7.4.7)

Manski (1985, 1987) has shown that under fairly general conditions, the estima-
tor maximizing the criterion function (7.4.1) is a strongly consistent estimator
for β∗.

As discussed in Chapter 3 and early sections of this chapter, when T is
small the MLE of the (structural) parameters β is consistent as N → ∞ for
the linear model and inconsistent for the nonlinear model in the presence of
incidental parameters αi because in the former case we can eliminate αi by
differencing while in the latter case we cannot. Thus, the error of estimating
αi is transmitted into the estimator of β in the nonlinear case. The Manski
semiparametric approach makes use of the linear structure of the latent variable
representation (7.2.1) or (7.4.4). The individual specific effects αi can again be
eliminated by differencing and hence the lack of knowledge of αi no longer
affects the estimation of β.

The Manski maximum score estimator is consistent asN → ∞ for unknown
conditional distribution of uit given αi and xit , xi,t−1. However, it converges
at the rate N1/3 which is much slower than the usual speed of N1/2 for the
parametric approach. Moreover, Kim and Pollard (1990) have shown thatN1/3

times the centered maximum score estimator converges in distribution to the
random variable that maximizes a certain Gaussian process. This result shows
that the maximum score estimator is probably not very useful in application
because the properties of the limiting distribution are largely unknown.

The objective function (7.4.1) is equivalent to

max H ∗
N (b) = N−1

N∑
i=1

T∑
t=2

[2 · 1(
yit = 1) − 1]1(
x′
itb > 0)

b
(7.4.8)

subject to b′b = 1, 1(A) is the indicator of the event A with 1(A) = 1 if A
occurs and 0 otherwise. The complexity of the maximum score estimator and
its slow rate of convergence are due to the discontinuity of the function HN (b)
or H ∗

N (b). Horowitz (1992) suggests avoiding these difficulties by replacing

14 If x is bounded, then identification may fail if uit is not logistic (Chamberlain (2010)).
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H ∗
N (b) with a sufficiently smooth function H̃N (b) whose almost sure limit as
N → ∞ is the same as that ofH ∗

N (b). LetK(·) be a continuous function of the
real line into itself such that

(i) | K(v) |< M for some finiteM and all v in (−∞,∞),
(ii) limv→−∞K(v) = 0 and limv→∞K(v) = 1.

The K(·) here is analogous to a cumulative distribution function. Let
{hN : N = 1, 2, . . .} be a sequence of strictly positive real numbers satisfy-
ing limN→∞hN = 0. Define

H̃N (b) = N−1
N∑
i=1

T∑
t=2

[2 · 1(
yit = 1) − 1]K(b′
xit /hN ). (7.4.9)

Horowitz (1992) defines a smoothed maximum score estimator as any solution
that maximizes (7.4.9). Like Manski’s estimator, β can be identified only up to
scale. Instead of using the normalization ‖ β∗ ‖= 1, Horowitz (1992) finds it is
more convenient to use the normalization that the coefficient of one component
of 
x, say 
x1, to be equal to 1 in absolute value if its coefficient β1 �= 0 and
the probability distribution of
x1 conditional on the remaining components is
absolutely continuous (with respect to Lebesgue measure).

The smoothed maximum score estimator is strongly consistent under the
assumption that the distribution of 
uit = uit − ui,t−1 conditional on 
xit is
symmetrically distributed with mean equal to 0. The asymptotic behavior of
the estimator can be analyzed by taking a Taylor expansion of the first-order
conditions and applying a version of the central limit theorem and the law of
large numbers. The smoothed estimator of β is consistent and, after centering
and suitable normalization, is asymptotically normally distributed. Its rate of
convergence is at least as fast as N−2/5 and, depending on how smooth the
distribution of u and β ′
x are, can be arbitrarily close to N−1/2.

7.4.2 A Root-N Consistent Semiparametric Estimator

The speed of convergence of the smoothed maximum score estimator depends
on the speed of convergence of hN → 0. Lee (1999) suggests a root-N consis-
tent semiparametric estimator that does not depend on a smoothing parameter
by maximizing the double sums

{N (N − 1)}−1
∑
i �=j

T∑
t=2

sgn(
x′
itb −
x′

j tb)(
yit −
yjt )
y2
it 
y

2
j t

= {N (N − 1)}−1
∑
i
i<j,

∑
j


yit �=
yjt

T∑
t = 2

yit �=0

yjt �=0

sgn(
x′
itb−
x′

j tb)(
yit −
yjt )

(7.4.10)
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with respect to b. The consistency of the Lee estimator, b̂, follows from the
fact that although 
yit −
yjt can take five values (0,±1,±2), the event that
(
yit −
yjt )
y2

j t
y
2
it �= 0 excludes (0,±1) to make 
yit −
yjt binary (2

or −2). Conditional on given j , the first average over i and t converges to

E{ sgn(
x′b −
x′
jb)(
y −
yj )
y2
y2

j | 
xj ,
yj } (7.4.11)

The
√
N speed of convergence follows from the second average of the smooth

function (7.4.10).
Normalizing β1 = 1, the asymptotic covariance matrix of

√
N
(
b̃ − β̃) is

equal to

4(E �2 τ )−1(E �1 τ �1 τ
′)(E �2 τ )−1, (7.4.12)

where β̃ = (β2, . . . , βK )′, and b̃, its estimator,

τ
(

yj ,
xj , b̃

) ≡ Ei|j {sgn(
x′
ib −
x′

jb)(
yi −
yj )
y2
i 
y

2
j }, i �= j,

with Ei|j denoting the conditional expectation of (
yi,
x′
i) conditional on

(
yj ,
x′
j ), �1τ and �2τ denote the first and second derivative matrices of

τ
(

yj ,
xj , b̃

)
with respect to b̃.

The parametric approach requires the specification of the distribution of u.
If the distribution of u is misspecified, the MLE of β is inconsistent. The semi-
parametric approach does not require the specification of the distribution of u
and permits its distribution to depend on x in an unknown way (heteroskedas-
ticity of unknown form). It is consistent up to a scale whether the unobserved
individual effects are treated as fixed or correlated with x. However, the step of
differencing xit eliminates time-invariant variables from the estimation. Lee’s
(1999)

√
N consistent estimator takes the additional differencing across indi-

viduals, 
xi −
xj , and further reduces the dimension of estimable parame-
ters by eliminating “period individual-invariant” variables (e.g., time dummies
and macroeconomic shocks common to all individuals) from the specification.
Moreover, the requirement that uit and ui,t−1 are identically distributed condi-
tional on (αi, xit , xi,t−1) does not allow the presence of the lagged dependent
variables in xit . Neither can a semiparametric approach be used to generate the
predicted probability conditional on x as in the parametric approach. All it can
estimate is the relative effects of the explanatory variables.

7.5 DYNAMIC MODELS

7.5.1 The General Model

The static models discussed in the previous sections assume that the probability
of moving (or staying) in or out of a state is independent of the occurrence or
nonoccurrence of the event in the past. However, in a variety of contexts, such
as in the study of the incidence of accidents (Bates and Neyman 1951), brand
loyalty (Chintagunta, Kyriazidou, and Perktold 2001), labor force participation
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(Heckman and Willis 1977; Hyslop 1999), and unemployment (Layton 1978),
it is often noted that individuals who have experienced an event in the past are
more likely to experience the event in the future than individuals who have not.
In other words, the conditional probability that an individual will experience
the event in the future is a function of past experience.

To analyze the intertemporal relationship among discrete variables, Heck-
man (1978a, 1981b) proposed a general framework in terms of a latent-
continuous-random-variable crossing the threshold. He let the continuous ran-
dom variable y∗

it be a function of xit and past occurrence of the event,

y∗
it = β ′xit +

t−1∑
l=1

γ�yi,t−l + φ

t−1∑
s=1

s∏
l=1

yi,t−l + vit ,
i = 1, . . . , N, t = 1, . . . , T

(7.5.1)

and

yit =
{

1 if y∗
it > 0,

0 if y∗
it ≤ 0.

(7.5.2)

The error term vit is assumed to be independent of xit and is independently
distributed over i, with a general intertemporal variance–covariance matrix
Eviv′

i = �. The coefficient γl measures the effects of experience of the event
l periods ago on current values of y∗

it . The coefficient φ measures the effect of
the cumulative recent spell of experience in the state for those still in the state
on the current value of y∗

it .
Specifications (7.5.1) and (7.5.2) accommodate a wide variety of stochastic

models that appear in the literature. For example, let xit = 1, and let vit be
independently identically distributed. If γl = 0, l = 2, . . . , T − 1, and φ = 0,
equations (7.5.1) and (7.5.2) generate a time-homogenous first-order Markov
process. If γl = 0, 1, . . . , T − 1, and φ �= 0, a renewal process is generated.
If γl = 0, l = 1, . . . , T − 1 and φ = 0, a simple Bernoulli model results. If
one allows vit to follow an autoregressive moving-average scheme, but keeps
the assumption that γl = 0, l = 1, . . . , T − 1, and φ = 0, the Coleman (1964)
latent Markov model emerges.

As said before, repeated observations of a given group of individuals over
time permit us to construct a model in which individuals may differ in their
propensity to experience the event with the same x. Such heterogeneity is
allowed by decomposing the error term vit as

vit = αi + uit , i = 1, . . . , N, t = 1, . . . , T . (7.5.3)

where uit is independently distributed over i, with arbitrary serial correlation,
and αi is individual-specific and can be treated as a fixed constant or as random.
Thus, for example, if the previoius assumptions on the Markov process

γl = 0, l = 2, . . . , T − 1, and φ = 0
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hold, but vit follows a “components-of-variance” scheme (7.5.3), a compound
first-order Markov process, closely related to previous work on the mover-stayer
model (Goodman 1961; Singer and Spilerman 1976), is generated.

Specifications (7.5.1)–(7.5.3) allow for three sources of persistence (after
controlling for the observed explanatory variables, x). Persistence can be the
result of serial correlation in the error term, uit , or the result of “unobserved
heterogeneity,” αi , or the result of true state dependence through the term
γyi,t−1 or φ

∏∗
l=1 yi,t−1. Distinguishing the sources of persistence is important

because a policy that temporariliy increases the probability that y = 1 will have
different implications about future probabilities of experiencing an event.

When the conditional probability of an individual staying in a state is a
function of past experience, two new issues arise. One is how to treat the initial
observations. The second is how to distinguish true state dependence from
spurious state dependence in which the past yit appears in the specification
merely as a proxy for the unobserved individual effects, αi . The first issue
could play a role in deriving consistent estimators for a given model. The second
issue is important because the time dependence among observed events could
arise either from the fact that the actual experience of an event has modified
individual behavior or from unobserved components that are correlated over
time, or from a combination of both.

7.5.2 Initial Conditions

When dependence among time-ordered outcomes is considered, just as in the
dynamic linear-regression model, the problem of initial conditions must be
resolved for a likelihood approach before parameters generating the stochastic
process can be estimated. To focus the discussion on the essential aspects of
the problem of initial conditions and its solutions, we assume that there are no
exogenous variables and that the observed data are generated by a first-order
Markov process. Namely,

y∗
it = β0 + γyi,t−1 + vit , (7.5.4)

yit =
{

1, if y∗
it > 0,

0, if y∗
it ≤ 0.

For ease of exposition we shall also assume that uit is independently normally
distributed with mean 0 and variance σ 2

u normalized to be equal to 1. It should
be noted that the general conclusions of the following discussion also hold for
other types of distributions.

In much applied work in the social sciences, two assumptions for initial
conditions are typically invoked: (1) the initial conditions or relevant presam-
ple history of the process are assumed to be truly exogenous, or (2) the process
is assumed to be in equilibrium. Under the assumption that yi0 is a fixed non-
stochastic constant for individual i, the joint probability of y′

i = (yi1, . . . , yiT ),
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given αi , is

T∏
t=1

F (yit | yi,t−1, αi) =
T∏
t=1

�{(β0 + γyi,t−1 + αi)(2yit − 1)}, (7.5.5)

where � is the standard normal cumulative distribution function. Under the
assumption that the process is in equilibrium, the limiting marginal probability
for yit = 1 for all t , given αi , is (Karlin and Taylor 1975)15

Pi = �(β0 + αi)
1 −�(β0 + γ + αi) +�(β0 + αi) , (7.5.6)

and the limiting probability for yit = 0 is 1 − Pi . Thus the joint probability of
(yi0, . . . , yiT ), given αi is

T∏
t=1

�{(β + γyi,t−1 + αi)(2yit − 1)}P yi0i (1 − Pi)1−yi0 . (7.5.7)

If αi is random, with distribution G(α), the likelihood function for the
random-effects model under the first assumption is

L =
N∏
i=1

∫ T∏
t=1

�{(β0 + γyi,t−1 + α)(2yit − 1)}dG(α). (7.5.8)

The likelihood function under the second assumption is

L =
N∏
i=1

∫ T∏
t=1

�{(β0 + γyi,t−1 + α)(2yit − 1)}

·P yi0i (1 − Pi)1−yi0dG(α).

(7.5.9)

The likelihood functions (7.5.8) and (7.5.9) under both sets of assumptions
about initial conditions are of closed form. When αi is treated as random, the
MLEs for β0, γ , and σ 2

α are consistent if N tends to infinity or if both N and

15 The transition-probability matrix of our homogeneous two-state Markov chain is

P =
[

1 −�(β0 + αi ) �(β0 + αi )
1 −�(β0 + γ + ai ) �(β0 + γ + αi )

]
.

By mathematical induction, the n-step transition matrix is

Pn = 1

1 −�(β0 + γ + αi ) +�(β0 + αi )

·
⎧⎨⎩
[

1 −�(β0 + γ + αi ) �(β0 + αi )
1 −�(β0 + γ + αi ) �(β0 + αi )

]
+ [�(β0 + γ + αi ) −�(β0 + α))]n

·
[
�(β0 + αi ) −�(β0 + αi )
−[1 −�(β0 + γ + αi )] 1 −�(β0 + γ + αi )

]⎫⎬⎭.
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T tend to infinity. When αi is treated as a fixed constant (7.5.5), the MLEs for
β0, γ , and αi are consistent only when T tends to infinity. If T is finite, the MLE
is biased. Moreover, the limited results from Monte Carlo experiments suggest
that, contrary to the static case, the bias is significant (Heckman 1981b).

However, the assumption that initial conditions are fixed constants is justifi-
able only if the disturbances that generate the process are serially independent
and if a genuinely new process is fortuitously observed at the beginning of the
sample. If the process has been in operation prior to the time it is sampled,
or if the disturbances of the model are serially dependent as in the presence
of individual specific random effects, the initial conditions are not exogenous.
The assumption that the process is in equilibrium also raises problems in many
applications, especially when time-varying exogenous variables are driving the
stochastic process.

Suppose that the analyst does not have access to the process from the
beginning; then the initial state for individual i, yi0, cannot be assumed fixed.
The initial state is determined by the process generating the panel sample. The
sample likelihood function for the fixed-effects model is

L =
N∏
i=1

T∏
t=1

�{(β0 + γyi,t−1 + αi)(2yit − 1)} f (yi0 | αi), (7.5.10)

and the sample likelihood function for the random-effects models is

L =
N∏
i=1

∫ ∞

−∞

T∏
t=1

�{(β0 + γyi,t−1 + α)(2yit − 1)} f (yi0 | α)dG(α),

(7.5.11)

where f (yi0 | α) denotes the marginal probability of yi0 given αi . Thus, unless
T is very large, maximizing (7.5.5) or (7.5.10) yields inconsistent estimates.16

Because yi0 is a function of unobserved past values, besides the fact that the
marginal distribution of f (yi0 | α) is not easy to derive, maximizing (7.5.10) or
(7.5.11) is also considerably involved. Heckman (1981b) therefore suggested
that we approximate the initial conditions for a dynamic discrete model by the
following procedure:

1. Approximate the probability of yi0, the initial state in the sample, by
a probit model, with index function

y∗
i0 = Q(xit ) + εi0, (7.5.12)

and

yi0 =
{

1 if y∗
i0 > 0,

0 if y∗
i0 ≤ 0,

(7.5.13)

16 This can be easily seen by noting that the expectation of the first-derivative vector of (7.5.5)
or (7.5.8) with respect to the structural parameters does not vanish at the true parameter value
when the expectations are evaluated under (7.5.10) or (7.5.11).
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where Q(xit ) is a general function of xit , t = 0, . . . , T , usually spec-
ified as linear in xit , and εi0 is assumed to be normally distributed,
with mean 0 and variance 1.

2. Permit εi0 to be freely correlated with vit , t = 1, . . . , T .
3. Estimate the model by maximum likelihood without imposing any

restrictions between the parameters of the structural system and
parameters of the approximate reduced-form probability for the initial
state of the sample.

Heckman (1981b) conducted Monte Carlo studies comparing the perfor-
mances of the MLEs when assumption on initial yi0 and αi conform with the
true data generating process, an approximate reduced-form probability for yi0,
and false fixed yi0 and αi for a first-order Markov process. The data for his
experiment were generated by the random-effects model

y∗
it = βxit + γyi,t−1 + αi + uit , (7.5.14)

yit =
{

1 if y∗
it > 0,

0 if y∗
it ≤ 0,

where the exogenous variable xit was generated by (7.3.23). He let the process
operate for 25 periods before selecting samples of 8 (= T ) periods for each
of the 100 (=N) individuals used in the 25 samples for each parameter set.
Heckman’s Monte Carlo results are produced in Table 7.2.

These results show that contrary to the static model, the fixed-effects probit
estimator performs poorly. The greater the variance of the individual effects
(σ 2
α ), the greater the bias. The t statistics based on the estimated informa-

tion matrix also lead to a misleading inference by not rejecting the false null
hypotheses of γ = β = 0 in the vast majority of samples.

By comparison, Heckman’s approximate solution performs better. Although
the estimates are still biased from the true values, their biases are not significant,
particularly when they are compared with the ideal estimates. The t statistics
based on the approximate solutions are also much more reliable than in the
fixed-effects probit model, because they lead to a correct inference in a greater
proportion of the samples.

Heckman’s Monte Carlo results also point to a disquieting feature. Namely,
the MLE produces a biased estimator even under the ideal conditions with a
correctly specified likelihood function. Because a panel with 100 observations
of three periods is not uncommon, this finding deserves further study.

7.5.3 A Conditional Approach

The likelihood approach cannot yield a consistent estimator when T is fixed
and N tends to infinity if the individual effects are fixed. If the individual
effects are random and independent of x, the consistency of the MLE depends
on the correct formulation of the probability distributions of the effects and
initial observations. A semiparametric approach cannot be implemented for
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Table 7.2. Monte Carlo results for first-order Markov process

σ 2
α = 3 σ 2

α = 1

γ β = −0.1 β = 1 β = 0 β = −0.1 β = 1 β = 0

Values of γ̂ and β̂ for the random-effects estimator with known initial conditionsa

0.5 γ̂ n.a.c 0.57 n.a.c

β̂ n.a.c 0.94 —d

0.1 γ̂ 0.13 0.12 0.14
β̂ −0.11 1.10 —

Values of γ̂ and β̂ for the approximate random-effects estimationa

0.5 γ̂ 0.63 0.60 0.70 n.a.c 0.54 0.62
β̂ −0.131 0.91 — n.a.c 0.93 —

0.1 γ̂ 0.14 0.13 0.17 0.11 0.11 0.13
β̂ −0.12 0.92 — −0.12 0.95 —

Values of γ̂ and β̂ for the fixed-effects estimatorb

0.5 γ̂ 0.14 0.19 0.03 n.a.c 0.27 0.17
β̂ −0.07 1.21 — n.a.c 1.17 —

0.1 γ̂ −0.34 −0.21 −0.04 −0.28 −0.15 −0.01
β̂ −0.06 1.14 — −0.08 1.12 —

a N = 100; T = 3.
b N = 100; T = 8.
c Data not available because the model was not estimated.
d Not estimated.
Source: Heckman (1981b, Table 4.2).

a dynamic model because the strict exogeneity condition of explanatory vari-
ables is violated with the presence of lagged dependent variables as explanatory
variables. When strict exogenity condition of the explanatory variables is vio-
lated, E(
uit | xit , xi,t−1, yi,t−1, yi,t−2) �= 0. In other words, the one-to-one
correspondence relation of the form (7.4.4) is violated. Hence, the Manski
(1985) type maximum score estimator cannot be implemented. Neither can
the (unrestricted) conditional approach be implemented. Consider the case of
T = 2. The basic idea of conditional approach is to consider the probability of
yi2 = 1 or 0 conditional on explanatory variables in both periods and condi-
tional on yi1 �= yi2. If the explanatory variables of Prob (yi2 = 1) include yi1,
then the conditional probability is either 1 or 0 according as yi1 = 0 or 1, hence
provides no information about γ and β.

However, in the case that T ≥ 3 and xit follows certain special pattern.
Honoré and Kyriazidou (2000a) show that it is possible to generalize the con-
ditional probability approach to consistently estimate the unknown parameters
for the logit model or to generalize the maximum score approach without the
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need of formulating the distribution of αi or the probability distribution of the
initial observations for certain types of discrete choice models. However, the
estimators converge to the true values at the speed considerably slower than the
usual square root N rate.

Consider the model (7.5.4) with the assumption that uit is logistically dis-
tributed, then the model of (yi0, . . . , yiT ) is of the form

P (yi0 = 1 | αi) = P0(αi) (7.5.15)

P (yit = 1 | αi, yi0, . . . , yi,t−1) = exp (γyi,t−1 + αi)
1 + exp (γyi,t−1 + αi) , (7.5.16)

for t = 1, 2, . . . , T .

When T ≥ 3, Chamberlain (1993) has shown that inference on γ can be made
independent of αi by using a conditional approach.

For ease of exposition, we shall assume that T = 3 (i.e., there are four time
series observations for each i). Consider the events

A = {yi0, yi1 = 0, yi2 = 1, yi3},
B = {yi0, yi1 = 1, yi2 = 0, yi3}.

where yi0 and yi3 can be either 1 or 0. Then

P (A) = P0(αi)yi0 [1 − P0(αi)]1−yi0 · 1

1 + exp (γyi0 + αi)
· exp (αi)

1 + exp(αi)
· exp (yi3(γ + αi))

1 + exp(γ + αi)
(7.5.17)

and

P (B) = P0(αi)
yi0 [1 − P0(αi)]

1−yi0 · exp (γyi0 + αi)
1 + exp (γyi0 + αi)

· 1

1 + exp (γ + αi) · exp (αiyi3)

1 + exp (αi)
. (7.5.18)

Hence

P (A | A ∪ B) = P (A | yi0, yi1 + yi2 = 1, yi3)

= exp (γyi3)

exp (γyi3) + exp (γyi0)

= 1

1 + exp [γ (yi0 − yi3)]
,

(7.5.19)

and

P (B | A ∪ B) = P (B | yi0, yi1 + yi2 = 1, yi3)

= 1 − P (A | A ∪ B)

= exp [γ (yi0 − yi3)]

1 + exp [γ (yi0 − yi3)]
.

(7.5.20)
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Equation (7.5.19) and (7.5.20) are in the binary logit form and does not depend
on αi . The conditional log-likelihood

log L̃ =
N∑
i=1

1(yi1 + yi2 = 1){yi1[γ (yi0 − yi3)]

− log [1 + exp γ (yi0 − yi3)]} (7.5.21)

is in the conditional logit form. Maximizing (7.5.21) yields
√
N consistent

estimator of γ , where 1(A) = 1 if A occurs and 0 otherwise.
When exogenous variables xit also appear as explanatory variables in the

latent response function

y∗
it = β ′xit + γyi,t−1 + αi + uit , (7.5.22)

we may write

P (yi0 = 1 | xi , αi) = P0(xi , αi), (7.5.23)

P (yit = 1 | xi , αi, yi0, . . . , yi,t−1)

= exp (x′
itβ + γyi,t−1 + αi)

1 + exp (x′
itβ + γyi,t−1 + αi) , t = 1, . . . , T .

(7.5.24)

Let P (yi0) = P0(xi , αi)yi0 [1 − P0(xi , αi)]1−yi0 . Suppose T = 3. Under
(7.5.24),

P (A) = P (yi0) · 1

1 + exp (x′
i1� + γyi0 + αi) · exp (x′

i2� + αi)
1 + exp (x′

i2β + αi)

·exp [(x′
i3� + γ + αi)yi3]

1 + exp (x′
i3� + γ + αi) .

(7.5.25)

P (B) = P (yi0) · exp (x′
i1� + γyi0 + αi)

1 + exp (x′
i1� + γyi0 + αi)

· 1

1 + exp (x′
i2� + γ + αi) · [exp (x′

i3� + αi)yi3]

1 + exp (x′
i3� + αi) .

(7.5.26)

The denominator of P (A) and P (B) are different depending the sequence
is of (yi1 = 0, yi2 = 1) or (yi1 = 1, yi2 = 0). Therefore, in general, P (A |
xi , αi, A ∪ B) will depend on αi . However, if xi2 = xi3, then the denominator
of P (A) and P (B) are identical. Using the same conditioning method, Honoré
and Kyriazidou (2000a) show that

P (A | xi , αi, A ∪ B, xi2 = xi3)

= 1

1 + exp [(xi1 − xi2)′β + γ (yi0 − yi3)]
, (7.5.27)
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which does not depend on αi . If xit is continuous, it may be rare that xi2 = xi3.
Honoré and Kyriazidou (2000a) propose estimating β and γ by maximizing

N∑
i=1

1(yi1 + yi2 = 1)K

(
xi2 − xi3
hN

)

ln

{
exp [(xi1 − xi2)′� + γ (yi0 − yi3)]yi1

1 + exp [(xi1 − xi2)′� + γ (yi0 − yi3)]

}
(7.5.28)

with respect to � and γ (over some compact set) ifP (xi2 = xi3) > 0. HereK(·)
is a kernel density function that gives appropriate weight to observation i, while
hN is a bandwidth which shrinks to 0 as N tends to infinity. The asymptotic
theory will require thatK(·) be chosen so that a number of regularity conditions
are satisfied such as | K(·) |< M for some constant M , and K(v) → 0 as
| v |→ ∞ and

∫
K(v)dv = 1. For instance, K(v) is often taken to be the

standard normal density function and hN = cN−1/5 for some constant c. The
effect of the termK( xi2−xi3

hN
) is to give more weight to observations for which xi2

is close to xi3. Their estimator is consistent and asymptotically normal although

their speed of convergence is only
√
NhkN , which is considerably slower than√

N where k is the dimension of xit .
The conditional approach works for the logit model but it does not seem

applicable for general nonlinear models. However, if the nonlinearity can be
put in the single index form F (a) with the transformation function F being a
strictly increasing distribution function, then Manski (1987) maximum score
estimator for the static case can be generalized to the case where the lagged
dependent variable is included in the explanatory variable set by considering

P (A | xi , αi, xi2 = xi3)

= P0(xi , αi)yi0 [1 − P0(xi , αi)]1−yi0

· [1 − F (x′
i1β + γyi0 + αi)] × F (x′

i2β + αi) (7.5.29)

· [1 − F (x′
i2β + γ + αi)]1−yi3 × F (x′

i2β + γ + αi)yi3

and

P (B | xi , αi, xi2 = xi3)

= P0(xi , αi)yi0 [1 − P0(xi , αi)]1−yi0

·F (x′
i1β + γyi0 + αi) × [1 − F (x′

i2β + γ + αi)] (7.5.30)

· [1 − F (x′
i2β + αi)]1−yi3 × F (x′

i2β + αi)yi3 .
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If yi3 = 0, then

P (A | xi , αi, xi2 = xi3)

P (B | xi , αi, xi2 = xi3)

= [1 − F (x′
i1β + γyi0 + αi)]

[1 − F (x′
i2β + γ + αi)] · F (x′

i2β + αi)
F (x′

i1β + γyi0 + αi) (7.5.31)

= [1 − F (x′
i1β + γyi0 + αi)]

[1 − F (x′
i2β + γyi3 + αi)] · F (x′

i2β + γyi3 + αi)
F (x′

i1β + γyi0 + αi) ,

where the second equality follows from the fact that yi3 = 0. If yi3 = 1, then

P (A | xi , αi, xi2 = xi3)

P (B | xi , αi, xi2 = xi3)

= [1 − F (x′
i1β + γyi0 + αi)]

[1 − F (x′
i2β + γ + αi)] · F (x′

i2β + γ + αi)
F (x′

i1β + γyi0 + αi) (7.5.32)

= [1 − F (x′
i1β + γyi0 + αi)]

[1 − F (x′
i2β + γyi3 + αi))] · F (x′

i2β + γyi3 + αi)
F (x′

i1β + γyi0 + αi) ,

where the second equality follows from the fact that yi3 = 1, so that γyi3 = γ .
In either case, the monotoncity of F implies that

P (A)

P (B)

{
> 1 if x′

i2β + γyi3 > x′
i1β + γyi0,

< 1 if x′
i2β + γyi3 < xi1β + γyi0.

Therefore,

sgn[P (A | xi , αi, xi2 = xi3) − P (B | xi , αi, xi2 = xi3)]

= sgn[(xi2 − xi1)′β + γ (yi3 − yi0)].
(7.5.33)

Hence, Honoré and Kyriazidou (2000a) propose a maximum score estimator
that maximizes the score function

N∑
i=1

K

(
xi2 − xi3
hN

)
(yi2 − yi1)sgn[(xi2 − xi1)′β + γ (yi3 − yi0)] (7.5.34)

with respect to β and γ . The Honoré and Kyriazidou estimator is consistent
(up to a scale) if the density of xi2 − xi3, f (xi2 − xi3), is strictly positive at 0,
f (0) > 0. (This assumption is required for consistency.)

We have discussed the estimation of panel data dynamic discrete choice
model assuming that T = 3. It can be easily generalized to the case of T >
3 by maximizing the objective function that is based on sequences where
an individual switches between alternatives in any two of the middle T − 1
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periods:

N∑
i=1

∑
1≤s<t≤T−1

1{yis + yit = 1}K
(

xi,t+1 − xi,s+1

hN

)

· ln

(
exp [(xis − xit )′β + γ (yi,s−1 − yi,t+1) + γ (yi,s+1 − yi,t−1)1(t − s > 1)]yis

1 + exp [(xis − xit )′β + γ (yi,s−1 − yi,t+1) + γ (yi,s+1 − yi,t−1)1(t − s > 1)]

)
(7.5.35)

The conditional approach does not require modeling of the initial observa-
tions of the sample. Neither does it make any assumptions about the statistical
relationship of the individual effects with the observed explanatory variables
or with the initial conditions. However, it also suffers from the limitation that
xis − xit has support in a neighborhood of 0 for any t �= s, which rules out time
dummies as explanatory variables.17 The fact that individual effects cannot be
estimated also means that it is not possible to carry out predictions or compute
elasticities for individual agents at specified values of the explanatory variables.

7.5.4 State Dependence versus Heterogeneity

There are two diametrically opposite explanations for the often observed empir-
ical regularity with which individuals who have experienced an event in the past
are more likely to experience that event in the future. One explanation is that
as a consequence of experiencing an event, preferences, prices, or constraints
relevant to future choices are altered. A second explanation is that individuals
may differ in certain unmeasured variables that influence their probability of
experiencing the event but are not influenced by the experience of the event.
If these variables are correlated over time and are not properly controlled, pre-
vious experience may appear to be a determinant of future experience solely
because it is a proxy for such temporally persistent unobservables. Heckman
(1978a, 1981a,c) has termed the former case “true state dependence” and the
latter case “spurious state dependence,” because in the former case, past expe-
rience has a genuine behavioral effect in the sense that an otherwise identical
individual who has not experienced the event will behave differently in the
future than an individual who has experienced the event. In the latter case,
previous experience appears to be a determinant of future experience solely
because it is a proxy for temporally persistent unobservables that determine
choices.

The problem of distinguishing between true and spurious state dependen-
cies is of considerable substantive interest. To demonstrate this, let us consider
some work in the theory of unemployment. Phelps (1972) argued that current

17 See Arellano and Carrasco (2003) for a GMM approach to estimate the dynamic random-effects
probit model.
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unemployment has a real and lasting effect on the probability of future unem-
ployment. Hence, short-term economic policies that alleviate unemployment
tend to lower aggregate unemployment rates in the long run by preventing
the loss of work-enhancing market experience. On the other hand, Cripps and
Tarling (1974) maintained the opposite view in their analysis of the incidence
and duration of unemployment. They assumed that individuals differ in their
propensity to experience unemployment and in their unemployment duration
times and those differences cannot be fully accounted for by measured variables.
They further assumed that the actual experience of having been unemployed
or the duration of past unemployment does not affect future incident or dura-
tion. Hence, in their model, short-term economic policies have no effect on
long-term unemployment.

Because the unobserved individual effects, αi , persist over time, ignoring
these effects of unmeasured variables (heterogeneity) creates serially corre-
lated residuals. This suggests that we cannot use the conditional probabil-
ity, given past occurrence not equal to the marginal probability alone, Prob
(yit | yi,t−s , xit ) �= Prob (yit | xit ), to test for true state dependence against spu-
rious state dependence, because this inequality may be a result of past informa-
tion on y yielding information on the unobserved specific effects. A proper test
for dependence should control for the unobserved individual-specific effects.

When conditional on the individual effects, αi , the error term uit is serially
uncorrelated, a test for state dependence can be implemented by controlling
the individual effects and testing for the conditional probability equal to the
marginal probability,

Prob (yit | yi,t−s , xit , αi) = Prob(yit | xit , αi). (7.5.36)

When N is fixed and T → ∞, likelihood ratio tests can be implemented to
test (7.5.36).18 However, if T is finite, controlling αi to obtain consistent esti-
mator for the coefficient of lagged dependent variable imposes very restrictive
conditions on the data which severly limits the power of the test, as shown in
Section 7.4.

If αi are treated as random and the conditional distribution of αi given xi
is known, a more powerful test is to use an unconditional approach. Thus, one
may test true state dependence versus spurious state dependence by testing the

18 Let Pit = Prob (yit | xit , αi ) and P ∗
it = Prob (yit | yi,t−�, xit , αi ). Let P̂it and P̂ ∗

it be the MLEs
obtained by maximizing L =∏i∏t P yitit (1 − Pit )1−yit and L∗ =∏i∏t P ∗yit

it (1 − P ∗
it )

1−yit
with respect to unknown parameters, respectively. A likelihood-ratio test statistic for the null
hypothesis (7.5.36) is −2 log [L(P̂it )/L(P̂ ∗

it )]. When conditional on xit andαi , there are repeated
observations; we can also use the Pesaran chi-square goodness-of-fit statistic to test (7.5.36).
For details, see Bishop, Fienberg, and Holland (1975, Chapter 7). However, in the finite-T case,
the testing procedure cannot be implemented, as the α′

i s are unknown and cannot be consistently
estimated.
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significance of the MLE of γ of the log-likelihood

N∑
i=1

log
∫ T∏

t=1

{
F (x′

itβ + γyi,t−1 + αi)yit
[
1 − F (x′

itβ + γyi,t−1 + αi)
]1−yit

·P (xi , α)yi0
[
1 − P (xi , α)

]1−yi0}
G(αi | xi)dαi.

(7.5.37)

When conditional on the individual effects, αi , the error term uit remains
serially correlated, the problem becomes more complicated. The conditional
probability, Prob (yit | yi,t−1, αi), not being equal to the marginal probability,
Prob (yit | αi), could be because of past yit containing information on uit . A test
for state dependence cannot simply rely on the multinominal distribution of the
(yi1, . . . , yiT ) sequence. The general framework (7.5.1) and (7.5.2) proposed by
Heckman (1978a, 1981a,b) accommodates very general sorts of heterogeneity
and structural dependence. It permits an analyst to combine models and test
among competing specifications within a unified framework. However, the
computations of maximum-likelihood methods for the general models could
be quite involved. It would be useful to rely on simple methods to explore data
before implementing the computationally cumbersome maximum-likelihood
method for a specific model.

Chamberlain (1978b) suggested a simple method to distinguish true state
dependence from spurious state dependence. He noted that just as in the contin-
uous models, a key distinction between state dependence and serial correlation
is whether or not there is a dynamic response to an intervention. This distinction
can be made clear by examining (7.5.1). If γ = 0, a change in x has its full
effect immediately, whereas if γ �= 0, this implies a distributed-lag response
to a change in x. The lag structure relating y to x is not related to the serial
correlation in u. If x is increased in period t and then returned to its former
level, the probability of yi,t+1 is not affected if γ = 0, because by assumption
the distribution of uit was not affected. If γ �= 0, then the one-period shift in
x will have lasting effects. An intervention that affects the probability of y in
period t will continue to affect the probability of y in period t + 1, even though
the intervention was presented only in period t . In contrast, an interpretation
of serial correlation is that the shocks (u) tend to persist for more than one
period and that yi,t−s is informative only in helping to infer uit and hence
to predict uit . Therefore, a test that is not very sensitive to functional form
is to simply include lagged x′s without lagged y. After conditioning on the
individual-specific effect α, there may be two possible outcomes. If there is no
state dependence, then

Prob(yit = 1 | xit , xi,t−1, . . . , αi) = Prob (yit = 1 | xit , αi). (7.5.38)

If there is state dependence, then

Prob(yit = 1 | xit , xi,t−1, . . . , αi) �= Prob (yit = 1 | xit , αi). (7.5.39)
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While the combination of (7.5.38) and (7.5.39) provides a simple form to
distinguish pure heterogeneity, state dependence, and serial correlation, we can-
not make further distinctions with regard to different forms of state dependence
and heterogeneity, and serial correlation should (7.5.38) be rejected. Models of
the form (7.5.1) and (7.5.2) may still have to be used to further narrow down
possible specifications.

7.5.5 Two Examples

The control of heterogeneity plays a crucial role in distinguishing true state
dependence from spurious state dependence. Neglecting heterogeneity and the
issue of initial observations can also seriously bias the coefficient estimates. It is
important in estimating dynamic models that the heterogeneity in the sample be
treated correctly. To demonstrate this, we use the female-employment models
estimated by Heckman (1981c) and household brand choices estimated by
Chintagunta, Kyriazidou, and Perktold (2001) as examples.

7.5.5.1 Female Employment

Heckman (1981c) used the first three-year sample of women aged 45–59 in
1968 from the Michigan Panel Survey of Income dynamics to study married
women’s employment decisions. A woman is defined to be a market participant
if she worked for money any time in the sample year. The set of explanatory
variables is as follows: the woman’s education; family income, excluding the
wife’s earnings; number of children younger than six; number of children at
home; unemployment rate in the county in which the woman resided; the wage
of unskilled labor in the county (a measure of the availability of substitutes for
a woman’s time in the home); the national unemployment rate for prime-age
men (a measure of aggregate labor-market tightness); two types of prior work
experience: within-sample work experience and presample work experience.
The effect of previous work experience is broken into two components, because
it is likely that presample experience exerts a weaker measured effect on current
participation decisions than more recent experience. Furthermore, because the
data on presample work experience are based on a retrospective question and
therefore are likely to be measured with error, Heckman replaces them by
predicted values based on a set of regressors.

Heckman fitted the data to various multivariate probit models of the form
(7.5.1) and (7.5.2) to investigate whether or not work experience raises the
probability that a woman will work in the future (by raising her wage rates)
and to investigate the importance of controlling for heterogeneity in utilizing
panel data. Maximum-likelihood-coefficient estimates for the state-dependent
models under the assumptions of stationary intertemporal covariance matrix

� =
⎡⎣1 ρ12 ρ13

1 ρ23

1

⎤⎦ ,
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first-order Markov process (vit = ρvi,t−1 + uit ), and no heterogeneity (vit =
uit ) are presented in columns 1, 2, and 3, respectively, of Table 7.3.19 Coef-
ficient estimates for no state dependence with general stationary intertempo-
ral correlation, first-order Markov process, conventional random effects error-
component formulation vit = αi + uit , equivalent to imposing the restriction
that ρ12 = ρ13 = ρ23 = σ 2

α /(σ
2
u + σ 2

α ), and no heterogeneity are presented in
columns 4, 5, 6, and 7, respectively. A Heckman–Willis (1977) model with
time-invariant exogenous variables and conventional error-component formu-
lation was also estimated and is presented in column 8.

Likelihood ratio test statistics (twice the difference of the log-likelihood
value) against the most general model (column 1, Table 7.3) indicate the accep-
tance of recent labor-market experience as an important determinant of current
employment decision, with unobservables determining employment choices
following a first-order Markov process (column 2, Table 7.3) as a maintained
hypothesis, and the statistics clearly reject all other formulations. In other
words, Heckman’s study found that work experience, as a form of general and
specific human capital investment, raises the probability that a woman will
work in the future, even after accounting for serial correlation of a very general
type. It also maintained that there exist unobserved variables that affect labor
participations. However, initial differences in unobserved variables tend to be
eliminated with the passage of time. But this homogenizing effect is offset
in part by the impact of prior work experience that tends to accentuate initial
differences in the propensity to work.

Comparison of the estimates of the maintained hypothesis with estimates of
other models indicates that the effect of recent market experience on employ-
ment is dramatically overstated in a model that neglects heterogeneity. The
estimated effect of recent market experience on current employment status
recorded in column 3, Table 7.3, overstates the impact by a factor of 10 (1.46
vs. 0.143)! Too much credit will be attributed to past experience as a determi-
nant of employment if intertemporal correlation in the unobservables is ignored.
Likewise for the estimated impact of national unemployment on employment.
On the other hand, the effect of children on employment is understated in
models that ignore heterogeneity.

Comparisons of various models’ predictive performance on sample-run pat-
terns (temporal employment status) are presented in Table 7.4. It shows that
dynamic models ignoring heterogeneity under-predict the number of individu-
als who work all of the time and over-predict the number who do not work at all.
It also overstates the estimated frequency of turnover in the labor force. In fact,
comparing the performances of the predicted run patterns for the dynamic and
static models without heterogeneity (column 3 and 7 or Table 7.3 and columns
3 and 4 of Table 7.4) suggests that introducing “lagged employment status”
into a model as a substitute for a more careful treatment of heterogeneity is an
imperfect procedure. In this case, it is worse than using no proxy at all. Nor

19 A nonstationary model was also estimated by Heckman (1981c), but because the data did not
reject stationarity, we shall treat the model as having stationary covariance.
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Table 7.3. Estimates of employment models for women aged 45–59 in 1968a

Variable (1) (2) (3)

Intercept −2.576 (4.6) 1.653 (2.5) 0.227 (0.4)
No. of children aged<6 −0.816 (2.7) −0.840 (2.3) −0.814 (2.1)
County unemployment −0.035 (1.5) −0.027 (1.0) −0.018 (0.57)

rate (%)
County wage rate ($/h) 0.104 (0.91) 0.104 (0.91) 0.004 (0.02)
Total no. of children −0.146 (4.3) −0.117 (2.2) −0.090 (2.4)

Wife’s education (years) 0.162 (6.5) 0.105 (2.8) 0.104 (3.7)
Family income, excluding −0.363 × 10−4 (4.8) −0.267 × 10−4 (2.7) −0.32 × 10−4 (3.6)

wife’s earnings
National unemployment −0.106 (0.51) −0.254 (1.4) −1.30 (6)

rate
Recent experience 0.143 (0.95) 0.273 (1.5) 1.46 (12.2)
Predicted presample 0.072 (5.8) 0.059 (3.4) 0.045 (3.4)

experience

Serial-correlation
coefficient:
ρ12 0.913 — —
ρ13 0.845
ρ23 0.910

ρ — 0.873 (14.0) —
σ 2
α /(σ

2
u + σ 2

α ) — — —
Log likelihood −237.74 −240.32 −263.65

a Asymptotic normal test statistics in parentheses; these statistics were obtained from the estimating
information matrix.

does a simple static model with a “components-of-variance” scheme (column
8 of Table 7.3, column 5 of Table 7.4) perform any better. Dynamic models
that neglect heterogeneity (column 3 of Table 7.4) overestimate labor-market
turnover, whereas the static model with a conventional variance components
formulation (column 5 of Table 7.4) overstates the extent of heterogeneity and
the degree of intertemporal correlation. It over-predicts the number who never
work during these three years and underpredicts the number who always work.

This example suggests that considerable care should be exercised in uti-
lizing panel data to discriminate among state dependence, heterogeneity, and
serial correlations. Improper control for heterogeneity can lead to erroneous
parameter estimates and dramatically overstate the impact of past experience
on current choices.

7.5.5.2 Household Brand Choices

Chintagunta, Kyriazidou, and Perktold (2001) use the A.C. Nielson data on
yogurt purchases in Sioux Falls, South Dakota between September 17, 1986
and August 1, 1988 to study yogurt brand loyalty. They focus on the 6 oz.
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Table 7.3. (cont.)

(4) (5) (6) (7) (8)

−2.367 (6.4) −2.011 (3.4) −2.37 (5.5) −3.53 (4.6) −1.5 (0)
−0.742 (2.6) −0.793 (2.1) −0.70 (2.0) −1.42 (2.3) −0.69 (1.2)
−0.030 (1.5) −0.027 (1.2) −0.03 (1.6) −0.059 (1.3) 0.046 (11)

0.090 (0.93) 0.139 (1.5) 0.13 (1.4) 0.27 (1.1) 0.105 (0.68)
−0.124 (4.9) −0.116 (2.2) −0.161 (4.9) −0.203 (3.9) −0.160 (6.1)

0.152 (7.3) 0.095 (2.5) 0.077 (3) 0.196 (4.8) 0.105 (3.3)
−0.312 × 10−4 (5.2) −0.207 × 10−4 (2.3) −0.2 × 10−4 (2.6) −0.65 × 10−4 (5.1) −0.385 × 10−4 (20)

−0.003 (0.38) −0.021 (0.26) 0.02 (3) 1.03 (0.14) −0.71 (0)

—b — — — —
0.062 (0.38) 0.062 (3.5) 0.091 (7.0) 0.101 (5.4) 0.095 (11.0)

0.917 — — — —
0.873 — — — —
0.946 — — — —

— −0.942 (50) — — —
— — 0.92 (4.5) — 0.941 (4.1)
−239.81 −243.11 −244.7 −367.3 −242.37

b Not estimated.

Source: Heckman (1981c, Table 3.2).

packages of the two dominant yogurt brands, Yoplait and Nordica, for the
analysis. These brands account for 18.4 and 19.5 percent of yogurt purchases
by weight. Only data for households that have at least two consecutive purchases
of any one of the two brands are considered. This leaves 737 households and
5618 purchase occasions, out of which 2718 are for Yoplait and the remaining
2900 for Nordica. The panel is unbalanced.20 The minimum number of purchase
occasions per household is 2 and the maximum is 305. The mean number of
purchase is 9.5 and the median is 5.

The model they estimate is given by

Prob(yit = 1 | xit , yi0, . . . , yi,t−1, αi) = exp (x′
itβ + γyi,t−1 + αi)

1 + exp (x′
itβ + γyi,t−1 + αi) ,

(7.5.40)

where yit = 1 if household i chooses Yoplait in period t and yit = 0 if house-
hold i chooses Nordica. The exogenous variables in xit are the difference in the

20 One can modify the estimator (7.5.33) by replacing T with Ti .
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Table 7.4. Comparisons of employment models using run data: Women aged
45–59 in 1968

(1) (2) (3) (4) (5)

Number Probit model Number
predicted from that ignores predicted
state-dependent Probit model heterogeneity and from
model with that ignores recent-sample Heckman–
heterogeneity heterogeneity state dependence Willis model

Run Actual (column 2 of (column 3 of (column 7 of (column 8 of
pattern number Table 7.3) Table 7.3) Table 7.3) Table 7.3)

0,0,0 96 94.2 145.3 36.1 139.5
0,0,1 5 17.6 38.5 20.5 4.1
0,1,0 4 1.8 1.9 20.2 4.1
1,0,0 8 2.6 0.35 20.6 4.1
1,1,0 5 1.4 0.02 21.2 3.6
1,0,1 2 2.4 1.38 21.1 3.6
0,1,1 2 16.4 8.51 21.7 3.6
1,1,1 76 61.5 2.05 36.6 34.9

χ 2 c — 48.5 4,419 221.8 66.3

a Data for 1971, 1972, and 1973, three years following the sample data, were used to
estimate the model.

b 0 corresponds to not working; 1 corresponds to working; thus, 1,1,0 corresponds to
a woman who worked the first two years of the sample and did not work in the final
year.

c This is the standard chi-square statistic for goodness of fit. The higher the value of
the statistic, the worse the fit.

Source: Heckman (1981c).

natural logarithm of the price (coefficient denoted by βP ) and the difference in
the dummy variables for the two brands that describe whether the brand was
displayed in the store and featured in an advertisement that week (coefficients
denoted by βD and βF respectively). Among the many models they estimated,
Table 7.5 presents the results of

1. The pooled logit model, with the lagged choice treated as exogenous
assuming there are no individual specific effects (PLL)

2. The Chamberlain (1982) conditional logit approach with the lagged
choice treated as exogenous (CLL)

3. The pooled logit approach with normally distributed random effects
with mean μ and variance σ 2

α , with the initial choice treated as exoge-
nous (PLL-HET)

4. The pooled logit approach with normally distributed random effects
and the initial probability of choosing 1 given (xi , αi) assuming at the
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Table 7.5. Estimates of brand choices using various approaches (standard
errors in parentheses)

Model βp βd βf γ μα σα

CLL −3.347 0.828 0.924 −0.068
(0.399) (0.278) (0.141) (0.140)

PLL −3.049 0.853 1.392 3.458 −0.333
(0.249) (0.174) (0.091) (0.084) (0.102)

PLLHET −3.821 1.031 1.456 2.126 0.198 1.677
(0.313) (0.217) (0.113) (0.114) (0.150) (0.086)

PLLHETE −4.053 0.803 1.401 1.598 0.046 1.770
(0.274) (0.178) (0.115) (0.115) (0.133) (0.102)

HK05 −3.477 0.261 0.782 1.223
(0.679) (0.470) (0.267) (0.352)

HK10 −3.128 0.248 0.759 1.198
(0.658) (0.365) (0.228) (0.317)

HK30 −2.644 0.289 0.724 1.192
(0.782) (0.315) (0.195) (0.291)

PLLHET-Sa −3.419 1.095 1.291 1.550 0.681 1.161
(0.326) (0.239) (0.119) (0.117) (0.156) (0.081)

a The PLLHET estimates after excluding those households that are completely loyal to
one brand.

Source: Chintagunta, Kyriazidou, and Perktold (2001, Table 3).

steady state, which is approximated by

F (x̄′
iβ + αi)

1 − F (x̄′
iβ + γ + αi) + F (x̄′

iβ + αi) , (7.5.41)

where F (a) = exp (a)/(1 + exp (a)) and x̄i denotes the individual
time series mean of xit (PLLHETE)

5. The Honoré and Kyriazidou (2000a) approach, where hN = c ·N−1/5

with c = 0.5 (HK05), 1.0 (HK10), and 3.0 (HK30)

Table 7.5 reveals that almost all procedures yield statistically significant
coefficients with the expected signs. An increase in the price of a brand reduces
the probability of choosing the brand, and the presence of a store display or of
a feature advertisement for a brand makes purchase of that brand more likely.
Also, apart from CLL, all methods produce positive and statistically significant
estimates for γ , that is, a previous purchase of a brand increases the probability
of purchasing the same brand in the next period. The lagged choice is found
to have a large positive effect in brand choice for pooled methods assuming no
heterogeneity: PLL estimates of γ is 3.5. However, introducing heterogeneity
lowers it substantially to 2.1 (PLLHET). The estimate of γ further drops to
1.598 (PLL-HETE) when the initial observations are treated as endogenous, and
drops to about 1.2 using the Honoré–Kyriazidou estimator. Nevertheless, they
do indicate that after controlling for the effects of αi , a previous purchase of a
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brand increases the probability of purchasing the same brand in the next period,
although their impact is substantially reduced compared to the case of assuming
no heterogeneity. There is also an indication of substantial heterogeneity in the
sample. All methods that estimate random effects give high values for the
standard deviation of the household effects, σα about 1.7, bearing in mind that
σu is normalized to 1 only.

In general, the size of the estimated parameters varies considerably across
estimation methods. There is also some sensitivity in the HK point estimates of
all coefficients with respect to the bandwidth choice. To investigate this issue
further and identify situations where the different methods are most reliable
in producing point estimates, Chintagunta, Kyriazidou, and Perktold (2001)
further conduct Monte Carlo studies. Their results indicate that the conditional
likelihood procedures are the most robust in estimating the coefficients on the
exogenous variables. However, the coefficient on the lagged dependent variable
is significantly underestimated. The pooled procedures are quite sensitive to
model misspecification, often yielding large biases for key economic parame-
ters. The estimator proposed by Honoré and Kyriazidou (2000a) performs quite
satisfactory despite a loss of precision because their method de facto only uses
substantially smaller number of observations than other methods due to the use

of the weighting scheme K
(

xit−xis
hN

)
.

7.6 ALTERNATIVE APPROACHES FOR
IDENTIFYING STATE DEPENDENCE

Section 7.5 focuses on getting consistent estimators for dynamic panel dis-
crete choice models with individual-specific effects. If individual-specific
effects are treated as random, the consistency of dynamic models requires
the knowledge of the conditional distribution of individual-specific effects
αi given the T time series observations of the K × 1 exogenous variables,
xit , x′

i = (x′
i1, . . . , x

′
iT ),G(αi | xi), and the initial value distribution given

xi , P (yi0 | xi). If αi is treated as a fixed constant, the consistency of the MLE
requires T → ∞. If T is finite, the conditions for obtaining consistent estima-
tor of the coefficients of exogenous variables and lagged dependent variables
impose severe restrictions on the observed data that only very small proportion
of the sample may be utilized, if they satisfy the conditions at all. In this section,
we consider alternative approaches to identify the dynamic dependence–bias
reduced estimator for fixed-effects models; bounding parameters without the
knowledge of G(α | x) and P (y0 | x) for random effects models; and approxi-
mate model.

7.6.1 Bias-Adjusted Estimator

Controlling the impact of unobserved heterogeneity in linear models are rela-
tively straightforward (e.g., see Chapters 3 and 4). Controlling the impact of
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unobserved heterogeneity that is correlated with explanatory variables in non-
linear models is much more difficult. When T is finite, the estimators of the
parameters of interest (structural parameters) are inconsistent no matter how
large N is. This inconsistency occurs because only a finite number of obser-
vations are available to estimate each individual effect αi while the estimation
of structural parameters depends on αi . Increasing T does not necessarily fully
solve this problem ifN also grows with T (e.g., see Alvarez and Arellano 2003;
Hahn and Newey 2004). In this section we consider methods that reduce the
bias of the estimator to the order of 1

T 2 .
Let � denote the parameters of interest (structural parameters) and αi

denote the unobserved individual-specific effects (incidental parameters). Let
�̂T denote the estimator of � based on NT panel data (yit , xit ) and α̂i , the
estimated αi , say the fixed effects MLE (7.3.2) for static logit model ((7.3.2)
and 7.3.3)) or dynamic logit model (7.5.16). In general, because of the error in
the estimation of αi when T is fixed, as N → ∞, �̂T → �T , where

�T = � + B

T
+ D

T 2
+O

(
1

T 3

)
(7.6.1)

for some B and D. This bias should be small for large T . However, if N
grows at the same rate as T when T → ∞, the fixed-effects estimator �̂ is
asymptotically biased. For N

T
→ c �= 0,

√
NT (�̂ − �) =

√
NT (�̂ − �) +

√
NT · B

T
+O

(√
N

T 3

)
(7.6.2)

will have asymptotic normal distribution centered at
√
cB. (e.g., the fixed-

effects estimator for the dynamic panel data model (4.2.3)).
Hahn and Newey (2004) suggest a jackknife estimator to reduce the bias,

θ̃ ≡ T �̂ − T − 1

T

T∑
t=1

�̂(t), (7.6.3)

where �̂(t) be the fixed effects estimator based on the subsample excluding the
observations of the t th period. If �T has the form (7.6.1), then the estimator �̃
will converge in probability to

(T �T − (T − 1)�T−1)

= � +
(

1

T
− 1

T − 1

)
D +O

(
1

T 2

)
(7.6.4)

= � +O
(

1

T 2

)
.

Thus, the jackknife estimator reduces the bias to the order of 1
T 2 . However, in

addition to the fact that the jackknife estimator (7.6.3) requires the estimation of
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(T + 1) fixed effects estimators, the asymptotic covariance matrix of �̃ is com-
plicated to derive unless (yit , xit ) are contemporaneously and intertemporally
independently distributed (over i and t).

An alternative approach is to obtain an estimated B, B̂, then forming a bias
corrected estimator

�̂
∗ = �̂ − B̂

T
, (7.6.5)

(e.g. (4.7.28)). The advantage of (7.6.5) is that it reduces the bias while the
formula for the asymptotic covariance matrix of �̂

∗
remains the same as that of

�̂. However, the derivation of B̂ can be complicated.
For instance, consider the panel dynamic binary choice model of the form,

yit = 1(x′
it� + yi,t−1γ + αi + uit > 0),

i = 1, . . . , N,

t = 1, . . . , T ,

yi0 observable,

(7.6.6)

where 1(A) = 1 if event A occurs and 0 otherwise. We suppose that uit is
independently, identically distributed with mean 0. Then

E(yit | yi,t−1, xit , αi) = Prob (yit = 1 | yi,t−1, xit , αi)

= F (x′
it� + yi,t−1γ + αi) (7.6.7)

= Fit ,
where F is the integral of the probability distribution function of uit from
−(xit� + yi,t−1γ + αi) to ∞. When αi is considered fixed, the log-likelihood
function conditional on yi0 takes the form

log L =
N∑
i=1

T∑
t=1

[yit log Fit + (1 − yit ) log (1 − Fit )] (7.6.8)

The MLE of �′ = (�′, γ ) and αi are obtained by solving the following
first-order conditions simultaneously:

∂ log L

∂αi
|α̂i= 0, i = 1, . . . , N, (7.6.9)

∂ log L

∂�
|�̂= 0. (7.6.10)

Substituting the solutions of (7.6.9) as function of � to (7.6.8) yields the
concentrated log-likelihood function

log L∗ =
N∑
i=1

�i(�, α̂i(�)), (7.6.11)
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where

�i(�, α̂i(�)) =
T∑
t=1

{
yit log F (x′

it� + yi,t−1γ + α̂i(�))

+ (1 − yit ) log [1 − F (x′
it� + yi,t−1γ + α̂i(�))]

}
.

Then the MLE of � is the solution of the following first-order conditions:

1

NT

N∑
i=1

[
∂�i(�, α̂i(θ ))

∂�
+ ∂�i(�, α̂i(�))

∂α̂i(�)
× ∂α̂i(�)

∂�

]
�̂

= 0. (7.6.12)

The estimating equation (7.6.12) depends on α̂i . When T → ∞, α̂i → αi , the
MLE of � is consistent. When T is finite, α̂i �= αi , then (7.6.12) evaluated at �
does not converge to 0. Hence the MLE of �, �̂, is not consistent. The bias of
the MLE is of order 1

T
. The analytical solution for B̂T can be derived by taking

a Taylor series expansion of (7.6.12) (e.g., see Hahn and Kuersteiner 2011).
Instead of obtaining B̂T directly, Carro (2007) proposes to derive the bias

corrected MLE directly by taking the Taylor series expansion of the score
function (7.6.12) around αi and evaluate it at the true value � yields

dθi(�, α̂i(�)) = dθi(�, αi) + dθαi i(α̂i(�) − αi)
(7.6.13)

+ 1

2
dθαiαi i(α̂i(�) − αi)2 +Op(T − 1

2 ), i = 1, . . . , N.

where dθi(�, α̂i(�) = ∂�i (�,α̂i (�))
∂�

= ∂�i (�,α̂i (�))
∂�

+ ∂�i (�,α̂i (�))
∂α̂i (�)) · ∂α̂i (�)

∂�
, d�αi i =

∂2�i (�,α̂(�))
∂�∂αi

, dθαiαi i = ∂3�i (�,α̂i (�))
∂�∂αi∂αi

. Making use of McCullah (1987) asymptotic

expansion for (α̂i(�) − αi) and (α̂i(�) − αi)2, Carro (2007) derives the
bias-corrected estimator from the modified score function of dθi = ∂�i (�,α̂i (�))

∂�
,

N∑
i=1

d∗
θi

=
N∑
i=1

{
dθi (�, α̂i(�)) − 1

2

1

dαiαi i(�, α̂i(�))

(
dθαiαi i(�, α̂i(�))

+ dαiαiαi (�, α̂i(�))
∂α̂i(�)

∂�

)
(7.6.14)

+ ∂

∂αi

( 1

E[dαiαi i(�, αi)]
E[dθαi i(�, αi)]

)
|α̂i (θ)

}
�̂

∗ = 0,

where dαiαi i = ∂2�i (�,αi (�))
∂α2
i

and dαiαiαi = ∂3�i (�,α̂i (�))
∂α̂3
i (�)

. Carro (2007) shows that

the bias of the modified MLE, �̂
∗
, is also of order

(
1
T 2

)
and has the same

asymptotic variance as the MLE. His Monte Carlo studies show that the bias
of the modified MLE is small with T = 8.
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7.6.2 Bounding Parameters

When yi0 and αi are treated as random, the joint likelihood of f (yi , yi0 | xi)
can be written in the form of conditional density of f (yi | yi0, xi) times the
marginal density f (yi0 | xi),

f (yi , yi0 | xi)

= ∫ f (yi | yi0, xi , αi)f (yi0 | xi , αi)G(αi | xi)dαi,

i = 1, . . . , N,

(7.6.15)

where yi = (yi1, . . . , yiT )′, xi = (x′
i1, . . . , x

′
iT ), andG(αi | xi) denotes the con-

ditional density of αi given xi . For model (7.6.6) with uit following a standard
normal distribution, N (0, 1),

f (yi | yi0, xi , αi) =
T∏
t=1

[�(x′
it� + yi,t−1γ + αi)]yit

· [1 −�(x′
it� + yi,t−1γ + αi)]1−yit (7.6.16)

i = 1, . . . , N.

If uit follows a logistic distribution

f (yi | yi0, xi , αi) =
T∏
t=1

exp [(x′
it� + yi,t−1γ + αi)]yit

1 + exp (x′
it� + yi,t−1γ + αi) , (7.6.17)

i = 1, . . . , N.

When G(α | x) and the initial distribution P (y0 | x) are known, � = (�, γ )
can be estimated by the MLE. However, G(α | x) and f (y0 | x) are usually
unknown. Although in principle, one can still maximize (7.6.15), the usual
regularity conditions for the consistency of the MLE (e.g., Kiefer and Wolfowitz
1956) is violated because G(α | x) is infinite dimensional (Cosslett 1981).

If x and α are discrete, Honoré and Tamer (2006) suggest a linear program
approach to provide the bound of �. Let Aj = (dj1, . . . , djT ) be the 1 × T
sequence of binary variables djt . LetA denote the set of all 2T possible sequence
of 0’s and 1’s, Aj . Let P (yi0 | xi , αi) denote the probability of yi0 = 1 given
xi and αi and f0(α, x) denote the distribution of yi0 given x and α. Then,
conditional on P (yi0 | xi , αi),

f (yi | xi , f0(yi0 | xi ,	 i), αi) = P (yi0 | xi , αi)f (yi | yi0 = 1, xi , αi)

+ (1 − P (yi0 | xi , αi))f (yi | yi0 = 0, xi , αi),

(7.6.18)
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and

f (yi | xi , f0(·, ·),�)

=
∫
f (yi | xi , α, f0(·, ·),�)dG(α | xi). (7.6.19)

Let π (A | x, α; f0(·, ·),�) and P (A | x) be the probability of an event
A in A given (x, α) predicted by the model and the probability of an
event A occurs given x, respectively. Then π (A | x, f0(·, ·),�) = ∫ π (A |
x, α; f0(·, ·),�)dG(α | x). Define the set of (f0(·, ·),�) that is consistent with
a particular data-generating process with probabilities P(A | x) as

� =
{

(f0(·, ·),�) : P [π (A | x; f0(·, ·),�)
(7.6.20)

= P (A | x)] = 1
}
.

Then the bound of � is given by

� =
{

� : ∃f0(·, ·) such that
(7.6.21)

P [π (A | x; f0(·, ·),�) = P (A | x)] = 1)
}
.

Suppose α has a discrete distribution with a known maximum number
of points of support, M . The points of support are denoted by am and the
probability of αi = am given x denoted by ρmx . Then

π (A | f0(·, ·), x,�)

=
M∑
m=1

ρmx

[
f0(am, x)π (A | y0 = 1,�, x; am)

(7.6.22)
+ (1 − f0(am, x))π (A | y0 = 0,�, x; am)

]
=

M∑
m=1

zmxπ (A | y0 = 1, x,�; am) +
M∑
m=1

zM+m,xπ (A | y0 = 0, x,�; am),

where zmx = ρmxf0(am, x) and zM+m,x = ρmx[1 − f0(am, x)] for m =
1, . . . ,M . The identified set �, consists of the value of � for which the follow-
ing equations have a solution for {zmx}2M

m=1:

M∑
m=1

zmxπ (A | y0 = 1, x,�; am) +
M∑
m=1

zM+m,xπ (A | y0 = 0, x,�; am)

= P (A | x), (7.6.23)
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and for all A ε A,
2M∑
m=1

zmx = 1, zmx ≥ 0. (7.6.24)

Equation’s (7.6.23) and (7.6.24) have exactly the same structure as the
constraints in a linear programming problem, so checking whether a particular
� belongs to � can be done in the same way that checks for a feasible solution in
a linear programming problem providedP (A | x) can be consistently estimated.
Therefore, Honoré and Tamer (2006) suggest bounding � by considering the
linear programming problem:

maximize
∑
j

−vjx
{zmx, {vjx}}

(7.6.25)

where

vjx = P (Aj | x) −
M∑
m=1

zmxπ (Aj | yi0 = 1, x,�; am)

−
M∑
m=1

zM+m,xπ (Aj | yi0 = 0, x,�; am)

for all Aj ε A, j = 1, . . . , 2T , (7.6.26)

1 −
2M∑
m=1

zmx = v0x, (7.6.27)

zmx ≥ 0, (7.6.28)

vjx ≥ 0. (7.6.29)

The optimal function value for (7.6.25) is 0 if and only if all vjx = 0, that
is, if a solution exists to (7.6.23) and (7.6.24). If (7.6.23) and (7.6.24) do not
have a solution, the maximum function value in (7.6.25) is negative. Following
Manski and Tamer (2002) it can be shown that a consistent estimator of the
identified region can be constructed by checking whether, for a given �, the
sample objective function is within ε of the maximum value of 0 where P (A)
is substituted by its consistent estimator. Because x is discrete, one can mimic
this argument for each value in the support of xi which will then contribute a
set of constraints to the linear programming problem.

7.6.3 Approximate Model

The dynamic logit model (7.5.24) implies that the conditional distribution of a
sequence of response variables, yi = (yi1, . . . , yiT )′ given αi, xi , and yi0, can
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be expressed as

P (yi | xi , αi, yi0) =
exp (αi

T∑
t=1
yit +

T∑
t=1
yit (x′

it�) + yi∗γ )

T∑
t=1

[1 + exp (x′
it� + yi,t−1γ + αi)]

, i = 1, . . . , N,

(7.6.30)

where yi∗ =∑T
t=1 yi,t−1yit .

The Honoré and Kyriazidou (2000a) conditional approach discussed in Sec-
tion 7.5 requires a specification of a suitable kernel function and the bandwidth
parameters to weigh the response configuration of each subject in the sample
on the basis of exogenous explanatory variables in which only exogenous vari-
ables are close to each other receiving large weights, implying a substantial
reduction of the rate of convergence of the estimator to the true parameter value.
Moreover, conditional on certain configurations leads to a response function
in terms of time changes of the covariates, implying the exclusion of time-
invariant variables. Noting that the dynamic logit model (7.6.30) implies that
the conditional log-odds ratio between (yit , yi,t−1) equals to

log
P (yit = 0 | αi, xi , yi,t−1 = 0) · P (yit = 1 | αi, xi , yi,t−1 = 1)

P (yit = 0 | αi, xi , yi,t−1 = 1) · P (yit = 1 | αi, xi , yi,t−1 = 0)
= γ,

(7.6.31)

Bartolucci and Nigro (2010) suggest using the Cox (1972) quadratic exponen-
tial model to approximate (7.6.30),21

P ∗(yi | xi , yi0, δi)

=
exp [δi(

T∑
t=1
yit ) +

T∑
t=1
yit (x′

it�1) + yiT (ψ + x′
iT�2) + yi∗τ ]

∑
di

exp[δi(
T∑
t=1
dijt ) +

T∑
t=1
dijt (x′

it�1) + dijT (ψ + x′
iT�2) + d∗

ij τ ]

(7.6.32)

where dij = (dij1, . . . , dijT ) denote the j th possible binary response sequence,∑
di

denotes the sum over all possible response sequence of dij , such

that
∑T
t=1 dijt =∑T

t=1 yit , and d∗
ij = dij1yio +∑T

t=1 dijtdij,t−1. Model (7.6.32)
implies that

P ∗(yit | xi , δi , yi0, . . . , yi,t−1)

= exp{yit [δi + x′
it�1 + yi,t−1τ + e∗t (δi, xi)]}

1 + exp [δi + x′
it�1 + yi,t−1τ + e∗t (δi, xi)]

, (7.6.33)

21 To differentiate the approximate model from the dynamic logit model (7.6.30), we use δi
to represent the individual-specific effects and �1 to represent the coefficients of xit in the
approximate model (7.6.32).
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where, for t < T ,

e∗t (δi, xi) = log
1 + exp [δi + x′

i,t+1�1 + e∗t+1(δi, xi) + τ ]

1 + exp [δi + x′
i,t+1�1 + e∗t+1(δi, xi)]

= log
P (yi,t+1 = 0 | δi, xi , yit = 0)

P (yi,t+1 = 0 | δi, xi , yit = 1)
.

(7.6.34)

The corrections term (7.6.34) depends on future covariates. For the last period,
it is approximated by

e∗T (δi, xi) = ψ + x′
iT�2. (7.6.35)

Model (7.6.33) may be viewed as a latent response model of the form

y∗
it = x′

it�1 + δi + yi,t−1τ + e∗t (δi, xi) + ηit , (7.6.36)

with logistically distributed stochastic term ηit . The correction term e∗t (δi, xi)
may be interpreted as a measure of the effect of the present choice yit on the
expected utility (or propensity) at period (t + 1). The parameter τ for the state
dependence is the log-odds ratio between any pairs of variables (yi,t−1, yit ),
conditional on all the other response variables or marginal with respect to these
variables.

The difference between the approximate model (7.6.32) and the dynamic
logit model (7.6.30) is in the denominator. The former does not depend on
the actual sequence yi , while the latter does. The advantage of model (7.6.32)
or (7.6.33) is that the parameters for the unobserved heterogeneity, δi , can be
eliminated by conditioning on the sum of response variables over time just
like the static logit model (7.3.14). When yi0 are observable, the structural
parameters can be estimated by the conditional maximum likelihood estimator
as discussed in (7.3.21) when T ≥ 2.

The relations between (7.6.32) and (7.6.30) can be seen through a Taylor
series expansion of the nonlinear term of the logarithm of the dynamic logit
model (7.6.30) at αi = α̃i ,� = �̃ and γ = 0,

T∑
t=1

log [1 + exp (x′
it� + yi,t−1γ + αi)]

�
T∑
t=1

{ log [1 + exp (x′
it �̃ + α̃i)] + q̃it

· [x′
it (� − �̃) + (αi − α̃i)]} + q̃i1yi0γ +

T∑
t=1

q̃it yi,t−1γ,

(7.6.37)
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where

q̃it = exp (α̃i + x′
it �̃)

1 + exp (α̃i + x′
it �̃)

. (7.6.38)

Substituting (7.6.37) into the logarithm of (7.6.30) and renormalizing the expo-
nential of the resulting expression yields the approximate model for (7.6.30)
as

P ∗(yi | xi , αi, yi0)

= exp (αi(
∑T
t=1 yit ) +∑T

t=1 yit (x
′
it�) −∑T

t=2 q̃it yi,t−1γ + yi∗γ )∑
di

exp [αi(
∑T
t=1 dijt ) +∑T

t=1 dijt (x
′
it�) − (

∑T
t=2 q̃it di,t−1)γ + dij∗γ )]

,

i = 1, . . . , N. (7.6.39)

When γ is indeed equal to 0, the true model and the approximating model
coincide. Both become the static logit model (7.3.13). The approximating
model (7.6.32) or (7.6.39) implies that the conditional logit of yit given x′

i , αi
and yi0, . . . , yi,t−1,is equal to

log
P ∗(yit = 1 | xi , αi, yi0, . . . , yi,t−1)

P ∗(yit = 0 | xi , αi, yi0, . . . , yi,t−1)

=
{x′
it� + yi,t−1γ + αi + et (αi, xi) − q̃i,t+1γ, if t < T ,

x′
it� + yi,t−1γ + αi, if t = T , (7.6.40)

where

et (αi, xi) = log
P ∗(yi,t+1 = 0 | xi , αi, yit = 0)

P ∗(yi,t+1 = 0 | xi , αi, yit = 1)

= q̄i,t+1γ.

(7.6.41)

Equation (7.6.40) implies that

log
P ∗(yit = 1 | xi , αi, yi,t−1 = 1)

P ∗(yit = 0 | xi , αi, yi,t−1 = 1)
− log

P ∗(yit = 1 | xi ai, yi,t−1 = 0)

P ∗(yit = 0 | xi , αi, yi,t−1 = 0)
= γ.

(7.6.42)

Just like the dynamic logit model, the approximating model implies yit
is conditionally independent of yi0, . . . , yi,t−2 given xi , αi and yi,t−1 for
t = 2, . . . , T and is conditionally independent of yi0, . . . , yi,t−2, yi,t+2, . . . , yiT
given xi , αi, yi,t−1 and yi,t+1 for t = 2, . . . , T − 1. However, it has the advan-
tage that the minimum sufficient statistics for αi is now

∑T
t=1 yit . Hence the
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conditional distribution of yi given
∑T
t=1 yit , where 0 <

∑T
t=1 yit < T ,

P ∗(yi | xi , αi, yi0,
T∑
t=1

yit )

=
exp

{∑T
t=2 yit (xit − xi,t−1)′� −∑T

t=2 q̃it yi,t−1γ + yi∗γ )
}

∑
di

exp {∑T
t=2 dijt (xit − xi,t−1)′� −∑T

t=2 q̃it dij,t−1γ + dij∗γ )
,

i = 1, . . . , N. (7.6.43)

To obtain the pseudo-conditional MLE of the pseudo-likelihood function
(7.6.43). Bartolucci and Nigro (2010) suggest first assuming there was no
state dependence (γ = 0) and maximizing the conditional log-likelihood of
the static logit model (7.3.21) for those i where 0 <

∑T
t=1 yit < T to obtain a

preliminary estimate �̄. Then substituting �̃ into (7.6.42) to obtain the revised
pseudo-conditional MLE of � and � through the Newton–Raphson iterative
procedure. Their Monte Carlo studies show that the pseudo-conditional MLE
has a very low bias for data generated by a dynamic logit model.



CHAPTER 8

Sample Truncation and Sample Selection

8.1 INTRODUCTION

In economics, the ranges of dependent variables are often constrained in some
way. For instance, in his pioneering work on household expenditure on durable
goods, Tobin (1958) used a regression model that specifically took account of
the fact that the expenditure (the dependent variable of his regression model)
cannot be negative. Tobin called this type of model the model of limited depen-
dent variables. It and its various generalizations are known as Tobit models
because of their similarities to probit models.1 In statistics they are known as
truncated or censored regression models. The model is called truncated if the
observations outside a specific range are totally lost, while it is called censored
if we can at least observe the proportion of samples having realized values
falling outside the observed range and some of the explanatory variables.

It is more convenient to relate an observed sample y that is subject to
truncation or selection with a latent response function,

y∗ = x′� + u, (8.1.1)

where x is a K × 1 vector of exogenous variables and u is the error term that
is independently, identically distributed (i.i.d) with mean 0 and variance σ 2

u .
Without loss of generality, suppose that the observed y are related to the latent
variable y∗ by

y =
{
y∗, if y∗ > 0,
0, if y∗ ≤ 0.

(8.1.2)

Models of the form (8.1.1) and (8.1.2) are called censored regression models
because the data consist of those points of (y∗

i , xi) if y∗
i > 0 and (0, xi) if

y∗
i ≤ 0 for i = 1, . . . , N . The truncated data consist only of points of (y∗

i , xi)
where y∗

i > 0.

1 See Amemiya (1985) and Maddala (1983) for extensive discussions of various types of Tobit
models.
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The conditional expectation of y given x for truncated data is equal to

E(y | x, y > 0) = E(y∗ | x, y∗ > 0) = x′� + E(u | u > −x′�). (8.1.3)

The conditional expectation of y given x for censored data is equal to

E(y | x) = Prob (y = 0) · 0 + Prob (y > 0 | x) · E(y | y > 0, x)

= Prob (u ≤ −x′�) · 0

+ Prob (u > −x′�)E(y∗ | x; u > −x′�) (8.1.4)

= Prob (u > −x′�)[x′� + E(u | u > −x′�)].

If u is independently normally distributed with mean 0 and variance σ 2
u ,

then

Prob (u > −x′�) = 1 −�
(−x′�
σu

)
= �

(
x′�
σu

)
, (8.1.5)

and

E(u | u > −x′�) = σu ·
φ
(

x′�
σu

)
�
(

x′�
σu

) , (8.1.6)

where φ(·) and�(·) are standard normal density and cumulative (or integrated)
normal, respectively. Equations (8.1.3) and (8.1.5) show that truncation or
censoring of the dependent variables introduces dependence between the error
term and the regressors for the model

y = x′� + ε, (8.1.7)

where the error

ε = ν + E(y | x) − x′�. (8.1.8)

Although ν = y − E(y | x) hasE(ν | x) = 0, butE(ε | x) �= 0. Therefore, the
least squares estimator of (8.1.7) is biased and inconsistent.

The likelihood function of the truncated data is equal to

L1 =
∏

1

[Prob (yi > 0 | xi)]−1f (yi) (8.1.9)

where f (·) denotes the density of y∗
i (or ui) and

∏
1 means the product over

those i for which yi > 0. The likelihood function of the censored data is
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equal to

L2 =
{∏

0

Prob (yi = 0 | xi) ·
∏

1

Prob (yi > 0 | xi)

}

·
{∏

1

[Prob (yi > 0 | xi)]−1f (yi)

}

=
∏

0

Prob (yi = 0 | xi)
∏

1

f (yi),

(8.1.10)

where
∏

0 means the product over those i for which y∗
i ≤ 0. In the case that ui

is independently normally distributed with mean 0 and variance σ 2
u , f (yi) =

(2π )−
1
2 σ−1
u exp {− 1

2σ 2
u

(yi − x′
i�)2} and Prob (yi = 0 | xi) = �(−x′

i�
σu

) = 1 −
�
(x′

i�
σu

)
.

Maximizing (8.1.9) or (8.1.10) with respect to �′ = (�′, σ 2
u ) yields the

maximum likelihood estimator (MLE). The MLE, �̂, is consistent and is
asymptotically normally distributed. The asymptotic covariance matrix of the
MLE, asy cov [

√
N (�̂ − �)], is equal to the inverse of the information matrix[− E 1

N

∂2 log Lj

∂�∂�′
]−1

, which may be approximated by
[− 1

N

∂2 log Lj
∂θ∂θ ′ |�=�̂

]−1
,

j = 1, 2. However, the MLE is highly nonlinear. A Newton–Raphson type
iterative scheme may have to be used to obtain the MLE. Alternatively, if
u is normally distributed, Heckman (1976a) suggests the following two-step
estimator:

1. Maximize the first curly part of the likelihood function (8.1.10) by
probit MLE with respect to � = 1

σu
�, yielding �̂.

2. Substitute �̂ for � into the truncated model

yi = E(yi | xi ; yi > 0) + ηi

= x′
i� + σu φ(x′

i�)

�(x′
i�)

+ ηi, for those i such that yi > 0,
(8.1.11)

where E(ηi | xi) = 0 and Var (ηi | xi) = σ 2
u [1 − (x′

i�)λi − λ2
i ] and

λi = φ(x′
i�)

�(x′
i�) . Regress yi on xi and φ(x′

i �̂)

�(x′
i �̂)

by least squares, using only

the positive observations of yi .

The Heckman two-step estimator is consistent. The formula for computing
the asymptotic variance–covariance matrix of Heckman’s estimator is given by
Amemiya (1978b). But the Heckman two-step estimator is not as efficient as
the MLE.

Both the MLE of (8.1.10) and the Heckman two-step estimator (8.1.11)
are consistent only if u is independently normally distributed with constant
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y*

Density of y*

β’x 2β’x 0

Figure 8.1. Density of y∗ censored or truncated at 0.

variance. Of course, the idea of the MLE and the Heckman two-step estimator
can still be implemented with proper modification if the identically distributed
density function of u is correctly specified. A lot of times an investigator does
not have the knowledge of the density function of u or u is not identically
distributed. Under the assumption that it is symmetrically distributed around 0,
Powell (1986) proves that by applying the least-squares method to the symmet-
rically censored or truncated data yields a consistent estimator that is robust to
the assumption of the probability density function of u and heteroscedasticity
of the unknown form.

The problem of censoring or truncation is that conditional on x, y is no
longer symmetrically distributed around x′� even though u is symmetrically
distributed around 0. Consider the case where x′

i� > 0 and yi = y∗
i if y∗

i > 0.
Data points for which ui ≤ −x′

i� are either censored or omitted. However, we
can restore symmetry by censoring or throwing away observations with ui ≥
x′
i� or yi ≥ 2x′

i� as shown in Figure 8.1 so that the remaining observations fall
between (0, 2x′�). Because of the symmetry of u, the corresponding dependent
variables are again symmetrically distributed about x′� (Hsiao 1976). However,
any observations correspond to x′� < 0 are all lying on one side of x′�. There
are no corresponding observations lying on the other side of x′�, they have to
be thrown away.

To make this approach more explicit, consider first the case in which the
dependent variable is truncated at 0. In such a truncated sample, data points for
which ui ≤ −x′

i� when x′
i� > 0 are omitted. But if data points with ui ≥ x′

i�
are also excluded from the sample, then any remaining observations would
have error terms lying within the interval (−x′

i�, x′
i�) (any observations for
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which x′
i� ≤ 0 are automatically deleted). Because of the symmetry of the

distribution of u, the residuals for the “symmetrically truncated” sample will
also be symmetrically distributed about 0. The corresponding dependent vari-
able would take values between 0 and 2x′

i� as shown in the region AOB of
Figure 8.2. In other words, points b and c in Figure 8.2 are thrown away (point
a is not observed). Therefore, the moment conditions

E[1(y < 2x′�)(y − x′�) | x] = 0, (8.1.12)

and

E[1(y < 2x′�)(y − x′�)x] = 0, (8.1.13)

hold, where 1(A) denotes the indicator function that takes the value 1 if A
occurs and 0 otherwise.

The sample analog of (8.1.13) is

1

N

N∑
i=1

1(yi < 2x′
i�̂)(yi − x′

i�̂)xi = 0 (8.1.14)

which is the first-order condition of applying the least-squares principle to
symmetrically trimmed truncated data falling in the region AOB.

Definition of the symmetrically trimmed estimator for a censored sample
is similarly motivated. The error terms of the censored regression model are
of the form u∗

i = max {ui,−x′
i�}, (i.e., point a in Figure 8.2 is moved to

the corresponding circled point a′). “Symmetric censoring” would replace
u∗
i with min {u∗

i , x′
i�} whenever x′

i� > 0, and would delete the observation
otherwise. In other words, the dependent variable yi = max {0, y∗

i } is replaced
with min {yi, 2x′

i�} as the points a, b, c in Figure 8.2 have been moved to the
corresponding circled points (a′, b′, c′). Therefore,

E{1(x′� > 0)[min (y, 2x′�) − x′�] | x} = 0, (8.1.15)

and

E{1(x′� > 0)[min (y, 2x′�) − x′�]x} = 0. (8.1.16)

The sample analog of (8.1.16) is

1

N

N∑
i=1

1(x′
i�̂ > 0)[min {yi, 2x′

i�̂} − x′
i�̂]xi = 0. (8.1.17)

Equation (8.1.17) is the first-order condition of applying the least-squares
principle to the symmetrically censored data for observations in the region
AOB and the boundary OA and OB (the circled points in Fig. 8.2).

However, there could be multiple roots that satisfy (8.1.14) or (8.1.17)
because of the requirement 1(x′

i� > 0). For instance, �̂ = 0 is one such root. To
ensure the uniqueness of �̂ to satisfy these conditions, Powell (1986) proposes
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Figure 8.2. Distribution of y and y∗ under symmetric trimming.

the symmetrically trimmed least squares estimator as the �̂ that minimizes

RN (�) =
N∑
i=1

{
yi − max

(
1

2
yi, x′

i�

)}2

, (8.1.18)

for the truncated data, and

SN (�) =
N∑
i=1

{
yi − max

(
1

2
yi,�

′xi

)}2

+
N∑
i=1

1(yi > 2x′�)

{(
1

2
yi

)2

− [max (0, x′
i�)]2

} (8.1.19)

for the censored data. When ui are mutually independently unimodally sym-
metrically distributed, the objective function (8.1.18) is convex in �. The moti-
vation for RN (�) is that not only will they yield first-order conditions of the
form (8.1.14), it also serves to eliminate inconsistent roots that satisfy (8.1.14)
with the additional “global” restrictions that for observations correspond to
x′� ≤ 0, Ey2

t will be smaller than those correspond to x′� > 0. Therefore, if
x′
i�̂ < 0 while x′

i� > 0, it introduces a penalty of ( 1
2yi)

2 in RN (�).
The motivation for SN (�) (8.1.19) is that for observations greater than

2x′�, SN (�) will have partial derivatives equal to −2(x′�)x if x′� > 0 and
for observations correspond to x′� < 0 it will have 0 weight in the first-order
condition (8.1.17), while in the meantime it imposes a penalty factor 1

2y
2
i in

SN (�̂) for observations corresponding to x′
i�̂ < 0 while x′

i� > 0. However, we
no longer need unimodality of u for censored data to ensure that the objective



8.1 Introduction 287

function SN (�) is convex in �. All we need is u being independently symmet-
rically distributed. Powell (1986) shows that minimizing (8.1.18) or (8.1.19)
yields

√
N consistent and asymptotically normally distributed estimator.

The least-squares method yields the mean. The least absolute deviation
method yields the median (e.g., Amemiya 1984). When E(y∗ | x) = x′�, cen-
soring affects the mean, E(y | x), but does not affect the median; therefore
Powell (1984) suggests a least absolute deviation estimator of � by minimizing

S̃ = 1

N

N∑
i=1

| yi − max (0, x′
i�) | . (8.1.20)

When data are truncated at 0, negatively realized y∗(u < −x′�) are unob-
served. To restore the symmetry, Powell (1984) suggests minimizing

R̃ = 1

N

N∑
i=1

∣∣∣∣yi − max

(
1

2
yi, x′

iβ

)∣∣∣∣ . (8.1.21)

The exogenously determined limited dependent variable models can be
generalized to consider a variety of endogenously determined sample selection
issues. For instance, in the Gronau (1976) and Heckman’s (1976a) female labor
supply model the hours worked are observed only for those women who decide
to participate in the labor force. In other words, instead of an exogenously
given truncating or censoring value, they are endogenously and stochastically
determined by a selection equation

d∗
i = w′

ia + vi, i = 1, . . . , N, (8.1.22)

where wi is a vector of exogenous variables, a is the parameter vector and vi is
the random error term assumed to be i.i.d. with mean 0 and variance normalized
to be 1. The sample (yi, di), i = 1, . . . , N are related to y∗

i and d∗
i by the rule

d =
{

1, if d∗ > 0,
0, if d∗ ≤ 0,

(8.1.23)

y =
{
y∗, if d = 1,
0, if d = 0.

(8.1.24)

Model of (8.1.1), (8.1.22)–(8.1.24) is called the type II Tobit model by Amemiya
(1985). Then

E(yi | di = 1) = x′
i� + E(ui | vi > −w′

ia). (8.1.25)

The likelihood function of (yi, di) is

L =
∏
c

Prob (di = 0)
∏
c̄

f (y∗
i | di = 1) Prob (di = 1),

=
∏
c

Prob (di = 0) ·
∏
c̄

Prob (d∗
i > 0 | yi)f (yi),

(8.1.26)
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where c = {i | di = 0} and c̄ denotes its complement. If the joint distribution
of (u, v) is specified, one can estimate this model by the MLE. For instance,
if (u, v) is jointly normally distributed with mean (0, 0) and covariance matrix(σ 2
u σuv
σvu 1

)
, then

E(u | v > −w′a) = σuv φ(w′a)

�(w′a)
, (8.1.27)

Prob (d = 0) = [1 −�(w′a)] = �(−w′a), (8.1.28)

Prob (d = 1 | y) = �
{

w′a + σuv

σu
(y − x′�)

}
. (8.1.29)

Alternatively, Heckman’s (1979) two-stage method can be applied: first,
estimate a by a probit MLE of di, i = 1, . . . , N . Evaluate φ(a′wi)/�(a′wi)
using the estimated a. Second, regress yi on xi and φ(â′wi)/�(â′wi) using
data corresponding to di = 1 only.

Just like the standard Tobit model, the consistency and asymptotic nor-
mality of the MLE and Heckman two-stage estimator for the endogenously
determined selection depend critically on the correct assumption of the joint
probability distribution of (u, v). When the distribution of (u, v) is unknown,
the coefficients of x that are not overlapping with w can be estimated by a
semiparametric method.

For ease of exposition, suppose that there are no variables appearing in both
x and w; then as noted by Robinson (1988b), the model of (8.1.1), (8.1.23), and
(8.1.24) conditional on di = 1 becomes a partially linear model of the form:

yi = x′
i� + λ(wi) + εi, (8.1.30)

where λ(wi) denotes the unknown selection factor. The expectation of yi
conditional on wi and di = 1 is equal to

E(yi | wi , di = 1) = �′E(xi | wi , di = 1) + λ(wi). (8.1.31)

Subtracting (8.1.31) from (8.1.30) yields

yi − E(yi | wi , di = 1) = �′(xi − E(xi | wi , di = 1)) + εi, (8.1.32)

whereE(εi | wi , xi , di = 1) = 0. Thus, Robinson (1988b) suggests estimating
� by

� = {E(x − E(x | w))[x − E(x | w)]′
}−1
E[(x − E(x | w))][y − E(y | w)],

(8.1.33)

using the truncated sample.
The first-stage conditional expectation for the estimator (8.1.31) can be

estimated by the nonparametric method. For instance, one may use the kernel
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method to estimate the density of y at ya (e.g., Härdle 1990; Robinson 1989)

f̂ (ya) = 1

NhN

N∑
i=1

k

(
yi − ya
hN

)
, (8.1.34)

where hN is a positive number called the “bandwidth” or “smoothing” param-
eter that tends to 0 as N → ∞, k(u) is a kernel function that is a bounded
symmetric probability density function (pdf) that integrates to 1. Similarly, one
can construct a kernel estimator of a multivariate pdf at wa, f (wa) by

f̂ (wa) = 1

N | Hm |
N∑
i=1

km
(
H−1
m (wi − wa)

)
, (8.1.35)

where w is a m× 1 vector of random variables, km is a kernel function
on m dimensional space, and Hm is a positive definite matrix. For instance,
km(u) can be the multivariate normal density function or km(u) =∏m

j=1 k(uj ),
u′ = (u1, . . . , um),Hm = diag (h1N, . . . , hmN ).

Kernel estimates of a conditional pdf, f (ya | wa) or conditional expectations
Eg(y | wa) may be derived from the kernel estimates of the joint pdf and
marginal pdf. Thus, the conditional pdf may be estimated by

f̂ (ya | wa) = f̂ (ya,wa)

f̂ (wa)
(8.1.36)

and the conditional expectation by

Êg(y | wa) = 1

N | Hm |
N∑
i=1

g(yi)km(H−1
m (wi − wa))/f̂ (wa). (8.1.37)

The Robinson (1988b) approach does not allow the identification of the
parameters of variables that appear both in the regression equation, x, and the
selection equation, w. When there are variables appearing in both x and w,
Newey (2009) suggests a two-step series method of estimating � provided that
the selection correction term of (8.1.30), λ(wi, di = 1), is a function of the
single index, w′

ia,

λ(w, d = 1) = E[u | v(w′a), d = 1]. (8.1.38)

The first step of Newey’s method uses the distribution-free method discussed
in Chapter 7 or Klein and Spady (1993) to estimate a. The second step consists
of a linear regression of diyi on dixi and the approximations of λ(wi). Newey
suggests approximating λ(wi) by either a polynomial function of (w′

i â) or
a spline function, PKN (w′a) = (P1K (w′a), P2K (w′a), . . . , PKK (w′a))′ with the
property that for large K , a linear combination of PKN (w′a) can approximate
an unknown function of λ(w′a) well. Newey (2009) shows that the two-step
series estimation of � is consistent and asymptotically normally distributed
whenN → ∞,K → ∞, and

√
NK−s−t+1 → 0 where s ≥ 5 andK7/N → 0
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if PKN (w′a) is a power series or m ≥ t − 1, s ≥ 3, and K4/N → 0 if PKN (w′a)
is a spline of degree m in (w′a).2

If the selection factor λ(wi) is a function of a “single index,” w′
ia, and

the components of wi are a subvector of xi , instead of subtracting (8.1.32)
from (8.1.31) to eliminate the unknown selection factor λ(wi), Ahn and Pow-
ell (1993) note that for those individuals with w′

ia = w′
ja, λ(w′

ia) = λ(w′
ja).

Thus, conditional on (w′
ia = w′

ja, di = 1, dj = 1),

(yi − yj ) = (xi − xj )′� + (εi − εj ), (8.1.39)

where the error term (εi − εj ) is symmetrically distributed around 0. They show
that if λ is a sufficiently “smooth” function, and â is a consistent estimator of
a, observations for which the difference (wi − wj )′â is close to 0 should
have λ(x′

i â) − λ(w′
j â) � 0. Therefore, Ahn and Powell (1993) proposes a two-

step procedure. In the first step, consistent semiparametric estimates of the
coefficients of the “selection” equation are obtained. The result is used to obtain
estimates of the “single index, x′

ia,” variables characterizing the selectivity
bias in the equation of index. The second step of the approach estimates the
parameters of interest by a weighted least-squares (or instrumental) variables
regression of pairwise differences in dependent variables in the sample on the
corresponding differences in explanatory variables:

�̂AP =
⎡⎣N−1∑
i=1

N∑
j=i+1

K

(
(wi − wj )′â

hN

)
· (xi − xj )(xi − xj )′didj

⎤⎦−1

·
⎡⎣N−1∑
i=1

N∑
j=i+1

K

(
(wi − wj )′â

hN

)
· (xi − xj )(yi − yj )didj

⎤⎦ ,
(8.1.40)

where K(·) is a kernel density weighting function that is bounded, symmetric,
and tends to 0 as the absolute value of its argument increases, andhN is a positive
constant (or bandwidth) that decreases to 0, N (hN )δ −→ 0 as N → ∞, where
δ ∈ (6, 8). Often, standard normal density is used as a kernel function. The
effect of multiplying the K(·) is to give more weights to observations with

1
hN

(wi − wj )′â � 0 and less weight to those observations that w′
i â is different

from w′
j â so that in the limit only observations with w′

ia = w′
ja are used in

(8.1.39) and (8.1.40) converges to a weighted least-squares estimator for the

2 For instance, a spline of degree m in (w′â) with L evenly spaced knots on [−1, 1] can be based
on

PkK = (w′a)k−1, 1 ≤ k ≤ m+ 1,

= {[(w′a) + 1 − 2(k −m− 1)/(L+ 1)]+
}m
,m+ 2 ≤ k ≤ m+ 1 + L ≡ K,

where b+ ≡ 1(b > 0) · b.
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truncated data,

�̂AP −→ {
E{f (w′a)[x − E(x | w′a)][x − E(x | w′a)]′]

}−1

· {E{f (w′a)[x − E(x | w′a)][y − E(y | w′a)]
}
,

(8.1.41)

where f (w′a) denotes the density function of w′a, which is assumed to be
continuous and bounded above.

Both the Robinson (1988b) semiparametric estimator and the Powell type
pairwise differencing estimator converge to the true value at the speed ofN−1/2.
However, neither method can provide an estimate of the intercept term because
differencing the observation conditional on w or w′a, although it eliminates
the selection factor λ(w), it also eliminates the constant term, nor can x and
w be identical. Chen (1999) notes that if (u, v) are jointly symmetrical and w
includes a constant term,

E(u | v > −w′a) Prob (v > −w′a) − E(u | v > w′a) Prob (v > w′a)

=
∫ ∞

−∞

∫ ∞

−w ′a
uf (u, v)du dv −

∫ ∞

−∞

∫ ∞

w ′a
uf (u, v)du dv

=
∫ ∞

−∞

∫ w ′a

−w ′a
uf (u, v)du dv = 0,

(8.1.42)

where, without loss of generality, we let w′a > 0. It follows that

E[diyi − djyj − (dixi − dj xj )′� | w′
ia = −w′

ja,wi ,wj ]

= E[diui − djuj | w′
ia = −w′

ja,wi ,wj ] = 0.
(8.1.43)

Because E[di − dj | w′
ia = −w′

ja,wi ,wj ] = 2 Prob (di = 1 | w′
ia) − 1 �= 0

and the conditioning is on w′
ia = −w′

ja, not on w′
ia = w′

ja, the moment
condition (8.1.43) allows the identification of the intercept and the slope
parameters without the need to impose the exclusion restriction that at least
one component of x is excluded from w. Therefore, Chen (1999) suggests a√
N consistent instrumental variable estimator for the intercept and the slope

parameters as

�̂c =
⎡⎣N−1∑
i=1

N∑
j=i+1

K

(
(wi + wj )′â

hN

)
(dixi − dj xj )(zi − zj )′

⎤⎦−1

·
⎡⎣N−1∑
i=1

N∑
j=i+1

K

(
(wi + wj )′â

hN

)
(zi − zj )′(diyi − djyj )

⎤⎦ ,
(8.1.44)

where zi are the instruments for dixi . In the case when y are unobservable,
but the corresponding x are observable, the natural instrument will be E(d |
w′a)x. An efficient method for estimating binary choice models that contain an
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intercept term suggested by Chen (2000) can be used to obtain the first-stage
estimate of a.

8.2 AN EXAMPLE – NONRANDOMLY MISSING DATA

8.2.1 Introduction

Attrition is a problem in any panel survey. For instance, by 1981, all four of
the national longitudinal surveys started in the 1960s had lost at least one-
fourth of their original samples. In the Gary income maintenance project,
206 of the sample of 585 black, male-headed households, or 35.2 percent,
did not complete the experiment. In Section 11.1 we discuss procedures to
handle randomly missing data. However, the major problem in panel data is not
simply missing data but also the possibility that they are missing for a variety
of self-selection reasons. For instance, in a social experiment such as the New
Jersey or Gary negative-income-tax experiment, some individuals may decide
that keeping the detailed records that the experiments require is not worth the
payment. Also, some may move or may be inducted into the military. In some
experiments, persons with large earnings receive no experimental-treatment
benefit and thus drop out of the experiment altogether. This attrition may
negate the randomization in the initial experiment design. If the probability
of attrition is correlated with experimental response, then traditional statistical
techniques will lead to biased and inconsistent estimates of the experimental
effect. In this section we show how models of limited dependent variables
[e.g., see the surveys of Amemiya (1984), Heckman (1976a), and Maddala
(1983)] can provide both the theory and computational techniques for analyzing
nonrandomly missing data (Griliches, Hall, and Hausman 1978; Hausman and
Wise 1979).3

8.2.2 A Probability Model of Attrition and Selection Bias

Suppose that the structural model is

yit = �′xit + vit , i = 1, . . . , N,

t = 1, . . . , T ,
(8.2.1)

where the error term vit is assumed to follow a conventional error-components
formulation vit = αi + uit . For ease of exposition, we assume that T = 2.

If attrition occurs in the second period, a common practice is to discard
those observations for which yi2 is missing. But suppose that the probability of

3 Another example is the analysis of event histories in which responses are at nonequally spaced
points in time (e.g., Heckman and Singer 1984; Lancaster 1990). Some people choose to model
event histories in discrete time using sequences of binary indicators. Then the subject becomes
very much like the discrete panel data analysis discussed in Chapter 7.
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observing yi2 varies with its value, as well as the values of other variables; then
the probability of observing yi2 will depend on vi2. Least-squares of (8.2.1)
based on observed y will lead to biased estimates of the underlying structural
parameters and the experimental response.

To formalize the argument, let the indicator variable di = 1 if yi2 is observed
in period 2, and di = 0 if yi2 is not observed; in other words, attrition occurs.
Suppose that yi2 is observed (di = 1) if the latent variable

d∗
i = γyi2 + �′xi2 + �′wi + ε∗

i ≥ 0, (8.2.2)

where wi is a vector of variables that do not enter the conditional expectation of
y but affect the probability of observing y; � and � are vectors of parameters;
and (vi, ε∗

i ) are jointly normally distributed. Substituting for yi2 leads to the
reduced-form specification

d∗
i = (γ�′ + �′)xi2 + �′wi + γ vi2 + ε∗

i

= 
′xi2 + �′wi + εi
= a′Ri + εi,

(8.2.3)

where εi = γ vi2 + ε∗
i , andRi = (x′

i2,w
′
i)

′, and a′ = (
′,�′). We normalize the
variance of εi, σ 2

ε , equal to 1. Then the probabilities of retention and attrition
are probit functions given, respectively, by

Prob(di = 1) = �(a′Ri), and

Prob(di = 0) = 1 −�(a′Ri),
(8.2.4)

where �(·) is the standard normal distribution function.
Suppose we estimate the model (8.2.1) using only complete observations.

The conditional expectation of yi2, given that it is observed, is

E(yi2 | xi2,wi , di = 1) = �′xi2 + E(vi2 | xi2,wi , di = 1). (8.2.5)

From vi2 = σ2εεi + ηi , where σ2ε is the covariance between vi2 and εi , and ηi
is independent of εi (Anderson 1985, Chapter 2), we have

E(vi2 | wi , di = 1) = σ2εE(εi | wi , di = 1)

= σ2ε

�(a′Ri)

∫ ∞

−a ′Ri
ε · 1√

2π
e−ε

2/2dε

= σ2ε
φ(a′Ri)
�(a′Ri)

,

(8.2.6)

where φ(·) denotes the standard normal density function. The last equality of
(8.2.6) follows from the formula that the derivative of the standard normal
density function φ(ε) with respect to ε is −εφ(ε). Therefore,

E(yi2 | xi2,wi , di = 1) = �′xi2 + σ2ε
φ(a′Ri)
�(a′Ri)

. (8.2.7)
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Thus, estimating (8.2.1) using complete observations will lead to biased and
inconsistent estimates of � unless σ2ε = 0. To correct for selection bias, one
can use either Heckman’s (1979) two-stage method (see Section 8.1) or the
maximum-likelihood method.

When di = 1, the joint density of di = 1, yi1, and yi2 is given by

f (di = 1, yi1, yi2) = Prob(di = 1 | yi1, yi2)f (yi1, yi2)

= Prob(di = 1 | yi2)f (yi1, yi2)

= �

⎧⎪⎨⎪⎩
a′Ri +

(
σ2ε

σ 2
u+σ 2

α

)
(yi2 − �′xi2)[

1 − σ 2
2ε

σ 2
u+σ 2

α

]1/2

⎫⎪⎬⎪⎭
· [2πσ 2

u (σ 2
u + 2σ 2

α )]−1/2

· exp

{
− 1

2σ 2
u

[ 2∑
t=1

(yit − �′xit )2 − σ 2
α

σ 2
u + 2σ 2

α

·
(

2∑
t=1

(yit − �′xit )

)2 ]}
,

(8.2.8)

where the first term follows from the fact that the conditional density of f (εi |
νi2) is normal, with mean [σ2ε/(σ 2

u + σ 2
α )]vi2 and variance 1 − σ 2

2ε/(σ
2
u + σ 2

α ).
When di = 0, yi2 is not observed and must be “integrated out.” In this instance,
the joint density of di = 0, and yi1 is given by

f (di = 0, yi1) = Prob (di = 0 | yi1)f (yi1)

=

⎧⎪⎨⎪⎩1 −�

⎡⎢⎣a′Ri + σ1ε
σ 2
u+σ 2

α
(yi1 − �′xi1)[

1 − σ 2
1ε

σ 2
u+σ 2

α

]1/2

⎤⎥⎦
⎫⎪⎬⎪⎭

· [2π (σ 2
u + σ 2

α )]−1/2

· exp

{
− 1

2(σ 2
u + σ 2

α )
(yi1 − �′xi1)2

}
.

(8.2.9)

The right-hand side of (8.2.9) follows from the fact that f (εi | vi1) is normal,
with mean [σ1ε/(σ 2

u + σ 2
α )]vi1 and variance 1 − σ 2

1ε/(σ
2
u + σ 2

α ), where σ1ε is
the covariance between vi1 and εi , which is equal to σ2ε = σ 2

α /(σ
2
u + σ 2

α ).
The likelihood function follows from (8.2.8) and (8.2.9). Order the observa-

tions so that the first N1 observations correspond to di = 1, and the remaining
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N −N1 correspond to di = 0; then the log-likelihood function is given by

log L = −N log 2π − N1

2
log σ 2

u − N1

2
log (σ 2

u + 2σ 2
α )

− N −N1

2
log (σ 2

u + σ 2
α )

− 1

2σ 2

N1∑
i=1

{ 2∑
t=1

(yit − �′xit )2 − σ 2
α

σ 2
u + 2σ 2

α

[ 2∑
t=1

(yit − β ′xit )
]2}

+
N1∑
i=1

log �

{a′Ri + σ2ε
σ 2
u+σ 2

α
(yi2 − �′xi2)[

1 − σ 2
2ε

σ 2
u+σ 2

α

]1/2

}

− 1

2(σ 2
u + σ 2

α )

N∑
i=N1+1

(yi1 − �′xi1)2

+
N∑

i=N1+1

log

⎧⎪⎨⎪⎩1 −�
[a′Ri + σ1ε

σ 2
u+σ 2

α
(yi1 − �′xi1)[

1 − σ 2
1ε

σ 2
u+α2

α

]1/2

⎫⎪⎬⎪⎭ .

(8.2.10)

The critical parameter for attrition bias is σ2ε . If σ2ε = 0, so does σ1ε . The
likelihood function (8.2.10) then separates into two parts. One corresponds
to the variance-components specification for y. The other corresponds to the
probit specification for attrition. Thus, if attrition bias is not present, this is iden-
tical with the random missing-data situations. Generalized least-squares (GLS)
techniques used to estimate (8.2.1) will lead to consistent and asymptotically
efficient estimates of the structural parameters of the model.

The Hausman–Wise two-period model of attrition can be extended in a
straightforward manner to more than two periods and to simultaneous-equations
models with selection bias as discussed in Section 8.2. When T > 2, an attrition
equation can be specified for each period. If attrition occurs, the individual
does not return to the sample; then a series of conditional densities analogous
to (8.2.8) and (8.2.9) result. The last period for which the individual appears
in the sample gives information on which the random term in the attrition
equations is conditioned. For periods in which the individual remains in the
sample, an equation like (8.2.8) is used to specify the joint probability of no
attrition and the observed values of the dependent variables.

In the case of simultaneous equations models, all the attrition model leads to
is simply to add an equation for the probability of observing an individual in the
sample. Then the joint density of observing in-sample respondents becomes the
product of the conditional probability of the observation being in the sample,
given the joint dependent variable y and the marginal density of y. The joint
density of incomplete respondents becomes the product of the conditional prob-
ability of the observation being out-of-sample, given the before-dropping-out
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values of y, and the marginal density of the previous periods’ y. The likelihood
function is simply the product of these two joint densities; see Griliches et al.
(1978) for a three-equation model.

The employment of probability equations to specify the status of individuals
can be very useful in analyzing the general problems of changing compositions
of the sample over time, in particular when changes are functions of individual
characteristics. For instance, in addition to the problem of attrition in the
national longitudinal surveys’ samples of young men, there is also the problem
of sample accretion, that is, entrance into the labor force of the fraction of the
sample originally enrolled in school. The literature on switching regression
models can be used as a basis for constructing behavioral models for analyzing
the changing status of individuals over time.4

8.2.3 Attrition in the Gary Income-Maintenance Experiment

The Gary income-maintenance project focused on the impact of alternative
sets of income-maintenance structures on work–leisure decisions. The basic
project design was to divide individuals randomly into two groups: “controls”
and “experimentals.” The controls were not on an experimental treatment plan,
but received nominal payments for completing periodic questionnaires. The
experimentals were randomly assigned to one of several income-maintenance
plans. The experiment had four basic plans defined by an income guarantee and
a tax rate. The two guarantee levels were $4,300 and $3,300 for a family of four
and were adjusted up for larger families and down for smaller families. The two
marginal tax rates were 0.6 and 0.4. Retrospective information of individuals
in the experiments was also surveyed for a pre-experimental period (normally
just prior to the beginning of the experimental period) so that the behavior of
experimentals during the experiment could be compared with their own pre-
experimental behavior and also compared with that of the control group to
obtain estimates of the effects of treatment plans.

Two broad groups of families were studied in the Gary experiment: black,
female-headed households, and black, male-headed households. There was lit-
tle attrition among the first group, but the attrition among male-headed families
was substantial. Of the sample of 334 experimentals used by Hausman and
Wise (1979), the attrition rate was 31.1 percent. Among the 251 controls, 40.6
percent failed to complete the experiment.

If attrition is random, as discussed in Section 11.1, it is not a major problem.
What matters is that data are missing for a variety of self-selection reasons.
In this case it is easy to imagine that attrition is related to endogenous vari-
ables. Beyond a break-even point, experimentals receive no benefits from the
experimental treatment. The break-even point occurs when the guarantee minus
taxes paid on earnings (wage rate times hours worked) is 0. Individuals with
high earnings receive no treatment payment and may be much like controls

4 See Quandt (1982) for a survey of switching regression models.
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vis-à-vis their incentive to remain in the experiment. But because high earnings
are caused in part by the unobserved random term of the structural equation
(8.2.1), attrition may well be related to it.

Hausman and Wise (1979) estimated structural models of earnings with
and without correcting for attrition. The logarithm of earnings was regressed
against time trend, education, experience, union membership, health status,
and the logarithm of non-labor family income. To control for the effects of the
treatment, they also used a dummy variable that was 1 if for that period the
household was under one of the four basic income-maintenance plans, and 0
otherwise. Because hourly wages for experimentals and controls did not differ,
the coefficient of this variable provided a reasonable indicator of the effect of
experimental treatment on hours worked.

Because only three observations were available during the experiment, each
for a one-month period, they concentrated on a two-period model: a period
for the preexperiment average monthly earnings and a period for the average
earning of the three monthly observations of the experimental period. Their
GLS estimates of the structural parameters that were not corrected for attrition
and the maximum-likelihood estimates that incorporated the effects of attrition,
(8.2.1) and (8.2.3), are presented in Table 8.1.

The attrition-bias parameter σ2ε/(σ 2
u + σ 2

α ) was estimated to be −0.1089.
This indicates a small but statistically significant correlation between earn-
ings and the probability of attrition. The estimate of the experimental effect
was very close whether or not the attrition bias was corrected for. However,
the experimental-effect coefficient did increase in magnitude from −0.079 to
−0.082, an increase of 3.6 percent. Some of the other coefficients showed more
pronounced changes. The effect of non-labor family income on earnings (hence
hours worked) decreased by 23 percent from the GLS estimates, and the effect
of another year of education increased by 43 percent. These results demonstrate
that attrition bias was a potentially important problem in the Gary experiment.
For other examples, see Ridder (1990), Nijman and Verbeek (1992), and Ver-
beek and Nijman (1996).

The Hausman–Wise (HW) model assumes that the contemporaneous values
affect the probability of responding. Alternatively, the decision on whether to
respond may be related to past experiences – if in the first period the effort
in responding was high, an individual may be less inclined to respond in the
second period. When the probability of attrition depends on lagged but not
on contemporaneous variables, and if vit and ε∗

i are mutually independent,
then individuals are missing at random (MAR) (Little and Rubin 1987; Rubin
1976) and the missing data are ignorable. (This case is sometimes referred to
as selection on observables (e.g., Moffitt, Fitzgerald, and Gottschalk 1997).

Both sets of models are often used to deal with attrition in panel data sets.
However, they rely on fundamentally different restrictions on the dependence
of the attrition process on time path of the variables and can lead to very
different inferences. In a two-period model one cannot introduce dependence
on yi2 in the MAR model, or dependence on yi1 in the HW model without
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relying heavily on functional form and distributional assumptions. However,
when missing data are augmented by replacing the units who have dropped
out with new units randomly sampled from the original population, called
refreshment samples by Ridder (1992), it is possible to test between these two
types of models nonparametrically as well as to estimate more general models
(e.g., Hirano, Imbens, Ridder, and Rubin 2001).

8.3 TOBIT MODELS WITH RANDOM
INDIVIDUAL EFFECTS

The most typical concern in empirical work using panel data has been the
presence of unobserved heterogeneity.5 Thus, a linear latent response function
is often written in the form

y∗
it = αi + �′xit + uit , i = 1, . . . , N,

t = 1, . . . , T ,
(8.3.1)

with the error term assumed to be independent of xit and is i.i.d. over time and
across individuals, where the observed value yit equals to y∗

it if y∗
it > 0 and is

unobserved for y∗
i ≤ 0 when data are truncated and is equal to 0 when data are

censored. Under the assumption that αi is randomly distributed with density
function g(α) (or g(α | x)), the likelihood function of the standard Tobit model
for the truncated data is of the form

N∏
i=1

∫ [ T∏
t=1

[1 − F (−�′xit − αi)]−1f (yit − �′xit − αi)
]
g(αi) dαi, (8.3.2)

where f (·) denotes the density function of uit and F (a) = ∫ a−∞ f (u) du. The
likelihood function of the censored data takes the form

N∏
i=1

∫ [∏
tεci

F (−�′xit − αi)
∏
tεc̄i

f (yit − αi − �′xit )

]
g(αi) dαi, (8.3.3)

where ci = {t | yit = 0} and c̄i denotes its complement. Maximizing (8.3.2) or
(8.3.3) with respect to unknown parameters yield consistent and asymptotically
normally distributed estimator.

Similarly, for the type II Tobit model we may specify a sample selection
equation

d∗
it = w′

ita + ηi + νit , (8.3.4)

with the observed (yit , dit ) following the rule of dit = 1 if d∗
it > 0 and 0 oth-

erwise as in (8.1.23) and yit = y∗
it if dit = 1 and unknown otherwise as in

(8.1.24). Suppose that the joint density of (αi, ηi) is given by g(α, η); then the

5 In this chapter we consider only the case involving the presence of individual specific effects. For
some generalization to the estimation of random coefficient sample selection model, see Chen
(1999).
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likelihood function of type II Tobit model takes the form

N∏
i=1

∫
[
∏
tεci

Prob (dit = 0 | wit , αi)
∏
tεc̄i

Prob (dit = 1 | wit , αi)

· f (yit | xit ,wit , αi, ηi, dit = 1)]g(αi, ηi)dαi dηi

=
N∏
i=1

∫
[
∏
t∈ci

Prob (dit = 0 | wit , αi)
∏
tεc̄i

Prob (dit = 1 | wit , ηi, αi, yit , xit )

· f (yit | xit , αi)]g(αi, ηi)dαidηi

(8.3.5)

Maximizing the likelihood function (8.3.2), (8.3.3), or (8.3.5) with respect to
unknown parameters yields consistent and asymptotically normally distributed
estimator of � when either N or T or both tend to infinity. However, the com-
putation is quite tedious even with a simple parametric specification of the
individuals effects αi and ηi because it involves multiple integration.6 Neither
is a generalization of the Heckman (1976a) two-stage estimator easily imple-
mentable (e.g., Nijman and Verbeek 1992; Ridder 1990; Vella and Verbeek
1999; Wooldridge 1999). Moreover, both the MLE and the Heckman two-step
estimators are sensitive to the exact specification of the error distribution. How-
ever, if the random effects αi and ηi are independent of xi , then the Robinson
(1988b) and Newey (2009) estimators (8.1.33) and (8.1.38) can be applied
to obtain consistent and asymptotically normally distributed estimators of �.
Alternatively, one may ignore the randomness ofαi and ηi and apply the Honoré
(1992) fixed-effects trimmed least-squares or least absolute deviation estimator
for the panel data censored and truncated regression models or the Kyriazidou
(1997) two-step semi parametric estimator for the panel data sample selection
model to estimate � (see Section 8.4).

8.4 FIXED-EFFECTS ESTIMATOR

8.4.1 Pairwise Trimmed Least-Squares and Least Absolute
Deviation Estimators for Truncated and Censored
Regressions

When the effects are fixed and if T → ∞, the MLE of �′ and αi are straight-
forward to implement and are consistent. However panel data are often charac-
terized by having many individuals observed over few time periods, the MLE,
in general, will be inconsistent as described in Chapter 7. In this section we
consider the pairwise trimmed least-squares (LS) and least absolute deviation
(LAD) estimators of Honoré (1992) for panel data censored and truncated
regression models that are consistent without the need to assume a parametric
form for the disturbances uit , nor homoskedasticity across individuals.

6 A potentially computationally attractive alternative is to simulate the integrals, see Gourieroux
and Monfort (1996), Keane (1994), Richard (1996), or Chapter 12, Section 12.4.



Table 8.1. Parameter estimates of the earnings-function structural model with and without a correction for attrition

With attrition correction: maximum likelihood
estimates (standard errors)

Variables Earnings-function parameters Attrition parameters

Without attrition correction:
Generalized-least-squares
estimates (standard errors):
earnings-function parameters

Constant 5.8539 −0.6347 5.8911
(0.0903) (0.3351) (0.0829)

Experimental effect −0.0822 0.2414 −0.0793
(0.0402) (0.1211) (0.0390)

Time trend 0.0940 —a 0.0841
(0.0520) — (0.0358)

Education 0.0209 −0.0204 0.0136
(0.0052) (0.0244) (0.0050)

Experience 0.0037 −0.0038 0.0020
(0.0013) (0.0061) (0.0013)

Nonlabor income −0.0131 0.1752 −0.0115
(0.0050) (0.0470) (0.0044)

Union 0.2159 1.4290 0.2853
(0.0362) (0.1252) (0.0330)

Poor health −0.0601 0.2480 −0.0578
(0.0330) (0.1237) (0.0326)

σ̂ 2
u = 0.1832

(0.0057) σ̂ 2
u = 0.1236

σ̂ 2
α

σ̂ 2
u + σ̂ 2

α

= 0.2596
(0.0391)

σ̂2ε

σ̂ 2
u + σ̂ 2

α

= −0.1089
(0.0429)

σ̂ 2
α

σ̂ 2
u + σ̂ 2

α

= 0.2003

a Not estimated.
Source: Hausman and Wise (1979, Table IV).
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8.4.1.1 Truncated Regression

We assume a model of (8.3.1) and (8.1.3) except that now the individual effects
are assumed fixed. The disturbance uit is again assumed to be independently
distributed over i and independently, identically distributed (i.i.d) over t con-
ditional on xi and αi .

We note that where data are truncated or censored, first differencing does
not eliminate the individual specific effects from the specification. To see this,
suppose that the data are truncated. Let

yit = E(yit | xit , αi, yit > 0) + εit , (8.4.1)

where

E(yit | xit , αi, yit > 0) = αi + x′
it� + E(uit | uit > −αi − x′

it�). (8.4.2)

Since xit �= xis , in general,

E(yit | xit , αi, yit > 0) − E(yis | xis , αi, yis > 0)

= (xit − xis)′� + E(uit | uit > −αi − x′
it�)

− E(uis | uis > −αi − x′
is�),

(8.4.3)

In other words

(yit − yis) = (xit − xis)′� + E(uit | uit > −αi − x′
it�)

− E(uis | uis > −αi − x′
is�) + (εit − εis).

(8.4.4)

The truncation correction term, E(uit | uit > −αi − x′
it�), which is a function

of the individual-specific effects αi , remains after first differencing. However,
we may eliminate the truncation correction term through first differencing if
we restrict our analysis to observations where yit > (xit − xis)′� and yis >
−(xit − xis)′�. To see this, suppose that (xit − xis)′� < 0, then

E(yis | αi, xit , xis , yis > −(xit − xis)′β)

= αi + x′
is� + E(uis | uis > −αi − x′

is�

− (xit − xis)′�).

(8.4.5)

Since uit conditional on xi and αi is assumed to be i.i.d.,

E(uit | uit > −αi − x′
it�) = E(uis | uis > −αi − x′

itβ). (8.4.6)

Similarly, if (xit − xis)′� > 0,

E(uit | uit > −αi − x′
it� + (xit − xis)′�)

= E(uit | uit > −αi − x′
is�)

= E(uis | uis > −αi − x′
isβ).

(8.4.7)
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Therefore, by confining our analysis to the truncated observations where yit >
(xit − xis)′�, yis > −(xit − xis)′�, yit > 0, yis > 0, we have

(yit − yis) = (xit − xis)′� + (εit − εis), (8.4.8)

which no longer involves incidental parameter, αi . Since E[(εit − εis) |
xit , xis] = 0, applying LS to (8.4.8) will yield consistent estimator
of �.

The idea of restoring symmetry of the error terms of pairwise differencing
equation (yit − yis) by throwing away observations where yit < (xit − xis)′�
and yis < −(xit − xis)′� can be seen by considering the following graphs
assuming that T = 2. Suppose that the probability density function of uit
is of the shape shown on Figure 8.3. Since ui1 and ui2 are i.i.d. condi-
tional on (xi1, xi2, αi), the probability density of y∗

i1 and y∗
i2 conditional on

(xi1, xi2, αi) should have the same shape except for the location. The top
and bottom figures of Figure 8.4 postulate the probability density of y∗

i1
and y∗

i2 conditional on (xi1, xi2, αi), respectively, assuming that 
x′
i� < 0,

where 
xi = 
xi2 = xi2 − xi1. The truncated data correspond to those sam-
ple points where y∗

it or yit > 0. Because x′
i1� �= x′

i2�, the probability density
of yi1 is different from that of yi2. However, the probability density of y∗

i1
given y∗

i1 > −
x′
i� (or yi1 given yi1 > −
x′

i�) is identical to the probability
density of y∗

i2 given y∗
i2 > 0 (or yi2 given yi2 > 0) as shown in Figure 8.4.

Similarly, if 
x′
i� > 0, the probability density of y∗

i1 given y∗
i1 > 0 (or yi1

given yi1 > 0) is identical to the probability density of y∗
i2 given y∗

i2 > 
x′
i�

as shown in Figure 8.5.7 In other words, in a two-dimensional diagram of
(y∗
i1, y

∗
i2) of Figure 8.6 or 8.7, (y∗

i1, y
∗
i2) conditional on (xi1, xi2, αi) is symmet-

rically distributed around the 45-degree line through (x′
i1� + αi, x′

i2� + αi) or
equivalently around the 45-degree line through (x′

i1�, x′
i2�) or (−
x′

i�, 0) as
the line LL′. Because this is true for any value of αi , the same statement is
true for the distribution of (y∗

i1, y
∗
i2) conditional on (xi1, xi2). When
x′

i� < 0,
the symmetry of the distribution of (y∗

i1, y
∗
i2) around LL′ means that the prob-

ability that (y∗
i1, y

∗
i2) falls in the region A1 = {(y∗

i1, y
∗
i2) : y∗

i1 > −
x′
i�, y

∗
i2 >

y∗
i1 +
x′

i�} equals the probability that it falls in the region B1 = {(y∗
i1, y

∗
i2) :

y∗
i1 > −
x′

i�, 0 < y
∗
i2 < y

∗
i1 +
x′

i�}. (Figure 8.6). When 
x′
i� > 0, the

probability that (y∗
i1, y

∗
i2) falls in the region A1 = {(y∗

i1, y
∗
i2) : y∗

i1 > 0, y∗
i2 >

y∗
i1 +
x′

i�} equals the probability that it falls in the region B1 = {(y∗
i1, y

∗
i2) :

y∗
i1 > 0,
x′

i� < y
∗
i2 < y

∗
i1 +
x′

i�}. (Figure 8.7). That is, points in the regions
A1 and B1 are not affected by the truncation. On the other hand, points
falling into the region (0 < y∗

i1 < −
x′
i�, y

∗
i2 > 0) in Figure 8.6 (correspond

to points (yi1 < −
x′
i�, yi2)) and (y∗

i1 > 0, 0 < y∗
i2 < 
x′

i�) in Figure 8.7
(correspond to points (yi1, yi2 < 
x′

i)b)) will have to be thrown away to
restore symmetry.

7 I owe this exposition to the suggestion of J.L. Powell.
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uit0

f(uit)

Figure 8.3. Probability density of uit .

0 iα+�xi'1�xi'Δ−

),|*( 11 iiyf αix

*
1iy

0 iα+�xi'2
*
2iy

),|*( 22 iiyf αix

Figure 8.4. Conditional densities of y∗
i1 and y∗

i2 given (xi1, xi2, αi), assuming

x′

i � < 0.
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0

0 iα+�xi1'

iα+�xi2'

*
1iy

*
2iy�x i'Δ

),|*( 2 iiyf αi2x

),|*( 11 iiyf αix

Figure 8.5. Conditional densities of y∗
i1 and y∗

i2 given (xi1, xi2, αi), assuming

x′

i � > 0.

Let C = {i | yi1 > −
x′
i�, yi2 > 
x′

i�}, then (yi1 − x′
i1� − αi) and

(yi2 − x′
i2� − αi) for iεC are symmetrically distributed around 0. Therefore

E[(yi2 − yi1) − (xi2 − xi1)′� | xi1, xi2, iεC] = 0. In other words,

E[
yi −
x′
i� | yi1 > −
x′

i�, yi2 > 
x′
i�]

= E[
yi −
x′
i� | y∗

i1 > 0, y∗
i1 > −
x′

i�, y
∗
i2 > 0, y∗

i2 > 
x′
i�] = 0,

(8.4.9a)

and

E[(
yi −
x′
i�)
xi | yi1 > −
x′

i�, yi2 > 
x′
i�] = 0, (8.4.9b)

where 
yi1 = 
yi2 = yi2 − yi1. However, there could be multiple roots that
satisfy (8.4.9b). To ensure a unique solution for �, Honoré (1992) suggests the
trimmed LAD and LS estimators as those �̂ and �̃ that minimize the objective
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functions

QN (�) =
N∑
i=1

[| 
yi −
x′
i� | 1{yi1 > −
x′

i�, yi2 > 
x′
i�}

+ | yi1 | 1{yi1 ≥ −
x′
i�, yi2 < 
x′

i�}
+ | yi2 | 1{yi1 < −
x′

i�, yi2 ≥ 
x′
i�}]

=
N∑
i=1

ψ(yi1, yi2,
x′
i�),

(8.4.10)

and

RN (�) =
N∑
i=1

[(
yi −
x′
i�)21{yi1 ≥ −
x′

i�, yi2 > 
x′
i�}

+ y2
i11{yi1 > −
x′

i�, yi2 < 
x′
i�}

+ y2
i21{yi1 < −
x′

i�, yi2 > 
x′
i�}]

=
N∑
i=1

ψ(yi1, yi2,
x′
i�)2,

(8.4.11)

respectively. The function ψ(w1, w2, c) is defined for w1 > 0 and w2 > 0 by

ψ(w1, w2, c) =
⎧⎨⎩

w1 for w2 < c,

(w2 − w1 − c) for − w1 < c < w2,

w2 for c < −w1,

is convex in c. The first-order conditions of (8.4.10) and (8.4.11) are the sample
analogs of

E{P (yi1 > −
x′
i�, yi2 > yi1 +
x′

i�) − P (yi1 > −
x′
i�,


x′
i� < yi2 < yi1 +
x′

i�)]
xi} = 0,
(8.4.12)

and

E{(
yi −
x′
i�)
xi | (yi1 > −
x′

i�, yi2 > yi1 +
x′
i�)

∪ (yi1 > −
x′
i�,
x′

i� < yi2 < yi1 +
x′
i�)} = 0,

(8.4.13)

respectively. Honoré (1992) proves that �̂ and �̃ are consistent and asymp-
totically normally distributed if the density of u is strictly log-concave. The
asymptotic covariance matrix of

√
N (�̂ − �) and

√
N (�̃ − �) may be approx-

imated by

Asy Cov
(√
N (�̂ − �)

)
= �−1

1 V1�
−1
1 , (8.4.14)
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and

Asy Cov
(√
N (�̃ − �)

)
= �−1

2 V2�
−1
2 , (8.4.15)

where V1, V2, �1, and �2 may be approximated by

V̂1 = 1

N

N∑
i=1

1{−yi1 < 
x′
i�̂ < yi2}
xi
x′

i , (8.4.16)

V̂2 = 1

N

N∑
i=1

1{−yi1 < 
x′
i�̃ < yi2}(
yi −
x′

i�̃)2
xi
x′
i , (8.4.17)

�̂
(j,k)
1 = 1

hN
[

1

N

N∑
i=1

(1{
yi < 
x′
i(�̂ + hN ik) < yi2}

− 1{−yi1 < 
xi(�̂ + hN i k) < 
yi})
x(j )
i

+ 1

N

N∑
i=1

(−1{
yi < 
x′
i�̂ < yi2}

− 1{−yi1 < 
x′
i�̂ < 
yi})
x(j )

i ],

(8.4.18)

�̂
(j,k)
2 = 1

hN
[

1

N

N∑
i=1

{−yi1 < 
x′
i(�̃ + hN i k) < yi2}

× (

yi −
x′

i(�̃ + hN ik)
)

x(j )

i

− 1

N

N∑
i=1

1{−yi1 < 
x′
i�̃ < yi2}(
yi −
x′

i�̃)
x(j )
i ],

(8.4.19)

where �(j,k)
� denotes the (j, k)th element of ��, for � = 1, 2,
x(j )

i denotes the
j th coordinate of
xi , i k is a unit vector with 1 in its kth place and hN decreases
to 0 with the speed of N− 1

2 . The bandwidth factor hN appears in (8.4.18) and
(8.4.19) because �� is a function of densities and conditional expectations of y
(Honoré 1992).

8.4.1.2 Censored Regression

When data are censored, observations {yit , xit } are available for i =
1, . . . , N, t = 1, . . . , T , where yit = max {0, y∗

it }. In other words, yit can now
be either 0 or a positive number rather than just a positive number as in the case
of truncated data. Of course, we can throw away observations of (yit , xit ) that
correspond to yit = 0 and treat the censored regression model as the truncated
regression model using the methods of Section 8.4.1a. But this will lead to
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a loss of information. In the case that data are censored, in addition to the
relation (8.4.9a,b), the joint probability of yi1 ≤ −�′
xi and yi2 > 0 is iden-
tical to the joint probability of yi1 > −�′
xi and yi2 = 0, when �′
xi < 0
as shown in Figure 8.6, region A2 and B2, respectively. When �′
xi > 0,
the joint probability of yi1 = 0 and yi2 > �′
xi is identical to the joint prob-
ability of yi1 > 0 and yi2 ≤ �′
xi as shown in Figure 8.7. In other words,
(y∗
i1, y

∗
i2) conditional on (xi1, xi2, αi) is symmetrically distributed around the

45-degree line through (x′
i1� + αi, x′

i2� + αi) or equivalently around the 45-
degree line through (−
x′

i�, 0) as the line LL′ in Figure 8.6 or 8.7. Because
this is true for any value of αi , the same statement is true for the distribution
of (y∗

i1, y
∗
i2) conditional on (xi1, xi2). When 
x′

i� < 0, the symmetry of the
distribution of (y∗

i1, y
∗
i2) around LL′ means that the probability that (y∗

i1, y
∗
i2)

falls in the region A1 = {(y∗
i1, y

∗
i2) : y∗

i1 > −
x′
i�, y

∗
i2 > y

∗
i1 +
x′

i�} equals
the probability that it falls in the region B1 = {(y∗

i1, y
∗
i2) : y∗

i1 > −
x′
i�, 0 <

y∗
i2 < y

∗
i1 +
x′

i�}. Similarly, the probability that (y∗
i1, y

∗
i2) falls in the region

A2 = {(y∗
i1, y

∗
i2) : y∗

i1 < −
x′
i�, y

∗
i2 > 0} equals the probability that it falls

in the region B2 = {(y∗
i1, y

∗
i2) : y∗

i1 > −
x′
i�, y

∗
i2 ≤ 0} as shown in Figure

8.6. When 
x′
i� > 0, the probability that (y∗

i1, y
∗
i2) falls in the region A1 =

{(y∗
i1, y

∗
i2) : y∗

i1 > 0, y∗
i2 > y

∗
i1 +
x′

i�} equals the probability that it falls in the
region B1 = {(y∗

i1, y
∗
i2) : y∗

i1 > 0,
x′
i� < y

∗
i2 < y

∗
i1 +
x′

i�} and the proba-
bility that it falls in the region A2 = {(y∗

i1, y
∗
i2) : y∗

i1 ≤ 0, y∗
i2 > 
x′

i�} equals
the probability that it falls in the regionB2 = {(y∗

i1, y
∗
i2) : y∗

i1 > 0, y∗
i2 ≤ 
x′

i�}
as in Figure 8.7. Therefore, the probability of (y∗

i1, y
∗
i2) conditional on (xi1, xi2)

falling in A = (A1 ∪ A2) equals the probability that it falls in B = (B1 ∪ B2).
As neither of these probabilities is affected by censoring, the same is true in
the censored sample. This implies that

E [(1{(yi1, yi2)εA} − 1{(yi1, yi2)εB})
xi] = 0. (8.4.20)

In other words, to restore symmetry of censored observations around their
expected values, observations correspond to (yi1 = 0, yi2 < 
x′

i�) or (yi1 <
−
x′

i�, yi2 = 0) will have to be thrown away.
By the same argument, conditional on (xi1, xi2) the expected vertical dis-

tance from a (yi1, yi2) inA to the boundary ofA equals the expected horizontal
distance from a (yi1, yi2) in B to the boundary of B. For (yi1, yi2) in A1, the
vertical distance to LL′ is (
yi −
x′

i�). For (yi1, yi2) in B1, the horizontal
distance to LL′ is yi1 − (yi2 −
x′

i�) = −(
yi −
x′
i�). For (yi1, yi2) in A2,

the vertical distance to the boundary ofA2 is yi2− max (0,
x′
i�). For (yi1, yi2)

in B2, the horizontal distance is yi1− max (0,−
x′
i�). Therefore

E
[(

1{(yi1, yi2)εA1}(
yi −
x′
i�) + 1{(yi1, yi2)εA2)}(yi2 − max (0,
x′

i�))

+ 1{(yi1, yi2)εB1}(
yi −
x′
i�) − 1{yi1, yi2εB2}(yi1

− max (0,−
x′
i�))

)

xi

]
= 0. (8.4.21)
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* + Δxi' �  
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Figure 8.6. The distribution of (y∗
i1, y

∗
i2) assuming 
x′

i � < 0.
A1 = {(y∗

i1, y
∗
i2) : y∗

i1 > −
x′
i �, y∗

i2 > y
∗
i1 +
x′

i �}, A2 = {(y∗
i1, y

∗
i2) :

y∗
i1 ≤ −
x′

i �, y∗
i2 > 0},

B1 = {(y∗
i1, y

∗
i2) : y∗

i1 > −
x′
i �, 0 < y∗

i2 < y
∗
i1 +
x′

i �}, B2 = {(y∗
i1, y

∗
i2) :

y∗
i1 > −
x′

i �, y∗
i2 ≤ 0}.

y i1
*

yi2
*

(0, 0)(− Δxi' �, 0)

L

L'

45°

A1

B1

yi
*
2 = yi

*
1 + Δxi'�

A2

B2

(0, Δxi' �)

Figure 8.7. The distribution of (y∗
i1, y

∗
i2) assuming 
x′

i � > 0.
A1 = {(y∗

i1, y
∗
i2) : y∗

i1 > 0, y∗
i2 > y

∗
i1 +
x′

i �}, A2 = {(y∗
i1, y

∗
i2) :

y∗
i1 ≤ 0, y∗

i2 > 
x′
i �},

B1 = {(y∗
i1, y

∗
i2) : y∗

i1 > 0, 
x′
i � < y∗

i2 < y
∗
i1 +
x′

i �}, B2 = {(y∗
i1, y

∗
i2) :

y∗
i1 > 0, y∗

i2 ≤ 
x′
i �}.
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The pairwise trimmed LAD and LS estimators, �̂
∗

and �̃
∗
, for the estimation

of the censored regression model proposed by Honoré (1992) are obtained by
minimizing the objective functions

Q∗
N (�) =

N∑
i=1

[
1 − 1{yi1 ≤ −
x′

i�, yi2 ≤ 0}
][

1 − 1{yi2 ≤ 
x′
i�, yi1 ≤ 0}

]
· | 
yi −
x′

i� |

=
N∑
i=1

ψ∗(yi1, yi2,
xi�),

(8.4.22)

R∗
N (�) =

N∑
i=1

{ [
max {yi2,
x′

i�} − max {yi1,−
x′
i�} −
x′

i�)
]2

− 2 · 1{yi1 < −
x′
i�}(yi1 +
x′

i�)yi2

− 2 · 1{yi2 < 
x′
i�}(yi2 −
x′

i�)yi1

}

=
N∑
i=1

χ (yi1, yi2,
x′
i�),

(8.4.23)

where

ψ∗(w1, w2, c) =
{

0, for w1 ≤ max {0,−c} and w2 ≤ max {0, c},
| w2 − w1 − c |, otherwise

and

χ (w1, w2, c) =
⎧⎨⎩
w2

1 − 2w1(w2 − c) for w2 ≤ c,
(w2 − w1 − c)2 for −w1 < c < w2,

w2
2 − 2w2(c + w1) for c ≤ −w1,

which is convex in c. The first-order conditions of (8.4.22) and (8.4.23)
are the sample analogs of (8.4.20) and (8.4.21), respectively. For instance,
when (yi1, yi2)ε (A1 ∪ B1), the corresponding terms in R∗

N become (
yi −

x′

i�)2. When (yi1, yi2)εA2, the corresponding terms become y2
i2 − 2 ×

1{yi1 < −
x′
i�} (yi1 +
x′

i�)yi2. When (yi1, yi2)εB2, the corresponding
terms become y2

i1 − 2 × 1{yi2 < 
x′
i�}(yi2 −
x′

i�)yi1. The partial deriva-
tives of the first term with respect to � converges toE{[1{(yi1, yi2)εA1}(
yi −

x′

iβ) + 1{(yi1, yi2εB1}(
yi −
x′
i�)]
xi}. The partial derivatives of the

second and third terms with respect to � yield −2E{1[(yi1, yi2)εA2]yi2
xi −
1[(yi1, yi2)εB2]yi1
xi}. Because Q∗

N (�) is piecewise linear and convex and
R∗
N (�) is continuously differentiable and convex and twice differentiable except
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at a finite number of points, the censored pairwise trimmed LAD and LS esti-
mators, �̂

∗
and �̃

∗
, are computationally simpler than the truncated estimators

�̂ and �̃.
Honoré (1992) shows that �̂

∗
and �̃

∗
are consistent and asymptotically

normally distributed. The asymptotic covariance matrix of
√
N (�̂

∗ − �) is
equal to

Asy. Cov (
√
N (�̂

∗ − �)) = �−1
3 V3�

−1
3 , (8.4.24)

and of
√
N (�̃

∗ − �) is equal to

Asy. Cov (
√
N (�̃

∗ − �)) = �−1
4 V4�

−1
4 , (8.4.25)

where V3, V4, �3, and �4 may be approximated by

V̂3 = 1

N

N∑
i=1

1

{ [

x′

i�̂
∗
< 
yi, yi2 > max (0,
x′

i�̂
∗
)
]

∪
[

yi < 
x′

i�̂
∗
, yi1 > max (0,−
x′

i�̂
∗
)
] }

xi
x′

i ,

(8.4.26)

V̂4 = 1

N

N∑
i=1

[
y2
i21{
x′

i�̃
∗ ≤ −yi1} + y2

i11{yi2 ≤ 
x′
i�̃

∗}

+ (
yi −
x′
1β̃

∗)21{−yi1 < 
x′
i�̃

∗
< yi2}

]

xi
x′

i ,

(8.4.27)

�̂
(j,k)
3 = −1

hN

{
1

N

N∑
i=1

[
1{yi2 > 0, yi2 > yi1 +
x′

i(�̂
∗ + hN ik)}

− 1{yi1 > 0, yi1 > yi2 −
x′
i(�̂

∗ + hN ik)}
]

x(j )

i

− 1

N

N∑
i=1

[
1{yi2 > 0, yi2 > yi1 +
x′

i�̂
∗}

− 1{yi1 > 0, yi1 > yi2 −
xi�̂
∗}
]

x(j )

i

}
,

(8.4.28)

and

�̂4 = 1

N

N∑
i=1

1{−yi1 < 
x′
i�̃

∗
< yi2}
xi
x′

i . (8.4.29)

where ik is a unit vector with 1 in its kth place and hN decreases to 0 at the
speed of N− 1

2 .
Both the truncated and censored estimators are presented assuming that

T = 2. They can be easily modified to cover the case whereT > 2. For instance,
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(8.4.23) can be modified to be the estimator

�̃
∗ = arg min

N∑
i=1

T∑
t=2

χ (yi,t−1, yit , (xit − xit−1)�) (8.4.30)

when T > 2.

8.4.2 A Semiparametric Two-Step Estimator for the Endogenously
Determined Sample Selection Model

In this subsection we consider the estimation of the endogenously determined
sample selection model in which the sample selection rule is determined by the
binary response model (8.3.4) or (8.1.22) for the linear regression model (8.3.1)
where yit = y∗

it if dit = 1 and unknown if dit = 0 as in (8.1.24). We assume that
both (8.3.1) and (8.3.4) contain unobserved fixed individual-specific effects αi
and ηi that may be correlated with the observed explanatory variables in an
arbitrary way. Following the spirit of Heckman (1979) two-step estimation
procedure for the parametric model, Kyriazidou (1997) proposes a two-step
semiparametric method for estimating the main regression of interest (8.3.4).
In the first step, the unknown coefficients of the “selection” equation (8.3.4), a,
are consistently estimated by some semiparametric method. In the second step,
these estimates are substituted into the equation of interest (8.3.1) conditional
on dit = 1 and estimate it by a weighted least-squares method. The fixed effect
from the main equation is eliminated by taking time differences on the observed
yit . The selection effect is eliminated by conditioning time differencing of yit
and yis on those observations where w′

it â � w′
is â because the magnitude of the

selection effect is the same if the impact of the observed variables determining
selection remains the same over time.

We note that without sample selectivity, that is, dit = 1 for all i and t , or if
uit and νit are uncorrelated conditional on αi and xit , then (8.3.1) and (8.1.24)
correspond to the standard variable intercept model for panel data discussed
in Chapter 3 with balanced panel or randomly missing data.8 If uit and νit are
correlated, sample selection will arise because E(uit | xit ,wit , αi, dit = 1) �=
0. Let λ(·) denote the conditional expectation of u conditional on d = 1, x,w, α
and η, then (8.3.1) and (8.1.24) conditional on dit = 1 can be written as

yit = αi + �′xit + λ(ηi + w′
ita) + εit , (8.4.31)

where E(εit | xit , dit = 1) = 0. The form of the selection function λ(·) is
derived from the joint distribution of u and ν. For instance, if u and ν are bivari-
ate normal, then we have the Heckman sample selection correction of λ(ηi +

a′wit ) = σuv

σv

φ
( ηi+w ′

ita
σv

)
�
( ηi+w ′

ita
σv

) . Therefore, in the presence of sample selection

8 Linear panel data with randomly missing data will be discussed in Chapter 11, Section 11.1.
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or attrition with short panels, regressing yit on xit using only the observed infor-
mation is invalidated by two problems – first, the presence of the unobserved
effects αi which introduces the incidental parameter problem and second, the
“selection bias” arising from the fact that

E(uit | xit , dit = 1) = λ(ηi + w′
ita).

The presence of individual-specific effects in (8.3.1) is easily solved by time
differencing those individuals that are observed for two time periods t and s,
that is, who have dit = dis = 1. However, the sample selectivity factors are
not eliminated by time differencing. But conditional on given i, if (uit , vit ) are
stationary and w′

ita = w′
isa, λ(ηi + wita) = λ(ηi + w′

isa). Then the difference
of (8.4.31) between t and s if both yit and yis are observable no longer contains
the individual specific effects, αi , and the selection factor λ(ηi + w′

ita),


yits = yit − yis = (xit − xis)′� + (εit − εis) = 
x′
its� +
�its . (8.4.32)

As shown by Ahn and Powell (1993) if λ is a sufficiently “smooth” function,
and â is a consistent estimator of a, observations for which the difference
(wit − wis)′â is close to 0 should have λit − λis � 0. Therefore, Kyriazidou
(1997) generalizes the pairwise difference concept of Ahn and Powell (1993)
and proposes to estimate the fixed-effects sample selection models in two steps:
In the first step, estimate a by either the Andersen (1970) and Chamberlain
(1980) conditional maximum-likelihood approach or the Horowitz (1992) and
Lee (1999) smoothed version of the Manski (1975) maximum score method
discussed in Chapter 7. In the second step, the estimated â is used to estimate
� based on pairs of observations for which dit = dis = 1 and for which (wit −
wis)′â is “close” to 0. This last requirement is operationalized by weighting
each pair of observations with a weight that depends inversely on the magnitude
of (wit − wis)′â, so that pairs with larger differences in the selection effects
receive less weight in the estimation. The Kyriazidou (1997) estimator takes
the form:

�̂K =
{
N∑
i=1

1
Ti−1

∑
1≤s<t≤Ti

(xit − xis)(xit − xis)′K
[

(wit−wis )′â
hN

]
ditdis

}−1

·
{
N∑
i=1

1
Ti−1

∑
1≤s<t<Ti

(xit − xis)(yit − yis)K
[

(wit−wis )′â
hN

]
ditdis

}
(8.4.33)

where Ti denotes the number of positively observed yit for the ith individual,
K(.) is a kernel density function which tends to 0 as the magnitude of its argu-
ment increases, and hN is a positive constant or bandwidth that decreases to 0
asN −→ ∞. The effect of multiplying the kernel functionK(·) is to give more
weights to observations with 1

hN
(wit − wis)′â � 0 and less weight to those

observations that wit â is different from wis â so that in the limit only obser-
vations with wita = w′

isa are used in (8.4.33). Under appropriate regularity
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conditions (8.4.33) is consistent but the rate of convergence is proportional to√
NhN , much slower than the standard square root of the sample size.
When T = 2, the asymptotic covariance matrix of the Kyriazidou (1997)

estimator (8.4.33) may be approximated by the Eicker (1963)–White (1980)
formulae of the asymptotic covariance matrix of the least-squares estimator of
the linear regression model with heteroscedasticity,(

N∑
i=1

x̂i x̂′
i

)−1 N∑
i=1

x̂i x̂′
i
ê

2
i

(
N∑
i=1

x̂i x̂′
i

)−1

, (8.4.34)

where x̂i = K(
w ′
i â

hN

)1/2

xi(di2di1) and 
êi is the estimated residual of

(8.4.32).
In the case that only a truncated sample is observed, the first stage estimation

of â cannot be implemented. However, a sufficient condition to ensure only
observations with
w′

itsa = 0 are used is to replaceK
[

wits â
hN

]
by a multivari-

ate kernel functionK
(wit−wis

hN

)
in (8.4.33). However, the speed of convergence

of (8.4.33) to the true � will be
√
NhkN , where k denotes the dimension of

wit . This is much slower speed than
√
NhN because hN converges to 0 as

N −→ ∞.

8.5 AN EXAMPLE: HOUSING EXPENDITURE

Charlier et al. (2001) use Dutch Socio-Economic Panel (SEP) 1987–89 waves
to estimate the following endogenous switching regression model for the share
of housing expenditure in total expenditure:

dit = 1(w′
ita + ηi + νit > 0), (8.5.1)

y1it = �′
1xit + α1i + u1it , if dit = 1, (8.5.2)

y2it = �′
2xit + α2i + u2it , if dit = 0, (8.5.3)

where dit denotes the tenure choice between owning and renting, with 1 for
owners and 0 for renters; y1it and y2it are the budget shares spent on housing
for owners and renters, respectively; wit and xit are vectors of explanatory vari-
ables; ηi, α1i , and α2i are unobserved household specific effects; and νit , u1it ,
and u2it are the error terms. The budget share spent on housing is defined as the
fraction of total expenditure spent on housing. Housing expenditure for renters
is just the rent paid by a family. The owner’s expenditure on housing consists
of net interest costs on mortgages, net rent paid if the land is not owned, taxes
on owned housing, costs of insuring the house, opportunity cost of housing
equity (which is set at 4% of the value of house minus the mortgage value), and
maintenance cost, minus the increase of the value of the house. The explanatory
variables considered are the education level of the head of household (DOP),
age of the head of the household (AGE), age squared (AGE2), marital status
(DMAR), logarithm of monthly family income (LINC), its square (L2INC),
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monthly total family expenditure (EXP), logarithm of monthly total family
expenditure (LEXP), its square (L2EXP), number of children (NCH), logarithm
of constant quality price of rental housing (LRP), logarithm of constant quality
price of owner occupied housing after tax (LOP), and LRP-LOP. The vari-
ables that are excluded from the tenure choice equation (8.5.1) are DOP, LEXP,
L2EXP, LRP, and LOP. The variables excluded from the budget share equations
((8.5.2) and (8.5.3)) are DOP, LINC, L2INC, EXP, NCH, and LRP-LOP.

The random-effects and fixed-effects models with and without selection
are estimated. However, because x include LEXP and L2EXP and they could
be endogenous, Charlier, Melenberg, and van Soest (2001) also estimate this
model by the instrumental variable (IV) method. For instance, the Kyriazidou
(1997) weighted least-squares estimator is modified as:

�̂KN =
⎧⎨⎩

N∑
i=1

∑
1≤s<t≤Ti

(xit − xis)(zit − zis)′K
[

(wit − wis)′â
hN

]
ditdis

⎫⎬⎭
−1

·
⎧⎨⎩

N∑
i=1

∑
1≤s<t≤Ti

(zit − zis)(yit − yis)K
[

(wit − wis)′â
hN

]
ditdis

⎫⎬⎭ ,
(8.5.4)

to take account of the potential endogeneity issue of LEXP and L2EXP, where
zit is a vector of instruments.

Tables 8.2 and 8.3 present the fixed-effects and random-effects estimation
results for the budget share equations without and with correction for selection,
respectively. The Kyriazidou (1997) estimator is based on the first-stage logit
estimation of the tenure choice equation (8.5.1). The random-effects estimator
is based on Newey (2009) series expansion method (Charlier, Melenberg, and
van Soest 2000). The differences among these different formulations are quite
substantial. For instance, the parameters related to AGE, AGE2, LEXP, L2EXP,
and the prices are substantially different from their random effects counterparts
based on IV. They also lead to very different conclusions on the elasticities
of interest. The price elasticities for the average renters and owners are about
−0.5 in the random-effects model, but are close to −1 for owners and −0.8 for
renters in the fixed-effects models.

The Hausman type specification tests of endogeneity of LEXP and L2EXP
are inconclusive. But a test for the presence of selectivity bias based on the
difference between the Kyriazidou IV and linear panel data estimates have test
statistics of 88.2 for owners and 23.7 for renters, which are significant at the
5 percent level for the χ2 distribution with 7 degrees of freedom. This indicates
that the model that does not allow for correlation between the error terms in
the share equations ((8.5.2) and (8.5.3)) and the error term or fixed effect in the
selection equation (8.5.1) is probably misspecified.

The Hausman (1978) type specification test of no correlation between the
household specific effects and the x’s based on the difference between the



Table 8.2. Estimation results for the budget share equations without correction for selection (standard errors in parentheses)a

Variable Pooled random effects Pooled IV random effects Linear model fixed effects Linear model IVb fixed effects

Owners

Constant 4.102∗∗ (0.238) 4.939∗∗ (0.712)
AGE 0.045∗∗ (0.009) 0.029∗∗ (0.010) −0.073 (0.041) −0.063 (0.044)
AGE2 −0.005∗∗ (0.001) −0.003∗∗ (0.001) 0.009∗∗ (0.004) 0.009∗ (0.004)
LEXP −0.977∗∗ (0.059) −1.271∗∗ (0.178) −0.769∗∗ (0.049) −1.345∗∗ (0.269)
L2EXP 0.052∗∗ (0.003) 0.073∗∗ (0.011) 0.036∗∗ (0.003) 0.070∗∗ (0.016)
DMAR 0.036∗∗ (0.004) 0.027∗∗ (0.005)
Dummy87 −0.001 (0.003) −0.000 (0.004)
Dummy88 −0.002 (0.001) −0.001 (0.002)
LOP 0.068∗∗ (0.010) 0.108∗∗ (0.010) 0.065∗∗ (0.016) 0.050∗∗ (0.018)

Renters

Constant 2.914∗∗ (0.236) 3.056∗∗ (0.421)
AGE 0.038∗∗ (0.007) 0.027∗∗ (0.007) 0.114∗∗ (0.034) 0.108∗∗ (0.035)
AGE2 −0.004∗∗ (0.000) −0.003∗∗ (0.001) −0.009∗ (0.004) −0.009∗ (0.004)
LEXP −0.772∗∗ (0.055) −0.820∗∗ (0.106) −0.800∗∗ (0.062) −0.653∗∗ (0.219)
L2EXP 0.040∗∗ (0.003) 0.045∗∗ (0.006) 0.039∗∗ (0.004) 0.031∗ (0.014)
DMAR 0.011∗∗ (0.002) 0.001∗∗ (0.003)
Dummy87 −0.004 (0.003) −0.003 (0.003)
Dummy88 −0.002 (0.002) −0.002 (0.002)
LRP 0.119∗ (0.017) 0.112∗∗ (0.017) 0.057∗∗ (0.020) 0.060∗∗ (0.020)

a ∗ means significant at the 5 percent level; ∗∗ means significant at the 1 percent level.
b In IV estimation AGE, AGE2, LINC, L2INC, Dummy87, Dummy88, and either LOP (for owners) or LRP (for renters) are used as instruments.
Source: Charlier, Melenberg, and van Soest (2001, Table 3).
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Table 8.3. Estimation results for the budget share equations using panel data models taking selection into account
(standard errors in parentheses)a

Variable Pooled random effectsb Pooled IV random effectsc Kyriazidou OLS estimates Kyriazidou IVd estimates

Owners

Constant 2.595e 3.370e

AGE −0.040∗∗ (0.013) −0.020 (0.015) 0.083 (0.083) 0.359∗∗ (0.084)
AGE2 0.004∗∗ (0.001) 0.002 (0.001) −0.008 (0.008) −0.033∗∗ (0.009)
LEXP −0.594∗∗ (0.142) −0.821 (0.814) −0.766∗∗ (0.102) −0.801∗∗ (0.144)
L2EXP 0.026∗∗ (0.008) 0.042 (0.050) 0.036∗∗ (0.006) 0.036∗∗ (0.008)
DMAR 0.006 (0.007) 0.012 (0.007)
LOP 0.126∗∗ (0.012) 0.121∗∗ (0.011) 0.006 (0.030) 0.001 (0.029)
Dummy87 −0.006 (0.007) −0.013 (0.007)
Dummy88 −0.004 (0.004) −0.008 (0.004)

Renters

Constant 2.679d 1.856d

AGE −0.037∗∗ (0.012) −0.027∗ (0.012) 0.127∗ (0.051) 0.082 (0.080)
AGE2 0.004∗∗ (0.001) 0.003∗ (0.001) −0.018∗∗ (0.006) −0.014 (0.007)
LEXP −0.601∗∗ (0.091) −0.417 (0.233) −0.882∗∗ (0.087) −0.898∗∗ (0.144)
L2EXP 0.027∗∗ (0.005) 0.016 (0.015) 0.044∗∗ (0.005) 0.044∗∗ (0.009)
DMAR −0.021∗∗ (0.005) −0.019∗∗ (0.005)
LRP 0.105∗∗ (0.016) 0.106∗∗ (0.016) 0.051 (0.028) 0.024 (0.030)
Dummy87 −0.024∗∗ (0.007) −0.023 (0.013)
Dummy88 −0.009∗ (0.004) −0.012 (0.007)

a ∗ means significant at the 5 percent level; ∗∗ means significant at the 1 percent level.
b series approximation using single index ML probit in estimating the selection equation.
c IV using AGE, AGE2, LINC, L2INC, DMAR and either LOP (for owners) or LRP (for renters) as instruments.
d In IV estimation AGE, AGE2, LINC, L2INC, Dummy87, and Dummy88 are used as instruments.
e Estimates include the estimate for the constant term in the series approximation.
Source: Charlier, Melenberg, and van Soest (2001, Table 4).
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Newey IV and the Kyriazidou IV estimates have test statistics of 232.1 for
owners and 37.8 for renters. These are significant at the 5 percent level for the
χ2 distribution with 5 degrees of freedom, thus rejecting the random-effects
model that does not allow for correlation between the household-specific
effects and the explanatory variables. These results indicate that the random-
effects linear panel models or linear panel data models that allow only for very
specific selection mechanisms (both of which can be estimated with just the
cross-sectional data) are probably too restrictive.

8.6 DYNAMIC TOBIT MODELS

8.6.1 Dynamic Censored Models

In this section we consider dynamic Tobit models in which the observed yit
takes the form9,

yit =
{
y∗
it , if y∗

it > 0,
0, if y∗

it ≤ 0.
(8.6.1)

There could be two types of dynamic dependence for y∗
it :

y∗
it = γy∗

i,t−1 + �′xit + αi + uit , (8.6.2)

or

y∗
it = γyi,t−1 + �′xit + αi + uit , (8.6.3)

where the error term uit is independently distributed over i and independently,
identically distributed over t (i.e., we allow Var (uit ) = σ 2

i ).
For model (8.6.2), when yi,t−1 = 0, y∗

i,t−1 could be any value between −∞
and 0. If there are no individual-specific effects αi (or αi = 0 for all i), panel
data actually allow the possibility of ignoring the censoring effects in the
lagged dependent variables by concentrating on the subsample where yi,t−1 >

0. Because if yi,t−1 > 0, yi,t−1 = y∗
i,t−1, (8.6.1) and (8.6.2) with αi = 0 become

y∗
it = γy∗

i,t−1 + �′xit + uit
= γyi,t−1 + �′xit + uit .

(8.6.4)

Thus, by treating yi,t−1 and xit as predetermined variables that are indepen-
dent of the error, uit , the censored estimation techniques for the static model
discussed in Section 8.1 can be applied to the subsample where (8.6.4) holds.

When random individual-specific effects αi are present in (8.6.2), y∗
is and αi

are correlated for all s even if αi can be assumed to be uncorrelated with
xi . To implement the MLE approach, not only has one to make assump-
tions on the distribution of individual effects and initial observations but also
computation may become unwieldy. To reduce the computational complexity,

9 See Honoré (1993) for a discussion of the model y∗
it = γyi,t−1 + �′xit + αi + uit .
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Arellano, Bover, and Labeaga (1999) suggest a two-step approach. The first
step estimates the reduced form of y∗

it by projecting y∗
it on all previous

y∗
i0, y

∗
i1, . . . , y

∗
i,t−1 and xi1, . . . , xit . The second step estimates (γ,�′) from

the reduced form parameters of y∗
it equation, 
t , by a minimum distance esti-

mator of the form (3.8.14). To avoid the censoring problem in the first step,
they suggest that for the ith individual, only the string (yis, yi,s−1, . . . , yi0),
where yi0 > 0, . . . , yi,s−1 > 0, is used. However, to derive the estimates of 
t ,
the conditional distribution of y∗

it given y∗
i0, . . . , y

∗
i,t−1 will have to be assumed.

Moreover, the reduced form parameters 
t are related to (γ,�′) in a highly
nonlinear way. Thus, the second-stage estimator is not easily derivable. There-
fore, in this section we bypass the issue of fixed or random αi and discuss only
the Honoré (1993) and Hu (1999) trimmed estimator.

For model (8.6.2) if yi,t−1 = 0 (i.e., y∗
i,t−1 < 0), it is identical to the static

model discussed in Section 5. If yit = 0, there is no one-to-one correspon-
dence between uit and y∗

it given (yi,t−1, xit , αi). On the other hand, for model
(8.6.3) there is still a one-to-one correspondence between uit and y∗

it given
(yi,t−1, xit , αi) be yi,t−1 = 0 or > 0. Therefore, we may split the observed
sample for model (8.6.2) into two groups. For the group where yi,t−1 = 0,
the estimation method discussed in Section 5 can be used to estimate �. For
the group where yi,t−1 �= 0, it can be treated just as (8.6.3). However, to esti-
mate γ we need to consider the case yi,t−1 > 0. If we consider the trimmed
sample for which yi,t−1 = y∗

i,t−1 > 0, then for all practical purposes, the two
models are identical.

For ease of demonstrating the symmetry conditions we consider the case
when T = 2, y∗

i0 observable, and y∗
i1 > 0, y∗

i0 > 0. In Figures 8.8 and 8.9, let
the vertical axis measure the value of y∗

i2 − γy∗
i1 = ỹ∗

i2(γ ) and horizontal axis
measures y∗

i1. If ui1 and ui2 are i.i.d. conditional on (yi0, xi1, xi2, αi), then
y∗
i1 and y∗

i2 − γy∗
i1 = ỹ∗

i2(γ ) are symmetrically distributed around the line (1),
ỹ∗
i2(γ ) = y∗

i1 − γy∗
i0 + �′
xi2 (or the 45-degree line through (γyi0 + �′xi1 +

αi,�
′xi2 + αi) or (γyi0 − �′
xi2, 0)). However, censoring destroys this sym-

metry. We observe only

yi1 = max (0, y∗
i1)

= max (0, γyi0 + �′xi1 + αi + ui1),

and

yi2 = max (0, γy∗
i1 + �′xi2 + αi + ui2),

or

ỹi2(γ ) = max (−γyi1, y∗
i2 − γyi1).

That is, observations for yi1 are censored from the left at the vertical axis, and for
any yi1 = y∗

i1 > 0, yi2 = y∗
i2 > 0 implies that y∗

i2 − γy∗
i1 ≥ −γyi0 + �′
xi2,

and yi2 − γy∗
i1 > −γy∗

i1. In other words, observations are also censored from
below by ỹi2(γ ) = −γyi1, as line (2) in Figures 8.8 and 8.9. As shown in
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Figure 8.8, the observable ranges of y∗
i1 and y∗

i2 − γy∗
i1 conditional on

(xi1, xi2, y∗
i0) are in the region GOH. The region is not symmetric around

the line (1), where we have drawn with γ ≥ 0, γyi0 − �′
xi2 > 0. To restore
symmetry, we have to find the mirror images of these two borderlines – the
vertical axis and line (2) – around the centerline (1), and then symmetrically
truncate observations that fall outside these two new lines.

The mirror image of the vertical axis around line (1) is the horizontal
line ỹ∗

i2(γ ) = −γyi0 + �′
xi2, line (3) in Figure 8.8. The mirror image of
line (2) around line (1) has the slope the inverse of line (2), − 1

γ
. There-

fore, the mirror image of line (2) is the line ỹ∗
i2(γ ) = − 1

γ
y∗
i1 + c, that passes

through the intersection of line (1) and line (2). The intersection of line (1)
and line (2) is given by ¯̃y∗

i2(γ ) = ȳ∗
i1 − (γyi0 − �′
xi2) = −γ ȳ∗

i1. Solving
for (ȳ∗

i1,
¯̃y∗
i2(γ )), we have ȳ∗

i1 = 1
1+γ (γyi0 − �′
xi2), ¯̃y∗

i2(γ ) = − γ

1+γ (γyi0 −
�′
xi2). Substituting ỹ∗

i2(γ ) = ¯̃y∗
i2(γ ) and y∗

i1 = ȳ∗
i1 into the equation ỹ∗

i2(γ ) =
− 1
γ
y∗
i1 + c, we have c = 1−γ

γ
(γyi0 − �′
xi2). Thus the mirror image of

line (2) is ỹi2(γ ) = − 1
γ

(y∗
i1 − γyi0 + �′
xi2) − (γyi0 − �′
xi2), line (4) in

Figure 8.8.
In Figure 8.9 we show the construction of the symmetrical truncation region

for the case when γyi0 − �′
xi2 < 0. Because observations are truncated at
the vertical axis from the left and at line (2) from below, the mirror image
of vertical axis around line (1) is given by line (3). Therefore, if we truncate
observations at line (3) from below, then the remaining observations will be
symmetrically distributed around line (1).

The observations of (yi1, ỹi2(γ )) falling into the northeast direction of the
region bordered by the lines (2), (3), and (4) in Figure 8.8 or the vertical
axis and line (3) in Figure 8.9 are symmetrically distributed around line (1)
(the 45-degree line through (γy∗

i0 − �′
xi2, 0)). Denote the region above the
45-degree line by A and the region below the 45-degree line by B. Then

A ∪ B ≡
{

(yi1, ỹi2(γ )) : yi1> 0, ỹi2(γ )> − γyi1, yi1 > γyi0 − �′
xi2 − γ

× (ỹi2(γ ) + γyi0 − �
xi2), ỹi2(γ ) > −γyi0 + �′
xi2

}

=
{

(yi1, ỹi2(γ )) : yi1 > 0, yi2 > 0, yi1 > γyi0 − �′
xi2

− γ (ỹi2(γ ) + γyi0 − �′
xi2), ỹi2(γ ) > −γyi0 + �′
xi2

}
.

(8.6.5)

Symmetry implies that conditional on yi0 > 0, yi1 > 0, yi2 > 0 and xi1, xi2,
the probability of an observation falling in region A equals the probability of it
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falling in region B. That is

E
{

(yi1, ỹi2(γ ))εA ∪ B
}

·
[

1
{
yi1 − ỹi2(γ ) − γyi0 + �′
xi2 > 0

}
− 1
{
yi1 − ỹi2(γ ) − γyi0 + �′
xi2 < 0

}]
= 0.

(8.6.6)

Another implication of symmetry is that conditional on yi0 > 0, yi1 >
0, yi2 > 0 and xi1, xi2, the expected vertical distance from a point in region A
to the line (1), ỹi2(γ ) − yi1 + γyi0 − �′
xi2, equals the expected horizontal
distance from a point in region B to that line, yi1 − ỹi2(γ ) − γyi0 + �′
xi2 =
−(ỹi2(γ ) − yi1 + γyi0 − �′
xi2). Therefore,

E

[
1

{
(yi1, ỹi2(γ ))εA ∪ B

}
(yi1 − ỹi2(γ ) − γyi0 + �′
xi2)

]
= 0. (8.6.7)

More generally, for any function ξ (., .) satisfying ξ (e1, e2) = −ξ (e2, e1) for
all (e1, e2), we have the orthogonality condition

E

[
1
{
(yi1, ỹi2(γ ))εA ∪ B} · ξ (yi1 − γyi0 + �′
xi2, ỹi2(γ ))

· h(yi0, xi1, xi2)

]
= 0,

(8.6.8)

for any function h(·). where

1
{
(yi1, ỹi2(γ ))εA ∪ B} ≡ 1

{
yi0 > 0, yi1 > 0, yi2 > 0

}
·
[

1
{
γyi0 − �′
xi2 > 0

}
· 1
{
yi1 > γyi0 − �′
xi2 − γ (ỹi2(γ ) + γyi0 − �′
xi2)

}
· 1
{
ỹi2(γ ) > −γyi0 + �′
xi2

}
+ 1
{
γyi0 − �′
xi2 < 0

}
· 1
{
ỹi2(γ ) > −γyi0 + �′
xi2

}]
.

(8.6.9)

If one choosesh(·) to be a constant, the case ξ (e1, e2)=sgn (e1 − e2) corresponds
to (8.6.6) and ξ (e1, e2) = e1 − e2 corresponds to (8.6.7).

If T ≥ 4, one can also consider any pair of observations yit , yis with yi,t−1 >

0, yit > 0, yi,s−1 > 0 and yis > 0. Note that conditional on xit , xis , (αi + uit )
and (αi + uis) are identically distributed. Thus, let

Wits(�
′, γ ) = max

{
0, (xit − xis)′�, yit − γyi,t−1

}− x′
it�

= max
{−x′

it�,−x′
is�, αi + uit

}
,

(8.6.10)
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and

Wist (�
′, γ ) = max

{
0, (xis − xit )′�, yis − γyi,s−1

}− x′
is�

= max
{−x′

is�,−x′
it�, αi + uis

}
,

(8.6.11)

Then Wits(�, γ ) and Wist (�, γ ) are distributed symmetrically around the 45-
degree line conditional on (xit , xis). This suggests the orthogonality condition

E
[
1
{
yit−1 > 0, yit > 0, yi,s−1 > 0, yis > 0

} · ξ (Wits(�
′, γ ),Wist (�

′, γ ))

·h(xit , xis)] = 0,
(8.6.12)

for any function h(·). When T ≥ 3, the symmetric trimming procedure (8.6.12)
requires weaker assumptions than the one based on three consecutive uncen-
sored observations because the conditioning variables do not involve the initial
value yi0. However, this approach also leads to more severe trimming.

Based on the orthogonality conditions (8.6.8) or (8.6.12), Hu (1999) sug-
gests a GMM estimator of � = (�′, γ )′ by minimizing mN (�)′ANmN (�) where
mN (�), is the sample analog of (8.6.8) or (8.6.12), andAN is a positive definite
matrix that converges to a constant matrix A as N → ∞. The GMM estimator
will have the limiting distribution of the form

√
N
(

�̂GMM − �
)

−→ N
(

0, (�′��)−1
[
�′AVA�

]
(�′A�)−1

)
, (8.6.13)

where � = ∂

∂�
E[m(�)], V = E[m(�)m(�)′]. When the optimal weighting

matrixA = V −1 is used, the asymptotic covariance matrix of
√
N
(
�̂GMM − �

)
becomes

(
�′V −1�

)−1
.

However, the true value of � is not the only value that satisfies the orthogo-
nality conditions (8.6.6)–(8.6.8) or (8.6.12). For instance, those orthogonality
conditions can be trivially satisfied when the parameter values are arbitrarily
large. To see this, note that for a given value of γ , when the value of δit = x′

it�
goes to infinity, the number of observations falling in the (nontruncated) region
A∪B in Figures 8.8 and 8.9 approaches 0. Thus, the moment conditions can
be trivially satisfied. To overcome this possible lack of identification of GMM
estimates based on the minimization of the criterion function, Hu (1999) sug-
gests using a subset of the moments that exactly identify � for given γ to
provide the estimates of �, then test whether the rest of the moment condi-
tions are satisfied by these estimates for a sequence of γ values ranging from
0 to 0.9 with an increment of 0.01. Among the values of γ at which the test
statistics are not rejected, the one that yields the smallest test statistic is chosen
as the estimate of γ . Hu (1999) uses this estimation method to study earnings
dynamics, using matched data from the Current Population Survey and Social
Security Administration (CPS-SSA) Earnings Record for a sample of men who
were born in 1930–39 and living in the South during the period of 1957–73.
The SSA earnings are top-coded at the maximum social security taxable level,
namely, yit= min (y∗

it , ct ), where ct is the Social Security maximum taxable
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Table 8.4. Estimates of AR(1) coefficients of log real annual earnings
(in thousands)a

Linear GMM Nonlinear GMM with
(assuming no censoring) correction for censoring

Black White Black White

0.379 0.399 0.210 0.380
(0.030) (0.018) (0.129) (0.051)

a Standard errors in parenthesis.
Source: Hu (1999).

earnings level in period t . This censoring at the top can be easily translated into
censoring at 0 by considering ỹit = ct − yit , then ỹit= max (0, ct − y∗

it ).
Table 8.4 presents the estimates of the coefficient of the lagged log real

annual earnings coefficient of an AR(1) model based on a sample of 226
black and 1883 white men with and without correction for censoring. When
censoring is ignored, the model is estimated by the linear GMM method. When
censoring is taken into account, Hu uses an unbalanced panel of observations
with positive SSA earnings in three consecutive time periods. The estimated γ
are very similar for black and white men when censoring is ignored. However,
when censoring is taken into account, the estimated autoregressive parameter
γ is much higher for white men than for black men. The higher persistence of
the earnings process for white men than for black men is consistent with the
notion that white men had jobs that had better security and were less vulnerable
to economic fluctuation than black men in the period 1957–73.

8.6.2 Dynamic Sample Selection Models

When the selection rule is endogenously determined as given by (8.2.4) and
y∗
it is given by (8.6.2) or (8.6.3), with wit and xit being nonoverlapping vectors

of strictly exogenous explanatory variables (with possibly common elements),
the model under consideration has the form:10

yit = dity∗
it , (8.6.14)

dit = 1{w′
ita + ηi + νit }, i = 1, . . . , N,

t = 1, . . . , T ,
(8.6.15)

where (dit ,wit ) is always observed, and (y∗
it , xit ) is observed only if dit = 1.

For notational ease, we assume that di0 and yi0 are also observed.
In the static case of γ = 0, Kyriazidou (1997) achieves the identification of

� by relying on the conditional pairwise exchangeability of the error vector

10 The assumption that xit and wit do not coincide rules out the censored regression model as a
special case of (8.6.14) and (8.6.15).
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(uit , νit ) given the entire path of the exogenous variables (xi ,wi) and the
individual effects (αi, ηi). However, the consistency of Kyriazidou estimator
(8.4.33) breaks down in the presence of the lagged dependent variable in (8.6.2)
or (8.6.3). The reason is the same as in linear dynamic panel data models
where first differencing generates nonzero correlation between y∗

i,t−1 and the
transformed error term (see Chapter 4). However, just as in the linear case,
estimators based on linear and nonlinear moment conditions on the correlation
structure of the unobservables with the observed variables can be used to obtain
consistent estimators of γ and �.

Under the assumption that {uit , νit } are independently, identically dis-
tributed over time for all i conditional on �i ≡ (w′

i , αi, ηi, y
∗
i0, di0), where

wi = (w′
i1, . . . ,wiT )′, Kyriazidou (2001) notes that by conditioning on the

event that 
w′
ita = 0, the following moment conditions hold11:

E(ditdi,t−1di,t−2di,t−j yi,t−j
uit | 
w′
ita = 0) = 0, j = 2, . . . , t,

(8.6.16)

and

E(disdit di,t−1di,t−2xis
uit | 
w′
ita = 0) = 0,

for t = 2. . . . , T ; s = 1, . . . , T . (8.6.17)

This is because for an individual i when the selection index w′
ita = w′

i,t−1a, the
magnitude of the sample selection effects in the two periods, λ(ηi + w′

ita) and
λ(ηi + w′

i,t−1a), will also be the same. Thus by conditioning on 
w′
ita = 0,

the sample selection effects and the individual effects are eliminated by first
differencing,

Let � = (γ,�′)′, z′
it = (yi,t−1, x′

it ), and

m1it (�) = ditdi,t−1di,t−2di,t−j yi,t−j (
yit −
z′
it�),

t = 2, . . . , T ; j = 2, . . . , t, (8.6.18)

m2it,k(�) = disdit di,t−1di,t−2xis,k(
yit −
z′
it�),

t = 2, . . . , T ; s = 1, . . . , T ; k = 1, . . . , K. (8.6.19)

Kyriazidou (2001) suggests a kernel weighted generalized method of moments
estimator (KGMM) that minimizes the following quadratic form:

ĜN (�)′ANĜN (�), (8.6.20)

where AN is a stochastic matrix that converges in probability to a finite non-
stochastic limit A, ĜN (�) is the vector of stacked sample moments with rows

11 Kyriazidou (2001) shows that these moment conditions also hold if d∗
it = φdi,t−1 + w′

ita +
ηi + νit .
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of the form

1

N

N∑
i=1

1

hN
K

(

w′

it â
hN

)
m�it (�), (8.6.21)

where K(·) is a kernel density function, â is some consistent estimator of
a, and hN is a bandwidth that shrinks to 0 as N → ∞. Under appropriate
conditions, Kyriazidou (2001) proves that the KGMM estimator is consistent
and asymptotically normal. The rate of convergence is the same as in univariate
nonparametric density and regression function estimation, that is, at the speed
of

√
NhN .



CHAPTER 9

Cross-Sectionally Dependent Panel Data

Most panel inference procedures discussed so far assume that apart from
the possible presence of individual invariant but period varying time-specific
effects, the effects of omitted variables are independently distributed across
cross-sectional units. Often economic theory predicts that agents take actions
that lead to interdependence among themselves. For example, the prediction
that risk-averse agents will make insurance contracts allowing them to smooth
idiosyncratic shocks implies dependence in consumption across individuals.
Cross-sectional units could also be affected by common omitted factors. The
presence of cross-sectional dependence can substantially complicate statistical
inference for a panel data model. However, properly exploiting the dependence
across cross-sectional units in panel data not only can improve the efficiency of
parameter estimates, but it may also simplify statistical inference than the sit-
uation where only cross-sectional data are available. In Section 9.1 we discuss
issues of ignoring cross-sectional dependence. Sections 9.2 and 9.3 discuss
spatial and factor approaches for modeling cross-sectional dependence. Sec-
tion 9.4 discusses cross-sectional mean augmented approach for controlling
the impact of cross-sectional dependency. Section 9.5 discusses procedures for
testing cross-sectional dependence. Section 9.6 demonstrates that when panel
data are cross-sectionally dependent, sometimes it may considerably simplify
statistical analysis compared to the case of when only cross-sectional data are
available by considering the measurement of treat effects.

9.1 ISSUES OF CROSS-SECTIONAL DEPENDENCE

Standard two-way effects models (e.g. (3.6.8)) imply observations across indi-
viduals are equal correlated. However, the impacts of common omitted factors
could be different for different individuals. Unfortunately, contrary to the obser-
vations along the time dimension in which the time label, t or s, gives a natural
ordering and structure, there is no natural ordering of observations along the
cross-sectional dimension. The cross-sectional labeling, i or j , is arbitrary.

Let vt = (v1t , . . . , vNt )′ be the N × 1 vector of cross-sectionally stacked
error vector at time t and the N ×N constant matrix,

∑ = (σij ) be its

327
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covariance matrix. WhenN is fixed and T is large, one can estimate the covari-
ance between i and j, σij , by 1

T

∑T
t=1 v̂it v̂j t directly, using individual time

series regression residuals, v̂it if the conditional variables, xit , are uncorrelated
with vit . One can then apply the feasible generalized least-squares method
(FGLS) or Zellner’s (1962) seemingly unrelated regression method (SUR) to
estimate the slope coefficients. The FGLS or SUR estimator is consistent and
asymptotically normally distributed.

When T is finite, unrestricted
∑

cannot be consistently estimated. However,
if each row of

∑
only has a maximum of hN elements that are nonzero (i.e.,

cross-sectional dependence is in a sense “local”)1 and hN
N

→ 0 as N → ∞,
panel estimators that ignore cross-sectional dependence could still be consistent
and asymptotically normally distributed, although they will not be efficient. The
test statistics based on the formula ignoring cross-correlations could also lead
to severe size distortion (e.g., Breitung and Das 2008). On the other hand, if
hN
N

→ c �= 0 asN → ∞, estimators that ignore the presence of cross-sectional
dependence could be inconsistent no matter how large N is (e.g., Hsiao and
Tahmiscioglu (2008), Phillips and Sul (2007)) if T is finite.2 To see this,
consider the simple regression model,

yit = x′
it� + vit , i = 1, . . . , N

t = 1, . . . , T ,
(9.1.1)

where E(vit | xit ) = 0, E(vit vjs) = 0 if t �= s and E(vitvjt ) = σij . Let
∑ =

(σij ) be the N ×N covariance matrix of the cross-sectionally stacked error,
vt = (v1t , . . . , vNt )′. Then the covariance matrix of pooled least-squares esti-
mator of �, �̂LS, is equal to

Cov (�̂LS) =
[
T∑
t=1

X′
tXt

]−1 [ T∑
t=1

X′
t
Xt

][
T∑
t=1

X′
tXt

]−1

, (9.1.2)

where Xt = (x′
it ) denotes the N ×K cross-sectionally stacked explanatory

variables xit for time period t . Since
∑

is a symmetrical positive definite
matrix,

∑
can be decomposed as


 = ∨�∨′, (9.1.3)

where ∧ is a diagonal matrix with the diagonal elements being the eigenvalues
of 
 and ∨ is an orthonormal matrix. If one or more eigenvalues of 
 is of
order N , X′

t
Xt could be of order N2 under the conventional assumption that
1
N

∑N
i=1 xit converges to a constant vector. Hence the

Cov (�̂LS) = O(
1

T
).

1 This is equivalent to saying the eigenvalues of
∑

are bounded asN −→ ∞. Pesaran and Tosetti
(2010) define this case as the “weak dependence.”

2 This is equivalent to saying the eigenvalues of
∑

are O(N ), which Pesaran and Tosetti (2010)
called the “strong dependence.”
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In other words, the least-squares estimator of � converges to a random variable
rather than a constant when T is finite and N is large.

9.2 SPATIAL APPROACH

9.2.1 Introduction

In regional science, correlation across cross-sectional units is assumed to fol-
low a certain spatial ordering, that is, dependence among cross-sectional units
is related to location and distance, in a geographic or more general economic or
social network space (e.g., Anselin 1988; Anselin and Griffith 1988; Anselin,
Le Gallo, Jayet 2008). The neighbor relation is expressed by a so-called spa-
tial weights matrix, W = (wij ), an N ×N positive matrix in which the rows
and columns correspond to the cross-sectional units, is specified to express
the prior strength of the interaction between location i (in the row of the
matrix) and location j (column), wij . By convention, the diagonal elements,
wii = 0. The weights are often standardized so that the sum of each row,∑N
j=1wij = 1 through row-normalization; for instance, let the ith row of W ,

w′
i = (di1, . . . , diN )/

∑N
j=1 dij , where dij ≥ 0 represents a function of the spa-

tial distance of the ith and j th units in some (characteristic) space. A side effect
of this standardization is that whereas the original weights may be symmetrical,
the row-standardized form no longer is.

The spatial weights matrix, W , is often included into a model specification
to the dependent variable, or to the error term or to both through a so-called
spatial lag operator. For instance, a spatial lag model for the NT × 1 variable
y = (y′

1, . . . , y′
N )′, yi = (yi1, . . . , yiT )′, may take the form

y = ρ(W ⊗ IT )y +X� + u (9.2.1)

where X and u denote the NT ×K explanatory variables and NT × 1 vector
of error terms, respectively (called the mixed regressive, spatial autoregression
model by Anselin (1988) and Ord (1975)). A spatial error model may take the
form

y = X� + v, (9.2.2)

where v may be specified as in a spatial autoregressive form,

v = θ (W ⊗ IT )v + u, (9.2.3)

or a spatial moving average form,

v = δ(W ⊗ IT )u + u, (9.2.4)

and u′
i = (ui1, . . . , uiT ) is assumed to be independently distributed across i

with Euiu′
i = σ 2

u IT .
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The joint determination of y for model (9.2.1) or v for (9.2.2) when v is
given by (9.2.3) is through [(IN − ρW )−1 ⊗ IT ] or [(IN − θW )−1 ⊗ IT ]. Since

(IN − ρW )−1 = IN + ρW + ρ2W 2 + · · · , (9.2.5)

or

(IN − θW )−1 = IN + θW + θ2W 2 + · · · , (9.2.6)

to ensure a “distance” decaying effect among the cross-sectional units, ρ and
θ are assumed to have absolute values less than 1.3

The spatial autoregressive form (9.2.3) implies that the covariance matrix
of the N cross-sectional units at time t, vt = (v1t , . . . , vNt )′ takes the form

Evtv′
t = σ 2

u [IN − θW ]−1[IN − θW ′]−1 = V. (9.2.7)

The spatial moving average form (9.2.4) implies that the covariance matrix of
vt takes the form

Evtv′
t = σ 2

u [IN + δW ][IN + δW ]′

= σ 2
u [IN + δ(W +W ′) + δ2WW ′] = Ṽ .

(9.2.8)

WhenW is sparse, that is, many elements ofW are prespecified to be 0, for
instance, W could be a block diagonal matrix in which only observations in
the same region are considered neighbors, and observations across regions are
uncorrelated.W can also be a sparse matrix by some neighboring specification,
for example, if a district is a spatial unit, some specifications assume that
a neighbor for this district is another one which has a common boundary.
The spatial moving average form allows the cross-correlations to be “local”
(9.2.8). On the other hand, the spatial autoregressive form suggests a much
wider range of spatial covariance than specified by the nonzero elements of the
weights matrixW , implying a “global” covariance structure (9.2.7).

Generalizing the spatial approach, Conley (1999) suggests using the notion
of “economic distance” to model proximity between two economic agents. The
joint distribution of random variables at a set of points is assumed to be invari-
ant to a shift in location and is a function only of the “economic distances”
between them. For instance, the population of individuals is assumed to reside
in a low dimensional Euclidean space, say R2, with each individual i located at
a point si . The sample then consists of realization of agents’ random variables
at a collection of locations {si} inside a sample region. If two agents’ locations
si and sj are close, then yit and yjs may be highly correlated. As the distance

3 The combination of the row sum of W equal to 1 and γ or θ having absolute value less than 1
implies that the spatial models assume cross-sectional dependence being “weak.”
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between si and sj grows large, yit and yjs approach independence. Under this
assumption, the dependence among cross-sectional data can be estimated using
methods analogous to time series procedures either parametrically or nonpara-
metrically (e.g., Hall, Fisher, and Hoffman 1992; Priestley 1982; Newey and
West 1987).

While the approach of defining cross-sectional dependence in terms of “eco-
nomic distance” measure allows for more complicated dependence than models
with time-specific (or group-specific) effects alone (e.g. Chapter 3, Section 3.6),
it still requires that the econometricians have information regarding this “eco-
nomic distance.” In certain urban, environmental, development, growth, and
other areas of economics, this information may be available. For instance, in
the investigation of peoples’ willingness to pay for local public goods, the
relevant economic distance may be the time and monetary cost of traveling
between points to use these local public goods. Alternatively, if the amenity
is air quality, then local weather conditions might constitute the major unob-
servable common to cross-sectional units in the neighborhood. Other examples
include studies of risk sharing in rural developing economies where the primary
shocks to individuals in such agrarian economies may be weather related. If
so, measures of weather correlation on farms of two individuals could be the
proxy for the economic distance between them. In many other situations, prior
information such as this may be difficult to come by. However, the combina-
tion of the row sum of W equal to 1 and δ or θ having absolute value less
than 1 implies that the population consists of N cross-sectional units. In other
words, the spatial approach is an analysis of the population based on T time
series realized observations. If N is considered sample size, then the spatial
autoregressive model implies that the cross-sectional dependence is “weak.” In
other words, each cross-sectional unit is correlated only with a fixed number of
other cross-sectional units. Under an assumpton of weak cross-sectional depen-
dence, the covariance estimator (3.2.8) for models with only individual-specific
effects or (3.6.13) for models with both individual- and time-specific effects of
� remains consistent if T is fixed and N → ∞ or if N is fixed and T tends to
infinity or both. However, there could be severe size distortion in hypothesis
testing if cross-sectional dependence is ignored. Vogelsang (2012) showed that
the covariance matrix estimate proposed by Driscoll and Kraay (1998) based
on the Newey–West (1987) heteroscedastic autocorrelation (HAC) covariance
matrix estimator of cross-sectional averages,

T

(
N∑
i=1

T∑
t=1

x̃it x̃′
it

)−1

ˆ̄�

(
N∑
i=1

T∑
t=1

x̃it x̃′
it

)−1

, (9.2.9)

is robust to heteroscedasticity, autocorrelation and spatial dependence, where
x̃it = (xit − x̄i) if (3.2.8) is used or x̃it = (xit − x̄i − x̄t + x̄) if (3.6.13)
is used, x̄i = 1

T

∑T
t=1 xit , x̄t = 1

N

∑N
i=1 xit , x̄ = 1

N

∑N
i=1 x̄i = 1

T

∑T
t=1 x̃t ,
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and

ˆ̄� = 1

T

⎧⎨⎩
T∑
t=1

ˆ̄v∗
t

ˆ̄v∗′
t +

T−1∑
j=1

k

(
j

m

)⎡⎣ T∑
t=j+1

ˆ̄v∗
t

ˆ̄v∗′
t−j +

T∑
t=j+1

ˆ̄v∗
t−j ˆ̄v∗′

t

⎤⎦⎫⎬⎭
v̂∗
it = x̃it (ỹit − x̃′

it �̂cv),

ˆ̄v∗
t = 1

N

N∑
i=1

x̃it (ỹit − x̃it �̂cv) = 1

N

N∑
i=1

v̂∗
it ,

(9.2.10)

ỹit = (yit − ȳi) if (3.2.8) is used or ỹit = (yi − ȳi − ȳt + ȳ) if (3.6.13) is used,
and k( j

m
) = 1 − | j

m
| if | j

m
|< 1 and k( j

m
) = 0 if | j

m
|> 1, m is an a priori

chosen positive constant less than or equal to T . The choice of m depends on
how strongly an investigator thinks about the serial correlation of the error uit .

9.2.2 Spatial Error Model

The log-likelihood function for the spatial error model (9.2.2) takes the form

− 1

2
log | � | −1

2
v′�−1v, (9.2.11)

where

� = V ⊗ IT (9.2.12)

if v is a spatial autoregressive form (9.2.3), and

� = Ṽ ⊗ IT (9.2.13)

is v is a spatial moving average form (9.2.4). Conditional on θ or δ, the MLE
of � is just the GLS estimator

�̂ = (X′�−1X)−1(X′�−1 y). (9.2.14)

When� takes the form of (9.2.12), the log-likelihood function (9.2.11) takes
the form

T log | IN − θW | −NT
2

log σ 2
u

− 1

2σ 2
u

(y −X�)′[(IN − θW )′(IN − θW ) ⊗ IT ](y −X�).
(9.2.15)

Ord (1975) notes that

| IN − θW |=
N∏
j=1

(1 − θωj ), (9.2.16)

where ωj are the eigenvalues of W , which are real even W after row nor-
malization is no longer symmetric. Substituting (9.2.16) into (9.2.15), the
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log-likelihood values can be evaluated at each possible (θ,�′) with an iter-
ative optimization routine. However, when N is large, the computation of the
eigenvalues becomes numerically unstable.

9.2.3 Spatial Lag Model

For the spatial lag model (9.2.1), the right-hand side, (W ⊗ IT )y, and u are
correlated. When u ∼ N (0, σ 2

u INT ), the log-likelihood function of (9.2.1) is

T log | IN − ρW | −NT
2

log σ 2
u

− 1

2σ 2
u

[y − ρ(W ⊗ IT )y −X�]′[y − ρ(W ⊗ IT )y −X�], | ρ |< 1.
(9.2.17)

When T is fixed, the MLE is
√
N consistent and asymptotically normally

distributed under the assumption thatwij are at most of order h−1
N , and the ratio

hN/N → 0 as N goes to infinity (Lee (2004)). However, when N is large, just
like the MLE for (9.2.11), the MLE for (9.2.1) is burdensome and numerically
unstable (e.g., Kelejian and Prucha (2001), Lee (2004)). The | IN − ρW | is
similar in form to (9.2.16). A similar iterative optimization routine as that
for (9.2.15) can be evaluated at each possible (ρ,�′). When N is large, the
computation of the eigenvalues becomes numerically unstable.

The parameters (ρ,�′) can also be estimated by the instrumental variables or
generalized method of moments estimator (or two-stage least squares estimator)
(Kelejian and Prucha 2001),⎛⎝ρ̂

�̂

⎞⎠ = [Z′H (H ′H )−1H ′Z]−1[Z′H (H ′H )−1H ′y], (9.2.18)

where Z = [(W ⊗ IT )y, X] and H = [(W ⊗ IT )X,X]. Lee (2003) shows that
an optimal instrumental variables estimator is to let H = [(W ⊗ IT )Ey, X],
where Ey = [INT − ρ(W ⊗ IT )]−1X�. The construction of optimal instru-
mental variables requires some initial consistent estimators of ρ and �.

When wij = O(N−( 1
2 +δ)), where δ > 0, E((W ⊗ IT )yu′) = o(N− 1

2 ), one
can ignore the correlations between (W ⊗ IT )y and u. Applying the least-
squares method to (9.2.1) yields a consistent and asymptotically normally
distributed estimator of (ρ,�′) (Lee 2002). However, if W is “sparse,” this
condition may not be satisfied. For instance, in Case (1991), “neighbors” refers
to households in the same district. Each neighbor is given equal weight. Suppose
there are r districts and m members in each district, N = mr . Then wij = 1

m

if i and j are in the same district and wij = 0 if i and j belong to different
districts. If r −→ ∞ as N −→ ∞ and N is relatively much larger than r in
the sample, one might regard the condition wij = O(N−( 1

2 +δ)) being satisfied.
On the other hand, if r is relatively much larger thanm or limN→∞ r

m
= c �= 0,

then wij = O(N− 1
2 (N+δ)) cannot hold.
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9.2.4 Spatial Error Models with Individual-Specific Effects

One can also combine the spatial approach with the error components or fixed
effects specification (e.g., Kapoor, Kelejian, and Prucha 2007; Lee and Yu
(2010a,b)). For instance, one may generalize the spatial error model by adding
the individual-specific effects,

y = X� + (IN ⊗ eT )	 + v, (9.2.19)

where 	 = (α1, . . . , αN )′. Suppose 	 are treated as fixed constants and v
follows a spatial error autoregressive form (9.2.3), the log-likelihood function
is of the form (9.2.11) where� is given by (9.2.12), and v = (y −X� − (IN ⊗
eT )	). Taking partial derivatives of the log-likelihood function with respect to
	 and setting it equal to 0 yields the MLE estimates of 	 conditional on �
and θ . Substituting the MLE estimates of 	 conditional on � and θ into the
log-likelihood function, we obtain the concentrated log-likelihood function

−NT
2

log σ 2
u + T log | IN − θW |

− 1

2σ 2
u

ṽ′[(IN − θW )′(IN − θW ) ⊗ IT ]ṽ,
(9.2.20)

where the element ṽ, ṽit = (yit − ȳi) − (xit − x̄i)′�, ȳi = 1
T

∑T
t=1 yit , and

x̄i = 1
T

∑T
t=1 xit . In other words, the MLE of � is equivalent to first taking

the covariance transformation of each yit and xit to get rid of the individual-
specific effects, αi , then maximizing (9.2.20) to obtain the MLE of the spatial
error model with fixed individual-specific effects.

The MLE of � and θ are consistent when either N or T or both tend to
infinity. However, the MLE of 	 and σ 2

u is consistent only if T −→ ∞. To
obtain consistent estimate of (β, θ, σ 2

u ) with finite T and large N , Lee and Yu
(2010a,b) suggest maximizing4

−N (T − 1)

2
log σ 2

u + (T − 1) log | IN − θW |

− 1

2σ 2
u

ṽ′[(IN − θW )′(IN − θW ) ⊗ IT ]ṽ. (9.2.21)

When αi are treated as random and are independent of u, The NT ×NT
covariance matrix of v takes the form

� = σ 2
α (IN ⊗ JT ) + σ 2

u ((B ′B)−1 ⊗ IT ), (9.2.22)

if αi and uit are independent of X and are i.i.d. with mean 0 and variance σ 2
α

and σ 2
u , respectively, where JT is a T × T matrix with all elements equal to 1,

4 As a matter of fact, (9.2.21) is derived by the transformation matrixQ∗ whereQ∗ = [F, 1√
T
IT ],

where F is the T × (T − 1) eigenvector matrix of Q = IT − 1
T

eT e′
T that correspond to the

eigenvalues of 1.



9.2 Spatial Approach 335

B = (IN − θW ). Using the results in Wansbeek and Kapteyn (1978), one can
show that (e.g., Baltagi et al. 2007)

�−1 = σ−2
u

{
1

T
JT ⊗ [T φIN + (B ′B)−1

]−1 + ET ⊗ B ′B
}
, (9.2.23)

where ET = IT − 1
T
J and φ = σ 2

α

σ 2
u

,

| � |= σ 2NT
u | T φIN + (B ′B)−1 | · | (B ′B)−1 |T−1 . (9.2.24)

The MLE of �, θ, σ 2
u , and σ 2

α can then be derived by substituting (9.2.23) and
(9.2.24) into the log-likelihood function (e.g., Anselin 1988, p. 154).

The FGLS estimator (9.2.14) of the random-effects spatial error model � is
to substitute initial consistent estimates of φ and θ into (9.2.23). Kapoor et al.
(2007) propose a method of moments estimation with moment conditions in
terms of (θ, σ 2

u , σ̃
2 = σ 2

u + T σ 2
α ).

9.2.5 Spatial Lag Model with Individual-Specific Effects

For the spatial lag model with individual-specific effects,

y = ρ(W ⊗ IT )y +X� + (IN ⊗ eT )	 + u. (9.2.25)

If 	 is treated as fixed constants, the log-likelihood function of (9.2.25) is of
similar form as (9.2.20)

T log | IN − ρW | −NT
2

log σ 2
u

− 1

2σ 2
u

{[y − ρ(W ⊗ IT )y −X� − (IN ⊗ eT )	]′

[y − ρ(W ⊗ IT )y −X� − (IN ⊗ eT )	]}.

(9.2.26)

The MLE of (�,	) can be computed similarly as that of (9.2.20).
When αi are treated as randomly distributed across i with constant variance

σ 2
α and independent of X, then

E
{
(u + (IN ⊗ eT )	)(u + (IN ⊗ eT )	)′

}
= IN ⊗ V ∗,

(9.2.27)

whereV ∗ = σ 2
u IT + σ 2

αeT e′
T . The MLE or quasi-MLE for the spatial lag model

(9.2.1) can be obtained by maximizing

T log | IN − ρW | −N (T − 1)

2
log σ 2

u − N

2
log
(
σ 2
u + T σ 2

α

)
− 1

2
(y∗ −X�)′(IN ⊗ V ∗−1)(y∗ −X�),

(9.2.28)
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where y∗ = (INT − ρ(W ⊗ IT )y. Conditional on ρ, σ 2
u , and σ 2

α , the MLE of �
is the GLS estimator

�̂ = (X′[IN ⊗ V ∗−1]X)−1(X′(IN ⊗ V ∗−1)(INT − ρ(W ⊗ IT ))y, (9.2.29)

where V ∗−1 is given by (3.3.7). Kapoor et al. (2007) have provided moment
conditions to obtain initial consistent estimates σ 2

u , σ
2
α , and ρ.

One can also combine the random individual-specific effects specification
of 	 with a spatial specification for the error v. For instance, we can let

y = ρ(W1 ⊗ IT )y +X� + (IN ⊗ eT )	 + v, (9.2.30)

with

v = θ (W2 ⊗ IT )v + u, (9.2.31)

whereW1 andW2 areN ×N spatial weights matrices and 	 is anN × 1 vector
of individual effects. Let S(ρ) = IN − ρW1 and R(θ ) = IN − θW2. Under the
assumption that uit is independently normally distributed, the log-likelihood
function of (9.2.30) takes the form

log L = − NT

2
log σ 2

u + T log | S(ρ) | +T log | R(θ ) |

− 1

2
ṽ∗′

ṽ∗,
(9.2.32)

where

ṽ∗ = [R(θ ) ⊗ IT ][(S(ρ) ⊗ IT )y −X� − (IN ⊗ eT )	]. (9.2.33)

The MLE (or quasi-MLE if u is not normally distributed) can be computed
similarly as that of (9.2.20). For details, see Lee and Yu (2010a,b).

9.2.6 Spatial Dynamic Panel Data Models

Consider a dynamic panel data model of the form

y = y−1γ +X� + (IN ⊗ eT )	 + v (9.2.34)

where y−1 denotes the NT × 1 vector of yit lagged by one period, y−1 =
(y10, . . . , y1,T−1, . . . , yN,T−1)′, X denotes the NT ×K matrix of exoge-
nous variables, X = (x′

it ), and 	 = (α1, . . . , αN )′ denotes the N × 1 fixed
individual-specific effects. If the error term follows a spatial autoregressive form
of (9.2.3), even | γ |< 1, there could be spatial cointegration if γ + θ = 1 while
γ �= 1 (Yu and Lee (2010)). Yu et al. (2012) show that the MLE of (γ, θ,�,	)
are

√
NT consistent with T tends to infinity. However, if γ + θ = 1, then

the asymptotic covariance matrix of the MLE is singular when the estimator is
multiplied by the scale factor

√
NT because the sum of the spatial and dynamic

effects converge at a higher rate (e.g., Yu and Lee (2010)).
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Yu et al. (2012) also consider the estimation of a dynamic spatial lag model
with the spatial-time effect,

y =(ρW ⊗ IT )y + y−1γ + (ρ∗W ⊗ IT )y−1 +X�

+ (IN ⊗ eT )	 + v
(9.2.35)

Model (9.2.35) is stable if γ + ρ + ρ∗ < 1 and spatially cointegrated if γ +
ρ + ρ∗ = 1 but γ �= 1. They develop the asymptotics of (quasi)–MLE when
both N and T are large and propose a bias correction formula.

9.3 FACTOR APPROACH

Another approach to model cross-sectional dependence is to assume that the
error follows a linear factor model,

vit =
r∑
j=1

bijfjt + uit = b′
i f t + uit , (9.3.1)

where f t = (f1t , . . . , frt )′ is a r × 1 vector of random factors with mean 0,
bi = (bi1, . . . , bir )′ is a r × 1 nonrandom factor loading coefficient (to avoid
with uit nonseparability), uit represents the effects of idiosyncratic shocks,
which is independent of f t and is independently distributed across i with
constant variance over t .

Factor models have been suggested as an effective way of synthesizing
information contained in large data sets (e.g., Bai 2003, 2009; Bai and Ng 2002).
The conventional time-specific effects model (e.g., Chapter 3) is a special case
of (9.3.1) when r = 1 and bi = b� for all i and �. An advantage of factor model
over the spatial approach is that there is no need to prespecify the strength of
correlations between units i and j .

Let vt = (v1t , . . . , vNt )′, then

vt = B f t + ut , (9.3.2)

where B = (bij ) is the N × r factor loading matrix, and ut = (u1t , . . . ,uNt )′.
Then

Evtv′
t = B(E f t f ′

t )B
′ +D (9.3.3)

whereD is anN ×N diagonal covariance matrix of ut . The covariance between
vit and v�t is given by

Evitv�t = b′
i(E f t f ′

t )b� (9.3.4)

However, B f t = BAA−1 f t for any r × r nonsingular matrix A. That is, with-
out r2 normalizations, (or prior restrictions) bi and f t are not uniquely deter-
mined. A common normalization is to assumeE f t f ′

t = Ir . Nevertheless, even
with this assumption, it only yields r(r+1)

2 restrictions on B. B is only identifi-
able up to an orthonormal transformation, that is,BCC ′B ′ = BB ′ for any r × r
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orthonormal matrix (e.g., Anderson (1985)). Additional r(r−1)
2 restrictions are

needed, say B ′B diagonal.5

For given vit and r, B and F can be estimated by minimizing

Ṽ (r) = (NT )−1
N∑
i=1

T∑
t=1

(vit − b′
i f t )

2

= (NT )−1tr[(V − FB ′)(V ′ − BF ′)],

(9.3.5)

where V = (v1, . . . , vN ) is a T ×N matrix with vi = (vi1, . . . , viT )′, F =
( f 1, . . . , f r ) is a T × r matrix with f j = (fj1, . . . , fjT )′. Taking partial
derivatives of (9.3.5) with respect to B, setting them equal to 0, and using
the normalization 1

T
F ′F = Ir , we obtain

B = 1

T
V ′F. (9.3.6)

Substituting (9.3.6) into (9.3.5), minimizing (9.3.5) is equivalent to maximizing
tr[F ′(VV ′)F ] subject to B ′B being diagonal. Therefore, the T × r common
factorF = ( f 1, . . . , f r ) is estimated as

√
T times the eigenvectors correspond-

ing to the r largest eigenvalues of the T × T matrix
∑N
i=1 viv′

i , denoted by F̂
Anderson (1985)). Given F̂ , the factor loading matrix B can be estimated as
B̂ = 1

T
V ′F̂ .

To identify r , Bai and Ng (2002) note that if limN→∞ 1
N
B ′B converges to a

nonsingular r × r constant matrix A, the largest r eigenvalues of (9.3.3) are of
order N because the r positive eigenvalues B ′B are equal to those of BB ′. In
other words, the r common factors, f t , practically drive all N × 1 errors, vt .
Therefore, when r is unknown, under the assumption that limN→∞ 1

N
B ′B = A,

Bai and Ng (2002) suggest using the criterion

min PC(k) = V̂ (k) + kg(N, T )
k

, (9.3.7)

or

min IC(k) = lnV̂ (k) + kg(N, T ),
k

, (9.3.8)

where k < min (N, T ),

V̂ (k) = min (NT )−1
N∑
i=1

T∑
t=1

(v̂it − b̂ki
′ f̂
k

t )
2,

Bk, F k
(9.3.9)

5 Even in this case uniqueness is only up to a sign change. For instance, − f t and −B also satisfy
the restrictions. However, the covariance between vit and vjt remains the same, E(vit vjt ) =
b′
ibj = b∗′

i b∗
j = b′

iCC
′bj for any r × r orthonormal matrix.
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where v̂it is the estimated vit , f̂
k

t denotes the k-dimensional estimated fac-

tor at time t, b̂
k

i denotes the estimated loading factor for the ith individ-
ual, and g(N, T ) is a penalty function satisfying (1) g(N, T ) −→ 0 and (2)
min{N, T }g(N, T ) −→ ∞ as N, T −→ ∞ to select r . The reason for using
these criteria is because V̂ (k) decreases with k and V̂ (k) − V̂ (r) converges to
a nonzero positive number for k < r and V̂ (k) − V̂ (r) −→ 0 at certain rate,
say C(N, T ). Choosing a penalty function kg(N, T ) increases with k. When
g(N, T ) diminishes to 0 at a rate slower than C(N, T ), the penalty will eventu-
ally become dominant and prevent choosing a k > r . Bai and Ng (2002) show
thatC(N, T ) = min{N, T } when uit satisfy the stationarity assumption (allow-
ing for weak serial and cross-sectional dependence). Therefore, they propose
the specific forms of g(N, T ) as σ̂ 2

u · N+T
NT
ln
(
NT
N+T

)
or σ̂ 2

u · N+T
NT
ln (min (N, T )),

etc.6 They show that when bothN and T −→ ∞, the criterion (9.3.8) or (9.3.7)
selects k̂ −→ r with probability 1. Moreover, f̂ t −→ f t if (

√
T /N ) −→ ∞.

To estimate a regression model of the form

yit = x′
it� + vit , i = 1, . . . , N,

t = 1, . . . , T ,
(9.3.10)

where vit follows (9.3.1), Bai (2009) and Pesaran (2006) suggest the least-
squares regression of the model

yit = x′
it� + b′

i f t + uit , (9.3.11)

subject to 1
T

∑T
t=1 f t f ′

t = Ir and B ′B being diagonal. Noting that conditional
on f t , the least squares estimator of � is equal to

�̂ = (
N∑
i=1

X′
iMXi)

−1(
N∑
i=1

X′
iMyi), (9.3.12)

where yi and Xi denote the stacked T time series observations of yit and
x′
it ,M = I − F (F ′F )−1F ′ where F is the T × r matrix of F = ( f ′

t ). Condi-
tional on �, the residual vit is a pure factor structure (9.3.1). The least squares
estimator of F is equal to the first r eigenvectors (multiplied by

√
T due to

the restriction F r
′
F r/T = I ) associated with the largest r eigenvalues of the

matrix (Anderson (1985)),

1

N

N∑
i=1

(yi −Xi�)(yi −Xi�)′, (9.3.13)

[
1

NT

N∑
i=1

(yi −Xi�)(yi −Xi�)′
]
F̂ = F̂�, (9.3.14)

6 When uit exhibit considerable serial correlation and the sample size is not sufficiently large, the
Bai and Ng (2002) criterion may overfit (e.g.,Greenaway-McGrevy, Han, and Sul 2012).
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where � is a diagonal matrix that consists of the r largest eigenvalues of
(9.3.13) multiplied by 1

T
. Conditional on (�̂, F̂ ), (9.3.6) leads to

B̂ ′ = T −1
[
F̂ ′(y1 −X1�̂), . . . , F̂ ′(yN −XN �̂)

]
= 1

T
V̂ ′F̂ . (9.3.15)

Iterating between (9.3.12), (9.3.14), and (9.3.15) leads to the least-squares
estimator of (9.3.11) as if f were observable.

When both N and T are large, the least-squares estimator (9.3.12) is con-
sistent and asymptotically normally distributed with covariance matrix

σ 2
u

(
N∑
i=1

X′
iMXi

)−1

(9.3.16)

if uit is independently, identically distributed with mean 0 and constant vari-
ance σ 2

u . However, if uit is heteroscedastic and cross-sectionally or serially
correlated, when T

N
→ c �= 0 as N, T → ∞,

√
NT (�̂ − �) is asymptotically

biased of the form(
T

N

) 1
2

C +
(
N

T

) 1
2

D∗, (9.3.17)

where C denotes the bias induced by heteroscadasticity and cross-sectional
correlation and D∗ denotes the bias induced by serial correlation and het-
eroscedasticity of uit . Bai (2009) has provided the formulas for constructing
the bias-corrected estimator.

To estimate a model with both additive and interactive effects,

yit = x′
it� + αi + b′

i f t + uit , (9.3.18)

in addition to the normalization conditions, F ′F = Ir and B ′B diagonal, we
also need to impose the restriction

∑N
i=1 αi = 0,

∑N
i=1 bi = 0,

∑T
t=1 f t = 0,

to obtain a unique solution of (β, αi,bi , f t ) (Bai 2009, p. 1253). Just like
the standard fixed-effects estimator (Chapter 3) we can first take individual
observations from its time series mean, ỹit = yit − ȳi , x̃it = xit − x̄i , to get
rid of αi from (9.3.18), and then iteratively estimate � and F by

�̂ =
(
N∑
i=1

X̃′
iM̃X̃i

)−1 ( N∑
i=1

X̃iM̃ ỹi

)
, (9.3.19)

where ỹi , X̃i denote the stacked T time series observations of ỹit and
x̃′
it , M̃ = I − F̂ (F̂ ′F̂ )−1F̂ ′, and F̂ is the T × r matrix consisting of the first r

eigenvectors (multiplied by
√
T ) associated with the r largest eigenvalues of

the matrix

1

NT

N∑
i=1

(ỹi − X̃i�̂)(ỹi − X̃i�̂)′. (9.3.20)
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After convergent solutions of �̂ and F̂ are obtained, one can obtain α̂i and B̂ ′

by

α̂i = ȳi − x̄′
i�̂, (9.3.21)

B̂ ′ = T −1[F̂ ′(ỹ1 − X̃1�̂), . . . , F̂ ′(ỹN − X̃N �̂)]. (9.3.22)

Ahn, Lee, and Schmidt (2001, 2013) have proposed a nonlinear GMM
method to estimate a linear panel data model with interactive effects (9.3.1).
For ease of exposition, suppose r = 1. Let θt = ft

ft−1
, then

(yit − θtyi,t−1) = x′
it� − x′

i,t−1�θt + (uit − θtui,t−1), t = 2, . . . , T .

(9.3.23)

It follows that

E[xi(uit − θtui,t−1)] = 0 (9.3.24)

LetWi = IT−1 ⊗ xi ,

� =
(T − 1) × (T − 1)

⎡⎢⎢⎢⎢⎣
θ2 0 . . . . . . 0
0 θ3 . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . 0
0 . . . . . . . . . θT

⎤⎥⎥⎥⎥⎦ ,

ũi = (ui2, . . . , uiT )′, ũi,−1 = (ui1, . . . , ui,T−1)′.

Then a GMM estimator of � and � can be obtained from the moment condi-
tions,

E[Wi(ũi − �ũi,−1)] = 0. (9.3.25)

The nonlinear GMM estimator is consistent and asymptotically normally
distributed when N → ∞ under fixed T even uit is serially correlated and
heteroscedastic. However, the computation can be very cumbersome when r >
1. For instance, if r = 2, in addition to letting θt = fit

fi,t−1
, we need to introduce

additional parameters δt = f2t − f2,t−1θt and to take the quasi-difference of
(yit − θtyi,t−1) equation one more time to eliminate the factor error.

Remark 9.3.1: The unique determination of bi and E f t f ′
t is derived under

the assumption that vit are observable. The derivation of the least-squares
regression of (9.3.11) is based on the assumption that (9.3.11) is identifiable
from (yit , x′

it ). The identification conditions for (9.3.11) remain to be explored.
Neither does it appear feasible to simultaneously estimate �, B and f t whenN
is large. On the other hand, the two-step procedure of (9.3.12)–(9.3.14) depends
on the possibility of getting initially consistent estimator of �.
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9.4 GROUP MEAN AUGMENTED (COMMON
CORRELATED EFFECTS) APPROACH TO CONTROL
THE IMPACT OF CROSS-SECTIONAL DEPENDENCE

The Frisch-Waugh FGLS approach of iteratively estimating (9.3.12) and
(9.3.14) (or (9.3.15) and (9.3.16)) may work for the factor approach only if
bothN and T are large. However, ifN is large, the implementation of FGLS is
cumbersome. Nevertheless, when N −→ ∞, ūt = 1

N

∑N
i=1 uit −→ 0, model

(9.2.2) and (9.3.2) (or (9.3.11)) imply that

b̄′ f t � ȳt − x̄′
t�, (9.4.1)

where b̄ = 1
N

∑N
i=1 bi , ȳt = 1

N

∑N
i=1 yit and x̄t = 1

N

∑N
i=1 xit . If b′

i f t =
ci b̄

′ f t , for all t or if f t can be approximated by linear combinations of ȳt
and x̄t ((9.4.1)), instead of estimating f̂ t , Pesaran (2006) suggests a simple
approach to filter out the cross-sectional dependence by augmenting (9.3.18)
by ȳt and x̄t ,

yit = x′
it� + αi + ȳt ci + x̄′

tdi + eit . (9.4.2)

The pooled estimator,

�̂
∗ =

(
N∑
i=1

wiX
′
iM

∗Xi

)−1 ( N∑
i=1

wiX
′
iM

∗yi

)
(9.4.3)

is consistent and asymptotically normally distributed when N → ∞ and

T either fixed or → ∞, where wi = σ 2
i∑N

j=1 σ
2
j

, σ 2
j = Var (ujt ),M∗ = (I −

H (H ′H )−1H ′),H = (e, ȳ, X̄) and ȳ, X̄ are T × 1 and T ×K stacked ȳt and
x̄′
t , respectively. Pesaran (2006) called (9.4.3) the common correlated effects

pooled estimator (CCEP). The limited Monte Carlo studies conducted by West-
erlund and Urbain (2012) appear to show that the Pesaran (2006) CCEP esti-
mator of � (9.4.3) is less biased than the Bai (2009) iterated least-squares
estimator (9.3.12).

Kapetanios, Pesaran, and Yamagata (2011) further show that the cross-
sectional average-based method is robust to a wide variety of data-generating
processes. For instance, for the error process generated by a multifactor error
structure (9.3.1), whether the unobservable common factors f t follow I (0) or
unit root processes, the asymptotic properties of (9.4.3) remain similar.

Remark 9.4.1: The advantage of Pesaran’s (2006) cross-sectional mean-
augmented approach to take account the cross-sectional dependence is its sim-
plicity. However, there are restrictions on its application. The method works
when b′

i f t = ci b̄′ft for all t or if f t can be considered as linear combinations of
ȳt and x̄t . It is hard to ensure b′

i f t = ci b̄′ f t if r > 1. For instance, consider the
case that r = 2,bi = (1, 1)′, b̄ = (2, 0)′, f t = (1, 1)′, then b′

i f t = b̄′ f t = 2.
However, if f s = (2, 0)′, then b′

i f s = 2 while b̄′ f s = 4. If b′
i f t = cit b̄′ f t ,

(9.4.2) does not approximate (9.3.11) and (9.4.3) is not consistent if f t is
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correlated with xit . If b′
i f t = cit b̄′

ft , additional assumptions are needed to
approximate b′

i f t . For instance, Pesaran (2006) assumes that

xit = �i f t + �it , (9.4.4)

E(�ituit ) = 0. (9.4.5)

Then

zit =
(
yit
xit

)
=
(

�′�i + b′
i

�i

)
f t +

(
�′�it + uit

�it

)
= Ci f t + eit .

(9.4.6)

It follows that

z̄t = 1

N

N∑
i=1

zit = C̄ f t + ēt , (9.4.7)

where C̄ = 1
N

∑N
i=1 Ci, ēt = (�′( 1

N

∑N
i=1 �it ) + ūt

1
N

∑N
i=1 �it

)
. If r ≤ k + 1, C̄ is of rank

r and 1
N

∑N
i=1 �it −→ 0 (or 1

N

∑N
i=1 �it −→ a constant vector) as N −→ ∞,

then

f t � (C̄ ′C̄)−1C̄ ′ z̄t . (9.4.8)

Then model (9.3.11) is formally identical to (9.4.2) when (Ci,d′
i) =

b′
i(C̄

′C̄)−1C̄ ′.
However, under (9.4.4), (9.4.5), and the additional assumption that

Cov (�i,bi) = 0, (9.4.9)

one can simply obtain a consistent estimator of � by adding time dummies to
(9.1.1). The least-squares dummy variable estimator of � is equivalent to the
within (time) estimator of (see Chapter 3, Section 3.2)

(yit − ȳt ) = (xit − x̄t )′� + (vit − v̄t ), (9.4.10)

where

vit − v̄t = (bi − b̄)′ f t + (uit − ūt ),

xit − x̄t = (�i − �̄) f t + (�it − �̄t ),

ȳt = 1

N

N∑
i=1

yit , x̄t = 1

N

N∑
i=1

xit , b̄ = 1

N

N∑
i=1

bi , �̄ = 1

N

N∑
i=1

�i,

ūt = 1

N

N∑
i=1

uit ,
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and �̄t = 1
N

∑N
i=1 �it . Under (9.4.9),

Cov (xit − x̄t , vit − v̄t )
= E {(�i − �̄)(bi − b̄)′

}
Cov ( f t ) Cov (�it , uit ) = 0. (9.4.11)

Therefore, as N → ∞, the least-squares estimator of (9.4.10),

�̂cv =
[
N∑
i=1

T∑
t=1

(xit − x̄t )(xit − x̄t )′
]−1 [ N∑

i=1

T∑
t=1

(xit − x̄t )(yit − ȳt )
]

(9.4.12)

is consistent and asymptotically normally distributed with covariance matrix

Cov (�̂cv) = σ 2
u

[
N∑
i=1

T∑
t=1

(xit − x̄t )(xit − x̄t )′
]−1

. (9.4.13)

(Coakley, Fuertes, and Smith 2006; Sarafidis and Wansbeek 2012). However,
if (9.4.9) does not hold, (9.4.12) exhibits large bias and large size distortion
(Sarafidis and Wansbeek 2012).

9.5 TEST OF CROSS-SECTIONAL INDEPENDENCE

Many of the conventional panel data estimators that ignore cross-sectional
dependence are inconsistent even whenN → ∞ if T is finite. Modeling cross-
sectional dependence is much more complicated than modeling time series
dependence. So is the estimation of panel data models in the presence of
cross-sectional dependence. Therefore, it could be prudent to first test cross-
sectional independence and only embark on estimating models with cross-
sectional dependence if the tests reject the null hypothesis of no cross-sectional
dependence.

9.5.1 Linear Model

Consider a linear model,

yit = x′
it� + vit , i = 1, . . . , N,

t = 1, . . . , T .
(9.5.1)

The spatial approach assumes a known correlation pattern among cross-
sectional units, W . Under the null of cross-sectional independence, θ = 0
for any W . Therefore, a test for spatial effects is a test of the null hypothesis
H0 : θ = 0 (or δ = 0). Burridge (1980) derives the Lagrange multiplier test
statistic for model (9.2.2) or (9.2.3),

τ = [v̂′(W ⊗ IT )v̂/(v̂′v̂/NT )]2

tr[(W 2 ⊗ IT ) + (W ′W ⊗ IT )]
(9.5.2)

which is χ2 distributed with one degree of freedom, where v̂ = y −X�.
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For error component spatial autoregressive model (9.2.19), Anselin (1988)
derived the Lagrangian multiplier (LM) test statistic for H0 : θ = 0,

τ ∗ =
[

1
σ 2
u

v̂∗′
(W ⊗ IT + k̂(T k̂ − 2)eT e′

T )v̂∗
]

P
, (9.5.3)

which is asymptotically χ2 distributed with one degree of freedom,

where v∗ = y −X�̃, �̃ =
(∑N

i=1X
′
iV

∗−1Xi

)−1 (∑N
i=1X

′
iV

∗−1 yi
)
, the usual

error component estimator, k̂ = σ̂ 2
α

[
σ̂ 2
u

(
1 + T σ̂ 2

α

σ̂ 2
u

)]−1
, and P = (T 2k̂2 − 2k̂ +

T )(trW 2 + trW ′W ). Baltagi et al. (2007) consider various combination of
error components and the spatial parameter test. Kelejian and Prucha (2001),
and Pinkse (2000) have suggested tests of cross-sectional dependence based
on the spatial correlation analogue of the Durbin–Watson/Box-Pierce tests for
time series correlations.

Breusch and Pagan (1980) derived an LM test statistic for cross-sectional
dependence:

LM = T
N−1∑
i=1

N∑
j=i+1

ρ̂2
ij , (9.5.4)

where ρ̂ij is the estimated sample cross-correlation coefficient between
the least-squares residuals v̂it and v̂j t , where v̂it = yit − x′

it �̂i , and �̂i =
(X′
iXi)

−1Xi yi . When N is fixed and T → ∞, (9.5.4) converges to a χ2 dis-
tribution with N(N−1)

2 degrees of freedom under the null of no cross-sectional
dependence. WhenN is large, the scaled Lagrangian multiplier statistic (SLM),

SLM =
√

2

N (N − 1)
LM (9.5.5)

is asymptotically normally distributed with mean 0 and variance 1.
Many panel data sets have N much larger than T . Because E(T ρ̂2

ij ) �= 0 for
all T , SLM is not properly centered. In other words, when N > T , the SLM
tends to overeject, often substantially.

To correct for the bias in large N and finite T panels, Pesaran et al. (2008)
propose a bias-adjusted LM test,

LMB =
√

2

N (N − 1)

N−1∑
i=1

N∑
j=i+1

(T − k)ρ̂2
ij − μij

wij
, (9.5.6)

where μij = E[(T − k)ρ̂2
ij ], w

2
ij = Var [(T − k)ρ̂2

ij ], and k is the dimension of
xit . They show that (9.5.6) is asymptotically normally distributed with mean 0
and variance 1 for all T > k + 8. The exact expressions for μij and w2

ij when
xit is strictly exogenous and vit are normally distributed are given by Pesaran
et al. (2008).
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Because the adjustment of the finite sample bias of the LM test is compli-
cated, Pesaran (2004) suggests a CD test statistic for cross-sectional depen-
dence:

CD =
√

2T

N (N − 1)

⎛⎝N−1∑
i=1

N∑
j=i+1

ρ̂ij

⎞⎠ . (9.5.7)

When both N and T → ∞, the CD test converges to a normal distribution
with mean 0 and variance 1 under the null of cross-sectional independence
conditional on x. The CD test can also be applied to the linear dynamic model:

yit = γyi,t−1 + x′
it� + αi + uit . (9.5.8)

The Monte Carlo simulations conducted in Pesaran (2004) shows that the
estimated size is very close to the nominal level for any combinations of N
and T considered. However, the CD test has power only if 1

N

∑N
i=1 ρij �= 0. On

the other hand, the LM test has power even if the average of the correlation
coefficient is equal to 0 as long as some pairs, ρ̂ij �= 0.

As an alternative, Sarafidis, Yamagata, and Robertson (SYR) (2009) pro-
posed a Sargan’s (1958) difference test based on the GMM estimator of (9.5.8).
As shown in Chapter 4, �′ = (γ,�′) can be estimated by the GMM method
(4.3.47). SYR suggest to splitWi into two separate sets of instruments,

W ′
1i =

⎡⎢⎢⎢⎢⎣
yi0 0 0 0 · · · · · ·
0 yi0 yi1 0 · · · · · ·
0 0 0 yi0 · · · · · ·
· · · · · · · · · ·
· · · · · · yi0 · · yi,T−2

⎤⎥⎥⎥⎥⎦ , (9.5.9)

and

W ′
2i =

⎡⎢⎢⎢⎢⎣
x′
i 0′ 0′ · ·

0′ x′
i 0′ ··

· · · · ·
· · · · ·
· · · · x′

i

⎤⎥⎥⎥⎥⎦ , (9.5.10)

where x′
i = (x′

i1, . . . , x′
iT ),W ′

1i is (T − 1) × T (T − 1)/2, W ′
2i is (T − 1) ×

KT (T − 1) and xit is strictly exogenous.7

Under the null of no cross-sectional dependence, both sets of moment con-
ditions

E[W1i
ui] = 0, (9.5.11)

7 If xit is predetermined rather than strictly exogenous, a correspondingW2 can be constructed as

W2 =

⎡⎢⎢⎣
x′

1, 0′ 0′ · · · · ·
0 x′

1 x′
2 0′ · · · ·

· · · · · · · ·
· · · · · x′

1 · x′
T−1

⎤⎥⎥⎦
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and

E[W2i
ui] = 0, (9.5.12)

hold. However, if there exists cross-sectional dependence, (9.5.11) may not
hold. For instance, suppose uit can be decomposed into the sum of two com-
ponents, the impact of r time-varying common omitted factors and an idiosyn-
cratic component, εit ,

uit = b′
i f t + εit . (9.5.13)

For simplicity, we assume εit is independently distributed over i and t . Then
the first difference of uit ,


uit = b′
i
 f t +
εit , (9.5.14)

and

yit = 1 − γ t
1 − γ αi + γ

tyi0 +
t−1∑
j=0

γ j x′
i,t−j�

+ b′
i

t−1∑
j=0

γ j f t−j +
t−1∑
j=0

γ j εi,t−j .

(9.5.15)

Under the assumption that f t are nonstochastic and bounded but bi are ran-
dom with mean 0 and covariance Ebib′

i =∑b, E(yi,t−j
uit ) is not equal
to 0, for j = 2, . . . , t . Therefore, SYR suggest estimating γ and � by
(4.3.45) first using both (9.5.11) and (9.5.12) moment conditions, denoted by
(γ̂ , �̂

′
), construct estimated residuals
ui by
ûi = 
yi −
yi,−1γ̂ −
Xi�̂,

where 
yi = (
yi2, . . . ,
yiT )′,
yi,−1 = (
yi1, . . . , 
yi,T−1)′ and 
Xi =
(
xi1, . . . ,
xiT )′. Then estimate (γ,�′) using moment conditions (9.5.12)
only,

(
�̃
�̃

)
=
{[

N∑
i=1

(

y′

i,−1

X′

i

)
W2i

]
�̂−1

[
N∑
i=1

W ′
2i(
yi,−1,
Xi)

]}−1

·
{[

N∑
i=1

(

y′

i,−1

X′

i

)
W2i

]
�̂−1

[
N∑
i=1

W ′
2i
yi

]}
,

(9.5.16)

where �̂−1 = N−1∑N
i=1W

′
2i
ûi
û′

iW2i . Under the null of cross-sectional

independence both estimators are consistent. Under the alternative, (γ̂ , �̂
′
) may

not be consistent but (9.5.16) remains consistent. Therefore, SYR, following
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the idea of Sargan (1958) and Hansen (1982), suggest using the test statistic

N−1

(
N∑
i=1


û′
iWi

)
�̂−1

(
N∑
i=1

W ′
i
ûi

)

−N−1

(
N∑
i=1


ũ′
iW2i

)
�̃−1

(
N∑
i=1

W ′
2i
ũi

) (9.5.17)

where
ũi = 
yi −
yi,−1γ̃ −
Xi�̃, �̂ = 1
N

∑N
i=1W

′
i
ûi
û′

iWi and �̃ =
1
N

∑N
i=1W

′
2i
ũi
ũ′

iW2i . SYR show that under the null of cross-sectional inde-
pendence, (9.5.17) converges to a χ2 distribution with T (T−1)

2 (1 +K) degrees
of freedom as N → ∞.

The advantage of the SYR test is that the test statistic (9.5.17) has power
even if

∑N
j=1 ρij = 0. Monte Carlo studies conducted by SYR show that the test

statistic (9.5.17) performs well if the cross-sectional dependence is driven by
nonstochastic f t but stochastic bi . However, if the cross-sectional dependence
is driven by fixed bi and stochastic f t , then the test statistic is unlikely to
have power becauseE(
yi,t−j
ui) = 0 if f t is independently distributed over
time.8

9.5.2 Limited Dependent-Variable Model

Many limited dependent-variable models take the form of relating observed yit
to a latent y∗

it , (e.g., Chapters 7 and 8),

y∗
it = x′

it� + vit , (9.5.18)

through a link function g(·)
yit = g(y∗

it ). (9.5.19)

For example, in the binary choice model,

g(y∗
it ) = I (y∗

it > 0), (9.5.20)

and in the Tobit model,

g(y∗
it ) = y∗

it I (y∗
it > 0), (9.5.21)

where I(A) is an indicator function that takes the value 1 if A occurs and 0
otherwise.

There is a fundamental difference between the linear model and limited
dependent-variable model. There is a one-to-one correspondence between vit

8 E(
yi,t−j
uit ) is not equal to 0 if f t is serially correlated. However, if f t is serially correlated,
then uit is serially correlated and yi,t−j is not a legitimate instrument if the order of serially
correlation is greater than j . Laggerd y can be legitimate instruments only if E(
uit yi,t−s ) = 0.
Then the GMM estimator of (4.3.47) will have to be modified accordingly.
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and yit in the linear model, but not in limited dependent variable model. The
likelihood for observing yt = (yit , . . . , yNt )′,

Pt =
∫
A(vt |yt )

f (vt )dvt , (9.5.22)

whereA(vt | yt ) denotes the region of integration of vt = (vit , . . . , vNt )′ which
is determined by the realized yt and the form of the link function. For instance,
in the case of probit model, A(vt | yt ) denotes the region (ait < vit < bit ),
where ait = −x′

it�, bit = ∞ if yit = 1 and ait = −∞, bit = −x′
it� if yit = 0.

Under the assumption that vit is independently normally distributed across
i, Hsiao, Pesaran, and Picks (2012) show that the Lagrangian multiplier test
statistic of cross-sectional independence takes an analogous form:

LM = T
N−1∑
i=1

N∑
j=i+1

ρ̃2
ij , (9.5.23)

where

ρ̃ij =
T −1

T∑
t=1
ṽit ṽj t√

T −1
T∑
t=1
ṽ2
it

√
T −1

T∑
t=1
ṽ2
j t

, (9.5.24)

and ṽit = E(vit | yit ), the conditional mean of vit given yit . For instance, in the
case of probit model,

ṽit = φ(x′
it�)

�(x′
it�)[1 −�(x′

it�)]
[yit −�(x′

it�)]. (9.5.25)

In the case of the Tobit model

ṽit = (yit − x′
it�)I (yit > 0) − σi

φ( x′
it�
σi

)

�(− x′
it�
σi

)
[1 − I (yit > 0)], (9.5.26)

where σ 2
i = Var (vit ), φ(·) and �(·) denote standard normal and integrated

standard normal. Under the null of cross-sectional independence, (9.5.23) con-
verges to a χ2 distribution with N(N−1)

2 degrees of freedom if N is fixed and
T → ∞. When N is also large√

2

N (N − 1)
LM (9.5.27)

is asymptotically standard normally distributed.
When N is large and T is finite, the LM test statistically is not centered

properly. However, for the nonlinear model, the bias correction factor is not
easily derivable. Hsiao et al. (2012) suggest constructing Pesaran (2006) CD
statistic using ṽit .
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Sometimes, the deviation of ṽit is not straightforward for a nonlinear model.
Hsiao et al. (2012) suggest replacing ṽit by

v∗
it = yit − E(yit | xit ) (9.5.28)

in the construction of an LM or CD test statistic. Monte Carlo experiments
conducted by Hsiao et al. (2012) show that there is very little difference between
the two procedures to construct CD tests.

9.5.3 An Example – A Housing Price Model of China

Mao and Shen (2013) consider China’s housing price model using 30
provincial-level quarterly data from the second quarter of 2001 to the fourth
quarter of 2012 of the logarithm of seasonally adjusted real house price, yit , as
a linear function of the logarithm of seasonally adjusted real per capita wage
income (x1it ); the logarithm of real long-term interest rate (x2it ); and the loga-
rithm of the urban population (x3it ). Table 9.1 provides Mao and Shen (2013)
estimates of the mean group estimator �̂ = 1

N

∑N
i=1 �̂i for the cross sectionally

independent heterogeneous model (MG),

yit = x′
it�i + vit ; (9.5.29)

the Pesaran (2006) common correlated effects heterogeneous model (CCEMG),

yit = x′
it�i + ȳt ci + x̄′

tdi + vit ; (9.5.30)

and the homogeneous common correlated effects model (CCEP),

yit = x′
it� + ȳt τi + x̄′

tdi + vit . (9.5.31)

It can be seen from the results in Table 9.1 that (1) the estimated slope
coefficients, �, are very sensitive to the adjustment (CCEMG or CCEP) or
nonadjustment of cross-sectional dependence, and (2) the suggested approach
to control the impact of cross-sectional dependence works only if the observed
data satisfy the assumptions underlying the approach. (See Remark 9.4.1 for the
limitation of augmenting regression models by the cross-sectional mean.) As
one can see from Table 9.1, the Pesaran (2004) CD tests (9.5.7) of the residuals
of the (9.5.30) and (9.5.31) indicate that significant cross-sectional dependence
remains. It is only by further adjusting the common correlated effects model
residuals by a spatial model with the spatial weight matrix specified in terms of
the geometric distance between region i and j that Mao and Shen (2013) can
achieve cross-sectional independence to their model.



Table 9.1. Common correlated effects estimation

MG CCEMG CCEP

x1 1.088‡ 1.089‡ 0.979‡ 0.264 0.313† 0.308+ 0.388† 0.467‡ 0.449‡
(0.058) (0.056) (0.114) (0.176) (0.173) (0.170) (0.169) (0.165) (0.170)

x2 – −0.003 −0.052 – −6.453 4.399 – −4.796 4.387
– (0.058) (0.057) – (2.927) (2.839) – (3.943) (3.401)

x3 – – 0.718 – – −0.098 – – 0.104
– – (0.484) – – (0.552) – – (0.130)

CD 28.15‡ 30.39‡ 27.64‡ −4.257‡ −.4173‡ −4.073‡ −4.521‡ −4.494‡ −4.518‡

Symbols +, †, and ‡ denote that the corresponding stastics are significant at 10%, 5%, and 1% level respectively. The values in parentheses are
corresponding standard errors.
Source: Mao and Shen (2013, Table V).
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9.6 A PANEL DATA APPROACH FOR PROGRAM
EVALUATION

9.6.1 Introduction

Individuals are often given “treatments,” such as a drug trial, a training pro-
gram, and so forth. If it is possible to simultaneously observe the same person
in the treated and untreated states, then it is fairly straightforward to isolate
the treatment effects in question. When it is not possible to simultaneously
observe the same person in the treated and untreated states or the assignment of
individuals to treatment is nonrandom, treatment effects could confound with
the factors that would make people different on outcome measures or with the
sample selection effects or both.

In this section we first review some basic approaches for measuring treatment
effects with cross-sectional data, and then we show how the availability of panel
data can substantially simplify the inferential procedure.

9.6.2 Definition of Treatment Effects

For individual i, let (y0∗
i , y

1∗
i ) be the potential outcomes in the untreated and

treated state. Suppose the outcomes can be decomposed as the sum of the
effects of observables, x, mj (x), and unobservables, εj ; j = 0, 1, in the form,

y0∗
i = m0(xi) + ε0

i , (9.6.1)

y1∗
i = m1(xi) + ε1

i , (9.6.2)

where ε0
i and ε1

i are the 0 mean unobserved random variables, assumed to be
independent of xi . The treatment effect for individual i is defined as


i = y1∗
i − y0∗

i . (9.6.3)

The average treatment effect (ATE) (or the mean impact of treatment if
people were randomly assigned to the treatment)9 is defined as


ATE = E[y1∗
i − y0∗

i ] = E {[m1(x) −m0(x)] + (ε1 − ε0)
}

= E[m1(x) −m0(x)].
(9.6.4)

Let di be the dummy variable indicating an individual’s treatment status with
di = 1 if the ith individual receives the treatment and 0 otherwise. The effect
of treatment on the treated (TT) (or the mean impact of treatment of those who
received treatment compared to what they would have been in the absence of

9 See Heckman (1997), Heckman and Vytacil (2001), and Imbens and Angrist (1994) for the
definitions of the marginal treat effect (MTE) and the local average treatment effect (LATE).
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treatment) is defined as


TT = E(y1∗ − y0∗ | d = 1)

= E[m1(x) −m0(x) | d = 1] + E[ε1 − ε0 | d = 1].
(9.6.5)

Similarly, we can define the effect of treatment on untreated group as


TUT = E(y1∗ − y0∗ | d = 0)

= E[m1(x) −m0(x) | d = 0] + E[ε1 − ε0 | d = 0].
(9.6.6)

The ATE is of interest if one is interested in the effect of treatment for a
randomly assigned individual or population mean response to treatment. The
TT is of interest if the same selection rule for treatment continues in the future.
The relation between ATE and TT is given by


ATE = Prob (d = 1)
TT + Prob (d = 0)
TUT. (9.6.7)

If E[m1(x) −m0(x) | d = 1] = E[m1(x) −m0(x) | d = 0] = E[m1(x) −
m0(x)] and E[ε1 − ε0 | d = 1] = E[ε1 − ε0 | d = 0] = E[ε1 − ε0], then

ATE = 
TT = 
TUT.

If we simultaneously observe y0∗
i and y1∗

i for a given i, then ATE and TT
can be easily measured. However, for a given i, the observed outcome, yi is
either y0∗

i or y1∗
i , not both,

yi = diy1∗
i + (1 − di)y0∗

i . (9.6.8)

If we measure the treatment effect by comparing the mean difference
between those receiving the treatment (the treatment group) and those not
receiving the treatment (control group), 1

nd

∑
i∈ψ yi and 1

N−nd
∑
iεψ̄ yi , where

ψ = {i | di = 1}, ψ̄i = {i | di = 0} and nd =∑N
i=1 di ,

1

nd

∑
i∈ψ
yi − 1

N − nd
∑
iεψ̄

yi −→ E(y | d = 1) − E(y | d = 0)

= {E[m1(x) −m0(x) | d = 1]} + {E[m0(x) | d = 1]−
E[m0(x) | d = 0]} + {E(ε1 | d = 1) − E(ε0 | d = 0)}.

(9.6.9)

The average difference between the treatment group and control group
((9.6.9)) is the sum of three components, the treatment effect of the
treated, 
TT, E[m1(x) −m0(x) | d = 1], the effects of confounding variables
being different between the treatment group and control group, E[m0(x) |
d = 1] − E[m0(x) | d = 0], and the participation (or selection effects,
E(ε1 | d = 1) − E(ε0 | d = 0)). If participation of treatment is random, then
E(ε1 | d = 1) = E(ε1) = E(ε0 | d = 0) = E(ε0) = 0. If f (x | d = 1) =
f (x | d = 0) = f (x), then E[m1(x) −m0(x) | d = 1] = E[m1(x) −m0(x)]
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and E[m0(x) | d = 1] − E[m0(x) | d = 0] = 0, (9.6.9) provides an unbiased
measure of 
ATE(≡ 
TT ).10

In an observational study, the treatment group and control group are often
drawn from different populations (e.g., LaLonde 1986; Dehejia and Wahba
1999). For instance, the treatment group can be drawn from welfare recipients
eligible for a program of interest while the control group can be drawn from a
different population. If there are systematic differences between the treatment
group and comparison group in observed and unobserved characteristics that
affect outcomes, estimates of treatment effects based on the comparison of the
difference between 1

nd

∑
iεψ yi − 1

N−nd
∑
iεψ̄ yi are distorted. The distortion

can come from either one or both of the following two sources:
(1) Selection bias due to observables, E{m0(x) | d = 1} �= E{m0(x) | d =

0} (or E{m1(x) | d = 1} �= E{m1(x) | d = 0}), that is, bias due to differences
in observed (conditional) variables between the two groups.

(2) Selection bias due to unobservables, that is, bias due to differences in
unobserved characteristics between the two groups, E(ε0 | d = 1) �= E(ε0 |
d = 0), (and E(ε1 | d = 1) �= E(ε1 | d = 0)).

A variety of matching and statistical-adjustment procedures have been pro-
posed to take account of discrepancies in observed and unobserved character-
istics between treatment and control group members (e.g., Heckman and Robb
1985; Heckman, Ichimura, and Todd 1998; LaLonde 1986; Rosenbaum and
Rubin 1983). We shall first review methods for the analysis of cross-sectional
data, and then discuss the panel data approach.

9.6.3 Cross-Sectional Adjustment Methods

9.6.3.1 Parametric Approach

Suppose y1∗
i and y0∗

i ((9.6.1) and (9.6.2)) can be specified parametrically. In
addition, if the participation of treatment is assumed to be a function of

d∗
i = h(zi) + vi, (9.6.10)

where

di =
{

1, if d∗
i > 0,

0, if d∗
i ≤ 0,

(9.6.11)

and z denote the factors determining the selection equation that may overlap
with some or all elements of x. With a known joint distribution of f (ε1, ε0, v),
the mean response functionsm1(x),m0(x) can be consistently estimated by the
maximum-likelihood method and

AT̂E(x) = m̂1(x) − m̂0(x) (9.6.12)

(e.g., Damrongplasit, Hsiao, and Zhao 2010).

10 Similarly, we can write E(y | d = 1) − E(y | d = 0) = 
TUT + {E(m1(x) | d = 1) −
E(m1(x) | d = 0} + {E(ε1 | d = 1) − E(ε1 | d = 0)}.
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9.6.3.2 Nonparametric Approach

If m1(x) and m0(x) are unspecified, they can be estimated by nonparametric
methods provided that conditional on a set of confounding variables, say x, the
distributions of (y1∗, y0∗) are independent of d (or d∗). In other words, condi-
tional on x, there is no selection on unobservables (conditional independence),

E(y1∗ | d, x) = E(y1∗ | x), (9.6.13)

E(y0∗ | d, x) = E(y0∗ | x). (9.6.14)

Then conditional on x, the average treat effect, ATE(x),

ATE(x) = E(y1∗ − y0∗ | x)

= E(y | d = 1, x) − E(y | d = 0, x)

= E(y1∗ | x) − E(y0∗ | x)

(9.6.15)

9.6.3.2 (i) Matching Observables in Terms of Propensity Score Method
(or Selection on Observables Adjustment)

However, if the dimension of x is large, the nonparametric method may suf-
fer from “the curse of dimensionality.” As a dimension reduction method,
Rosenbaum and Rubin (1983) have suggested a propensity score method
to match the observable characteristics of the treatment group and the con-
trol group. The Rosenbaum and Rubin (1983) propensity score method-
ology supposes unit i has observable characteristics xi . Let P (xi) be the
probability of unit i having been assigned to treatment, called the propen-
sity score in statistics and choice probability in econometrics, defined as
P (xi) = Prob (di = 1 | xi) = E(di | xi). Assume that 0 < P (xi) < 1 for all
xi ,11 and Prob (d1, . . . , dN | x1, . . . , xN ) =∏N

i=1 P (xi)di [1 − P (xi)]1−di , for
i = 1, . . . , N . If the treatment assignment is ignorable given x, then it is ignor-
able given P (x); that is,

{(y1∗
i , y

0∗
i ) ⊥ di | xi} =⇒ {(y1∗

i , y
0∗
i ) ⊥ di | P (xi)}, (9.6.16)

where ⊥ denotes orthogonality.
To show (9.6.16) holds, it is sufficient to show that

Prob (d = 1 | y0∗, y1∗, P (x))

= Prob (d = 1 | P (x))

= P (x) = Prob (d = 1 | x) = Prob (d = 1 | y0∗, y1∗, x)

(9.6.17)

11 The assumption that 0 < P (xi ) < 1 guarantees that for each xi , we obtain observations in both
the treated and untreated states. This assumption can be relaxed as long as there are x such that
0 < P (x) < 1.
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Eq. (9.6.17) follows from applying the ignorable treatment assignment
assumption to

Prob (d = 1 | y0∗, y1∗, P (x))

= Ex
{
Prob (d = 1 | y∗

0 , y
∗
1 , x) | y0∗, y1∗, P (x)

}
= Ex

{
Prob (d = 1 | x) | y0∗, y1∗, P (x)

}
= Ex

{
P (x) | y0∗, y1∗, P (x)

}
= Ex {P (x) | P (x)} = P (x),

(9.6.18)

where Ex denotes taking the expectation with respect to x.
It follows from (9.6.16) that

xi ⊥ di | P (xi). (9.6.19)

To prove (9.6.19), it is sufficient to show that

Prob (d = 1 | x, P (x)) = Prob (d = 1 | P (x)). (9.6.20)

Equation (9.6.20) follows from Prob(d = 1 | x, P (x)) = Prob (d = 1 |
x) = P (x) and

Prob (d = 1 | P (x)) = Ex {Prob (d = 1 | x, P (x)) | P (x)}
= Ex {P (x) | P (x)} = P (x).

Equation (9.6.19) implies that the conditional density of x given d andP (x),

f (x | d = 1, P (x)) = f (x | d = 0, P (x)) = f (x | P (x)). (9.6.21)

In other words, Equation (9.6.19) implies that if a subclass of units or a matched
treatment–control pair is homogeneous in P (x), then the treated and control
units in that subclass or matched pair will have the same distribution of x. In
other words, at any value of a propensity score, the mean difference between
the treatment group and control group is an unbiased estimate of the average
treatment effect at that value of the propensity score if treatment assignment is
ignorable.


(P (x))TT = E{E(y | d = 1, P (x)) − E(y | d = 0, P (x)) | d = 1},
(9.6.22)

where the outer expectation is over the distribution of {P (x) | d = 1}.
The attraction of propensity score matching method is that in (9.6.15) we

condition on x (intuitively, to find observations with similar covariates), while
in (9.6.22) we condition just on the propensity score because (9.6.22) implies
that observations with the same propensity score have the same distribution of
the full vector of covariates, x. Equation (9.6.19) asserts that conditional on
P (x), the distribution of covariates should be the same across the treatment
and comparison groups. In other words, conditional on the propensity score,
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each individual has the same probability of assignment to treatment as in a
randomized experiment. Therefore, the estimation of average treatment effect
for the treated12 can be done in two steps. The first step involves the estimation
of propensity score parametrically or nonparametrically (e.g., see Chapter 7).
In the second step, given the estimated propensity score, one can estimateE{y |
P (x), d = j} for j = 0, 1, take the difference between the treatment and control
groups, then weight these by the frequency of treated observations or frequency
of (both treated and untreated) observations in each stratum to get an estimate
of TT or ATE (E{E[y | d = 1, P (x)] − E[y | d = 0, P (x)]} = E{E[y1 − y0 |
P (x)]}), where the outer expectation is with respect to the propensity score,
P (x). For examples of using this methodology to evaluate the effects of training
programs in nonexperimental studies, see Dehejia and Wahba (1999), and
LaLonde (1986), Liu, Hsiao, Matsumoto, and Chou (2009), etc.

9.6.3.2 (ii) Regression Discontinuity Design

Let xi = (wi,q′
i) be k covariates, where wi is a scalar and qi is a (k − 1) × 1

vector. Both wi and qi are not affected by the treatment. The basic idea behind
the regression discontinuity (RD) design is that assignment to the treatment is
determined, either completely or partly, by the value of a predictor wi being
on either side of a fixed threshold. This predictor, wi , (together with qi), also
affects the potential outcomes.

For notational ease, we shall assume qi = 0 for this subsection. In the sharp
RD (SRD) designs, it is assumed that all units with the values of w at least
c are assigned to the treatment group and participation is mandatory for these
individuals, and with values of w less than c are assigned to the control groups
and members of these group are not eligible for the treatment, then

ATE(c) = limw↓cE(y | w) − limw↑cE(y | w),

= E(y1 − y0 | w = c)
(9.6.23)

(This approach although assumes unconfoundedness of Rosenbaum and Rubin
(1983), however, it violates 0 < P (d = 1 | x) < 1).

This approach assumes either
(1) E(y0 | w) and E(y1 | w) are continuous in w or (2) Fy0|w(y | w) and

Fy1|w(y | w) are continuous in w for all y.
In the fuzzy RD (FRD), we allow

limw↓c Prob(d = 1 | w) �= limw↑c Prob(d = 1 | w), (9.6.24)

then

ATE(c) = limw↓cE(y | w) − limw↑cE(y | w)

limw↓cP (d = 1 | w) − limw↑cP (d = 1 | w)
. (9.6.25)

12 The measurement is of interest if future selection criteria for treatment are like past selection
criteria.
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Let

limw↓c Prob(d = 1 | w) − limw↑c Prob (d = 1 | w) = �. (9.6.26)

P = limw↑c Prob (d = 1 | w)

Then

limw↓c E(y | w) − limw↑cE(y | w)

= {(P + �)Ey1 − (1 − P − �)Ey0
}− [PEy1 + (1 − p)Ey0] (9.6.27)

= �E[y1 − y0]

Both the SRD and FRD designs provide only estimates of the ATE for a
subpopulation with wi = c. The designs do not allow the estimation of the
overall ATE.

Let ψ = {i | wi < c} and ψ̄ = {i | wi ≥ c}, then for the SRD, we may
estimate the ATE(c) by the kernel method,

ÂTE(c) =

∑
i∈ψ̄
yiK(wi−c

h
) − ∑

i∈ψ
yiK(wi−c

h
)∑

i∈ψ̄
K(wi−c

h
) − ∑

i∈ψ
K(wi−c

h
).
, (9.6.28)

where K(·) is a kernel function satisfying K(0) �= 0,K(v) → 0 as v → ±∞.
Or use the Fan and Gijbels (1992) local linear regression approach,

minα0,β0

∑
i:c−h<xi<c

(yi − α0 − β0(wi − c))2 (9.6.29)

and

minα1,β1

∑
i:c≤xi<c+h

(yi − α1 − β1(wi − c))2 (9.6.30)

Since E(y1 | w = c) = α̂1 + β1(c − c) = α̂1 and E(y0 | w = c) = α̂0 +
β̂0(c − c) = α̂0, therefore

ÂTE(c) = α̂1 − α̂0. (9.6.31)

For FRD,

ÂTE(c) = α̂1 − α̂0

γ̂1 − γ̂0
, (9.6.32)
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where (γ̂1, δ̂1) is the solution of

min
∑

i:c≤xi<c+h
(di − γ1 − δ1(wi − c))2 (9.6.33)

and (γ̂0, δ̂0) is the solution of

min
∑

i:c−h≤xi<c
(di − γ0 + δ0(wi − c))2. (9.6.34)

(For a survey of RD, see Imbens, and Lemieux 2008.)

9.6.3.3 Summary of Cross-Sectional Approaches

The advantages of the parametric approach are that it can simultaneously take
account of both selection on observables and selection on unobservables. It
can also estimate the impact of each explanatory variable. The disadvantage
is that it needs to impose both functional form and distributional assumptions.
If the prior information is inaccurate, the resulting inferences are misleading.
The advantages of the nonparametric approach are that there is no need to
impose any assumption on the conditional mean functions or the effects of
unobservables. The disadvantages are that some sort of conditional indepen-
dence assumption have to hold conditional on some confounding variables.
Hence it only takes into account the issues of selection on observables; nei-
ther is it feasible to estimate the impact of each observable factor. In other
words, the advantages of the parametric approaches are the disadvantages of
nonparametric approach. The disadvantages of the parametric approach are the
advantages of the nonparametric approach.

9.6.4 Panel Data Approach

Panel data contains information over time for a number of individuals. Some of
the observed individuals could be receiving treatment for part of the observed
periods and no treatment for the rest of the observed periods. Some could be
receiving treatment and some no treatment for the whole sample periods. The
information on interindividual differences and intraindividual dynamics could
lessen the restrictions imposed on the adjustment approaches using cross-
sectional data alone.

9.6.4.1 Parametric Approach

One of the common assumptions using cross-sectional data is to assume that
the observable factors, x, are orthogonal to the impact of unobservable factors,
ε0 and ε1 (e.g., (9.6.1) and (9.6.2)), even if it allows the joint dependence
of (ε1, ε0, d). However, the impact of unobservable factors could be corre-
lated with observable factors, x. Panel data allow us to control the correlation
between (ε0, ε1) and x, in addition to the correlation between (ε0, ε1) and d. For
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instance, suppose that the outcome equations and participation equation are of
the form

y1∗
it = x′

it�1 + ε1
it , (9.6.35)

y0∗
it = x′

it�0 + ε0
it , (9.6.36)

dit = 1(x′
it γ + vit > 0), (9.6.37)

where

ε
j
it = αji + ujit , j = 0, 1, (9.6.38)

and ujit is i.i.d. with mean 0 and constant variance. If the correlations between
ε
j
it and dit are not confined to the individual specific components, αji with dit ,

but also the individual time-varying component ujit so E(ujit vit ) �= 0, the panel
data fixed-effects sample selection estimators of Kyriazidou (1997), Honoré
(1992), etc. (as summarized in Chapter 8.4) can be used to control the impact
of unobserved heterogeneity, α1

i , α
0
i , and estimate the treatment effects (e.g.,

Hsiao, Shen, Wang, and Weeks (2007, 2008)).13

9.6.4.2 Nonparametric Approach

9.6.4.2 (i) Difference-in-Difference Method

As discussed in Section 9.6.3, one of the critical assumption using the nonpara-
metric approach is to assume conditional independence between the outcomes
(y1, y0) and participation, d, conditional on x. To avoid the issue of the curse
of dimensionality, Rosenbaum and Rubin (1983) propose a propensity score
matching method. However, the propensity score matching adjustment to con-
trol the bias induced by selection on observables depends critically on the
correct specification of the propensity score, Prob (di = 1 | xi). With panel
data, one can avoid the specification of the propensity score, Prob (di = 1 | xi)
if under the assumption that there is no selection bias and the impacts due
to changes in x over time are the same between the treatment group (those
who received the treatment) and the control group (those who did not receive
the treatment) through a difference-in-difference method (Imbens and Angrist
1994).

Assume a panel begins with all the individuals in the control group (i.e., no
treatment). At some time during the sample span, some individuals received
treatment at time t and no treatment at time s, and some individuals neither
received treatment at time t , nor at time s. Let ψ = {i | dit = 1, dis = 0}, and
� = {i | dit = 0, dis = 0}. Then the difference-in-difference estimate of the

13 See Heckman and Hotz (1989) for other types of model specification tests.
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ATE is

ÂTE = [E(yit | i ∈ ψ) − E(yis | i ∈ ψ)]

− [E(yit | i ∈ �) − E(yis | i ∈ �)].
(9.6.39)

For instance, the Northern Territory in Australia considered marijuana use a
criminal act in 1995, but decriminalized it in 1996.14 The Australian National
Drug Strategy Household Surveys provide information about marijuana smok-
ing behavior for residents of New Territories, New South Wales, Queensland
Victoria, and Tasmania in 1995 and 2001; in all of them except New Territories
(NT) it was nondecriminalized over this period. The percentage of smokers in
NT in 1995 was 0.2342 and in 2001 it was 0.2845. The percentages of res-
idents in nondecriminalized states in 1995 were 0.1423 and 0.1619 in 2001.
The difference-in-difference estimate of the impact of decriminalization on
marijuana usage is to raise the probability of smoking by

{(0.2845 − 0.2342) − (0.1619 − 0.1423)}
= 0.0503 − 0.0196 = 0.0307.

(9.6.40)

9.6.4.2 (ii) Predicting Counterfactuals Using Control Group Information

The difference-in-difference method will provide a valid measurement of treat-
ment effects under fairly restrictive assumptions. Namely, (1) there is no selec-
tion effect E(ε0

i | di) = E(ε0
i ) = E(ε1

i ) = E(ε1
i | di) = 0; (2) the marginal

impacts of x are the same for those receiving treatment and not receiving treat-
ment, ∂E(y1∗|x)

∂x = ∂E(y0∗|x)
∂x ; and (3) changes in x for those in the treatment group

and control group are the same, E{(xjt − xjs) | dj = 1)} = E{(xit − xis) |
di = 0}. However, with panel data, it is possible to relax these restrictive
assumptions and still allow us to measure the treatment effects through the
exploitation of correlations across individuals. Moreover, it also allows the
treatment effects to vary over time.

Hsiao, Ching, and Wan (2012) propose to exploit the correlations across
cross-sectional units to construct the counterfactuals. They assume the corre-
lations across cross-sectional units are due to some common omitted factors.
Decompose the outcomes of individual unit i into the sum of two components,
the impact ofK common factors that affect all individuals, f t , and an idiosyn-
cratic component, αi + εit , where αi is fixed and εit is random with E(εit ) = 0
and E(εit εjs) = 0 if i �= j . The impact of common factors, f t , on individuals
can be different for different individuals,

yit = αi + b′
i f t + εit , i = 1, . . . , N,

t = 1, . . . , T .
(9.6.41)

14 Decriminalization does not mean smoking or possession of small amounts of marijuana is
legal. It is still an offense to use or grow marijuana. An individual caught must pay a fine
within a specified period to be eligible for the reduced penalty involving no criminal record or
imprisonment (e.g., Damrongplasit and Hsiao 2009).
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Then the contemporaneous covariance between yit and yjt is given by

Cov (yit , yjt ) = b′
iE( f t f ′

t )bj . (9.6.42)

Stacking the N × 1 yit into a vector,

yt = B f t + 	 + �t , (9.6.43)

where yt = (y1t , . . . , yNt )′,	 = (α1, . . . , αN )′, �t = (ε1t , . . . , εNt )′, and B is
the N ×K factor loading matrix, B = (b1, . . . ,bN )′. Suppose all N units
did not receive the treatment for t = 1, . . . , T1, that is, yt = y0∗

t , but from
time period T1 + 1 onwards, the first unit received treatment, y1t = y1∗

1t , t =
T1 + 1, . . . , T , while the rest of individuals did not, yit = y0∗

it , t = 1, . . . , T
for i = 2, . . . , N . As long as

E(εit | d1t ) = 0, i = 2, . . . , N, (9.6.44)

one can write

y0∗
1t = E(y0∗

1t | ỹt ) + η1t , t = 1, . . . , T ,

= a + c′ ỹt + η1t ,
(9.6.45)

where ỹt = (y2t , . . . , yNt )′ and E(η1t | ỹt ) = 0. It is shown by Hsiao, Ching,
and Wan (2012) that minimizing

1

T1
(y0

1 − ea − Y c)′A(y0
1 − ea − Y c) (9.6.46)

yields consistent estimates of a and c, where y0
1 = (y11, . . . , y1T1 )′, e is a T1 × 1

vector of 1’s, Y is a T1 × (N − 1) matrix of T1 time series observations of ỹt ,
and A is a T1 × T1 positive definite matrix. From the estimates (â, ĉ′), one can
construct the predicted value of the first unit in the absence of treatment, y0∗

1t ,
by

ŷ0∗
1t = â + ĉ′ ỹt , t = T1 + 1, . . . , T . (9.6.47)

The treatment effect on the first unit can then be estimated by


̂1t = y1t − ŷ0∗
1t , t = T1 + 1, . . . , T . (9.6.48)

The construction of the standard error of ŷ0∗
1t , σy0

1t
, follows from the stan-

dard prediction error formula. For instance, if η1t is independently, identically
distributed over time, then

σ 2
y0

1t
= σ 2

η1
[1 + (1, ỹ′

t )(Y
′Y )−1(1, ỹ′

t )
′]. (9.6.49)

Hence, the confidence band for 
1t can be easily constructed as


̂1t ± cσy0
1t
, (9.6.50)

where c is chosen by the desired confidence level.
Cross-sectional data provide measurement of policy intervention as a once-

and-for-all impact. Panel data allow the policy impact to be evolutionary. If
1t
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is serially correlated, but stationary, one can further model the time-varying
treatment effects by an autoregressive moving average model using Box–Jenk-
ins (1970) methodology

a(L)
1t = μ+ θ (L)ηt (9.6.51)

where L is the lag operator, ηt is an i.i.d. process with 0 mean and constant
variance, and the roots of θ (L) = 0 lie outside the unit circle. If the roots of
a(L) = 0 all lie outside the unit circle, the treatment effect is stationary, and
the long-term treatment effect is


1 = a(L)−1μ = μ∗. (9.6.52)

Alternatively, one can estimate the long-run impact by taking the simple average
of 
̂1t . When both T1 and (T − T1) go to infinity,

plim
(T−T1)→∞

1

T − T1

T∑
t=T1+1


̂1t = 
1 (9.6.53)

The variance of (9.6.53) can be approximated by the heteroscedastic-
autocorrelation consistent (HAC) estimator of Newey and West (1987).

Condition (9.6.44) makes no claim about the relationship between d1t and
ε1t . They can be correlated. All we need is that the j th unit’s idiosyncratic
components εjt are independent of d1t for j �= 1. The approach can be viewed
as a “measurement without theory” approach or a nonparametric approach.

The parameters, a and c can be obtained by regressing y1t on yit , i =
2, . . . , N , for t = 1, . . . , T1. OftenN is large. Using more or all cross-sectional
units improves the within-sample fit, but does not necessarily yield more accu-
rate post-sample prediction. One way to select the best combination of cross-
sectional units to generate predicted y0∗

1t for t = T1 + 1, . . . , T is to use one
of the model selection criteria (e.g., AIC (Akaike (1973)), AICC (Hurvich and
Tsai (1989)) or BIC (Schwarz (1978)). For instance, Hsiao, Ching, and Wan
(2012) suggest the following two-step procedure:

Step 1: Selection the best predictor for y∗
1t using j cross-sectional units out

of (N − 1) cross-sectional units, denoted by M(j )∗ by R2, for j =
1, . . . , N − 1.

Step 2: From M(1)∗,M(2)∗, . . . ,M(N − 1)∗, choose M(m)∗ in terms of
some model selection criterion.

9.6.4.3 An Example – Measuring the Impact of the Closer Economic
Partnership Arrangement on Hong Kong

Hong Kong signed Closer Economic Partnership Arrangement (CEPA) with
Mainland China in June 2003 and started implementing its arrangement in
January 2004. The CEPA aims to strengthen the linkage between Mainland
China and Hong Kong by allowing Chinese citizens to enter Hong Kong as
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Table 9.2. AICC selected model using data for the
period 1993Q1–2003Q4

Beta Std T

Constant −0.0019 0.0037 −0.524
Austria −1.0116 0.1682 −6.0128
Italy −0.3177 0.1591 −1.9971
Korea 0.3447 0.0469 7.3506
Mexico 0.3129 0.051 6.1335
Norway 0.3222 0.0538 5.9912
Singapore 0.1845 0.0546 3.3812

R2 = 0.931

AICC = −378.9427

Source: Hsiao et al. (2012, Table 20).

individual tourists and liberalizing trade in services, enhancing cooperation in
the area of finance, and promoting trade and investment facilitation and mutual
recognition of professional qualifications. The implementation of CEPA started
on January 1, 2004, where 273 types of Hong Kong products could be exported
to the Mainland tariff free; another 713 types on January 1, 2005; 261 on
January 1, 2006; and a further 37 on January 2007. Chinese citizens residing
in selected cities are also allowed to visit Hong Kong as individual tourists,
from 4 cities in 2003 to 49 cities in 2007, covering all 21 cities in Guangdong
province.

Hsiao, Ching, and Wan (2012) tried to assess the impact of economic inte-
gration of Hong Kong with Mainland China on Hong Kong’s economy by
comparing what actually happened to Hong Kong’s real GDP growth rates
with what would have been if there were no CEPA with Mainland China in
2003. More specifically, they analyzed how these events have changed the
growth rate of Hong Kong.

Because Hong Kong, by comparison, is tiny relative to other regions, Hsiao
et al. (2012) believe that whatever happened in Hong Kong will have no bearing
on other countries. In other words, they expect (9.6.44) to hold. Therefore, they
use quarterly real growth rate of Australia, Austria, Canada, China, Denmark,
Finland, France, Germany, Indonesia, Italy, Japan, Korea, Malaysia, Mexico,
Netherlands, New Zealand, Norway, Philippines, Singapore, Switzerland, Tai-
wan Thailand, UK, and US to predict the quarterly real growth rate of Hong
Kong in the absence of intervention. All the nominal GDP and CPI are from
Organisation for Economic Co-operation and Development (OECD) Statistics,
International Financial Statistics, and the CEIC database.

Using the AICC criterion, the countries selected are Austria, Italy, Korea,
Mexico, Norway, and Singapore. Ordinary least-squares (OLS) estimates of
the weights are reported in Table 9.2. Actual and predicted growth path
from 1993Q1 to 2003Q4 are plotted in Figure 9.1. The availability of more
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Figure 9.1. Actual and AICC predicted real GDP growth rate from 1993Q1
to 2003Q4. Source: Hsiao et al. (2012, Fig. 7).

Table 9.3. Treatment effect for economic integration
2004Q1–2008Q1 based on AICC selected model

Actual Control Treatment

Q1-2004 0.077 0.0493 0.0277
Q2-2004 0.12 0.0686 0.0514
Q3-2004 0.066 0.0515 0.0145
Q4-2004 0.079 0.0446 0.0344
Q1-2005 0.062 0.0217 0.0403
Q2-2005 0.071 0.0177 0.0533
Q3-2005 0.081 0.0333 0.0477
Q4-2005 0.069 0.029 0.04
Q1-2006 0.09 0.0471 0.0429
Q2-2006 0.062 0.0417 0.0203
Q3-2006 0.064 0.025 0.039
Q4-2006 0.066 0.0009 0.0651
Q1-2007 0.055 −0.0101 0.0651
Q2-2007 0.062 0.0092 0.0528
Q3-2007 0.068 0.0143 0.0537
Q4-2007 0.069 0.0508 0.0182
Q1-2008 0.073 0.0538 0.0192

MEAN 0.0726 0.0323 0.0403
STD 0.0149 0.0213 0.016
T 4.8814 1.5132 2.5134

Source: Hsiao et al. (2012, Table 21).
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Figure 9.2. AICC – Actual and counterfactual real GDP growth rate from
2004Q1 to 2008Q1. Source: Hsiao et al. (2012, Fig. 8).

preintervention period data appears to allow more accurate estimates of the
country weights and better tracing of the preintervention path. The estimated
quarterly treatment effects are reported in Table 9.3. The actual and predicted
counterfactual for the period 2004Q1 to 2008Q1 are presented in Figure 9.2.

Table 9.4. AIC selected model using data for the
period 1993Q1–2003Q4

Beta Std T

Constant −0.003 0.0042 −0.7095
Austria −1.2949 0.2181 −5.9361
Germany 0.3552 0.233 1.5243
Italy −0.5768 0.1781 −3.2394
Korea 0.3016 0.0587 5.1342
Mexico 0.234 0.0609 3.8395
Norway 0.2881 0.0562 5.1304
Switzerland 0.2436 0.1729 1.4092
Singapore 0.2222 0.0553 4.0155
Philippines 0.1757 0.1089 1.6127
R2 = 0.9433
AIC = −385.7498

Source: Hsiao et al. (2012, Table 22).
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Table 9.5. AIC–Treatment effect for
economic integration 2004Q1–2008Q1
based on AIC selected model

Actual Control Treatment

Q1-2004 0.077 0.0559 0.0211
Q2-2004 0.12 0.0722 0.0478
Q3-2004 0.066 0.0446 0.0214
Q4-2004 0.079 0.0314 0.0476
Q1-2005 0.062 0.0121 0.0499
Q2-2005 0.071 0.0126 0.0584
Q3-2005 0.081 0.0314 0.0496
Q4-2005 0.069 0.0278 0.0412
Q1-2006 0.09 0.0436 0.0464
Q2-2006 0.062 0.0372 0.0248
Q3-2006 0.064 0.0292 0.0348
Q4-2006 0.066 0.0122 0.0538
Q1-2007 0.055 0.0051 0.0499
Q2-2007 0.062 0.0279 0.0341
Q3-2007 0.068 0.0255 0.0425
Q4-2007 0.069 0.0589 0.0101
Q1-2008 0.073 0.062 0.011
Mean 0.0726 0.0347 0.0379
Std 0.0149 0.0193 0.0151
T 4.8814 1.7929 2.5122

Source: Hsiao et al. (2012, Table 23).
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Figure 9.3. Actual and AIC predicted real GDP growth rate from 1993Q1 to
2003Q4. Source: Hsiao et al. (2012, Fig. 10).
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Figure 9.4. AIC – Actual and counterfactual real GDP growth rate from
2004Q1 to 2008Q1. Source: Hsiao et al. (2012, Fig. 11).

Using the AIC criterion, the selected group consists of Austria, Germany, Italy,
Korea, Mexico, Norway, Philippines, Singapore, and Switzerland. The OLS
estimates of the weights are in Table 9.4 and the estimated quarterly treatment
effects are in Table 9.5. The pre- and post-intervention actual and predicted
outcomes are plotted in Figures 9.3 and 9.4. It is notable that even though the
two models use different combinations of countries, both groups of countries
trace closely the actual Hong Kong path before the implementation of CEPA
(withR2 above .93). It is also quite remarkable that the post-sample predictions
closely matched the actual turning points at a lower level for the treatment period
even though no Hong Kong data were used. The CEPA effect at each quarter
was all positive and appeared to be serially uncorrelated. The average actual
growth rate from 2004Q1 to 2008Q1 is 7.26 percent. The average projected
growth rate without CEPA is 3.23 percent using the group of countries selected
by AICC and 3.47 percent using the group selected by AIC. The estimated
average treatment effect is 4.03 percent with a standard error of 0.016 based on
the AICC group and 3.79% with a standard error of 0.0151 based on the AIC
group. The t-statistic is 3.5134 for the former group and 3.5122 for the latter
group. Either set of countries yields similar predictions and highly significant
CEPA effects. In other words, through liberalization and increased openness
with Mainland China, the real GDP growth rate of Hong Kong is raised by more
than 4 percent compared to the growth rate had there been no CEPA agreement
with Mainland China.



CHAPTER 10

Dynamic System

One of the prominent features of econometric analysis is the incorporation
of economic theory into the analysis of numerical and institutional data.
Economists, from León Walras onwards, perceive the economy as a coherent
system. The interdependence of sectors of an economy is represented by a set
of functional relations, each representing an aspect of the economy by a group
of individuals, firms, or authorities. The variables entering into these relations
consist of a set of endogenous (or joint dependent) variables, whose formations
are conditional on a set of exogenous variables that economic theory regards
as given. Two approaches have been proposed to model a system of economic
behaviors – the structural equation approach and the reduced form approach.
The structural approach constructs the system of behavioral equations from a
priori assumed “theory,” based on behavioral hypotheses and institutional and
technological knowledge. However, different theoretical models may generate
the same observed phenomena. To ensure the one-to-one relationship between
the specified model and the observed phenomena, a priori restrictions need
to be imposed to exclude other “observationally equivalent” models1 (e.g.,
Dufour and Hsiao 2008, Hsiao 1983). The resulting statistical inference is con-
ditioning on the hypothesized theoretical model. The statistical inference could
be grossly misleading if the hypothesized model is not compatible with the
data-generating process of the observed sample. Sims (1980) has criticized that
many models are identified because of the “incredible” prior restrictions. Liu
(1960), Sims (1980), etc. have therefore favored the reduced form approach.
Because economic behavior is inherently dynamic due to institutional, tech-
nological, and behavioral rigidities, vector autoregressive models (VAR) have
been proposed as a reduced-form formulation to take account of both the joint
dependence of state variables and their dynamic dependence. We discuss panel
vector autoregressive modeling when the time series dimension T is fixed
and cross-sectional dimension N is large in Section 10.1. However, because
the time series properties of a variable behave very differently if the variable

1 By observationally equivalent structures we mean all structures that could generate the same
observed sample characteristics (e.g., Hsiao 1983).
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is stationary or nonstationary as time series dimension T increases, Section
10.2 discusses the estimation of cointegrated system when both N and T are
large. Section 10.3 discusses unit root and cointegration tests. Section 10.4
discusses the single-equation approach to estimating an equation in a dynamic
simultaneous equations model.

10.1 PANEL VECTOR AUTOREGRESSIVE MODELS

10.1.1 “Homogeneous” Panel VAR Models

10.1.1.1 Model Formulation

Vector autoregressive models have become a widely used modeling tool in
economics (e.g., Hsiao 1979a,b, 1982; Sims 1980). By “homogeneous” Panel
VAR (PVAR) models we mean conditional on the unobserved time-invariant
individual heterogeneity, the slope coefficients are identical over i and t (e.g.,
Holtz-Eakin, Newey, and Rosen 1988),

�(L)wit = wit −�1wi,t−1 . . .−�pwi,t−p= 	∗
i + �∗t + �it , i = 1, . . . , N,

t = 1, . . . , T ,

(10.1.1)

where wit denotes an m× 1 vector of observed random variables, 	∗
i is an

m× 1 vector of individual specific constants that vary with i,�∗ is an m× 1
vector of constants, �it is an m× 1 vector of random variables that is indepen-
dently, identically distributed over t with mean 0 and covariance matrix�, and
�(L) = Im −�1L− · · · −�pLp is a pth order polynomial of the lag operator
L,Lswt = wt−s .

With unrestricted intercepts or time trends, the time series property of wit

can be different whether wit contains unit roots or not, or if wit contains a unit
root, if elements of wit are cointegrated.2 (e.g., Johansen 1995; Pesaran, Shin,
and Smith 2000; Phillips 1991; Sims, Stock, and Watson 1990). To make sure
that the time series property of w remain the same whether w contains unit
roots or not, instead of considering (10.1.1) directly, we consider

�(L)(wit − �i − �t) = �it , (10.1.2)

where the roots of the determinant equation

| �(ρ) |= 0 (10.1.3)

2 We say that yt is stationary if Eyt = �, E[(yt − �)(yt−s − �)′] = E[(yt+q − �)(yt+q−s −
�)′]. We say that yt is integrated of order d, I (d), if (1 − L)d yt is stationary, I (0). If yt ∼ I (d)
but �′ yt ∼ I (d − c), say d = 1, c = 1, then yt is cointegrated of order c. The maximum number
of linearly independent vector � is called the rank of cointegration. For anym× 1 I (d) process,
the cointegration rank can vary between 0 andm− 1 (e.g., Engle and Granger 1987; Intriligator,
Bodkin, and Hsiao 1996).
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are either equal to unity or fall outside the unit circle. Under the assumption
that E�it = 0, it follows that

E(wit − �i − �t) = 0. (10.1.4)

To allow for the possibility of the presence of unit roots, we assume that

E(wit − �i − �t)(wit − �i − �t)′ = �t. (10.1.5)

Model (10.1.2)–(10.1.5) encompasses many well known panel VAR models
(PVAR) as special cases. For instance,

(1) Stationary PVAR with individual-specific effects.
Let � = 0m×1. If all roots of (10.1.3) fall outside the unit circle, (10.1.2)

becomes (10.1.1) with 	∗
i = −��i and

� = −
⎛⎝Im −

p∑
j=1

�j

⎞⎠ . (10.1.6)

(2) Trend-stationary PVAR with individual-specific effects.
If all roots of (10.1.3) fall outside the unit circle and � �= 0, we have

�(L)wit = 	∗
i + �∗t + εit , (10.1.7)

where 	∗
i = −��i + (� +�)�,

� = −�+
p∑
j=1

j�j , (10.1.8)

and �∗ = −��.
(3) PVAR with unit roots (but non-cointegrated) and individual-specific

effects.

�∗(L)
wit = −�∗� + �it (10.1.9)

where 
 = (1 − L),

�∗(L) = Im −
p−1∑
j=1

�∗
jL
j , (10.1.10)

�∗
j = −(Im −∑j

�=1��), j = 1, 2. . . . , p − 1, and �∗ = −(Im −∑p−1
j=1 �

∗
j ).

(4) Cointegrated PVAR with individual-specific effects.
If some roots of (10.1.3) are equal to unity and rank (�) = r, 0 < r < m,

(10.1.2) may be rewritten in the form of a panel vector error corrections model:


wit = 	∗
i + (� +�)� + �∗t +�yi,t−1 +

p−1∑
j=1

�j
wi,t−j + �it , (10.1.11)

where�j = −∑p
s=j+1�s, j = 1, . . . , p − 1, and� can be decomposed as the

product of two m× r matrices J and �, with rank r,� = J�′ and J ′
⊥�⊥ is of
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rank m− r , where J⊥ and �⊥ are m× (m− r) matrices of full column rank
such that J ′J⊥ = 0 and �′�⊥ = 0 (Johansen 1995).

The reason for formulating the PVAR model in terms of (10.1.2)–(10.1.5)
rather than (10.1.1) is that it puts restrictions on the model intercepts and trend
term so that the time series properties of wit remain the same with the presence
of unit roots and cointegration. For instance, when � = 0 and whether the roots
of (10.1.3) all fall outside the unit circle, or one or more roots of (10.1.3) are
equal to unity, wit exhibit no trend growth. However, if 	∗

i is unrestricted, then
wit will exhibit differential trend growth if unit roots are present. If � �= 0,
(10.1.2) ensures that the trend growth of wit is linear whether the roots of
(10.1.3) are all outside the unit circle or some or all are unity. But if the trend
term is unrestricted, then wit exhibit a linear trend if the roots of (10.1.3) all
fall outside the unit circle and would exhibit quadratic trends if one or more
roots of (10.1.3) are equal to unity (e.g., Pesaran, Shin, and Smith 2000).

If 	∗
i are assumed randomly distributed with a common mean and constant

covariance matrix, (10.1.1) is a random effects PVAR. The random-effects
PVAR has the advantages that the number of unknown parameters stay constant
as sample size increases and the efficient inference of �(L) can be derived by
considering the marginal distribution of (wio, . . . ,wit ),

f (wio, . . . ,wiT ) =
∫
f (wio, . . . ,wiT | 	∗

i )dG(α∗
i )

=
∫ T∏

t=p
f (wit | wi,t−1, . . . ,wi,t−p,	∗

i )

·f (wip, . . . ,wio | α∗
i )dG(α∗

i ). (10.1.12)

However, besides the difficulties of postulating the probability distribu-
tion of unobserved effects, 	∗

i , the derivation of (10.1.12) appears com-
putationally complicated because (10.1.12) involves multiple integration of
m× (T + 1) dimensions. On the other hand, treating α∗

i as fixed constant,
f (wit | wi,t−1, . . . ,wt−p; 	∗

i ) is independently distributed over t . Moreover,
even if 	∗

i are random, the conditional inference of f (wio, . . . ,wiT | 	∗
i )

remains valid, although it is not efficient. We therefore focus on inference with
	∗
i fixed and discuss conditional inference procedures.
When the time dimension of the panel is short, just as in the single-equation

fixed-effects dynamic panel data model (Chapter 4, Section 4.5), (10.1.2) raises
the classical incidental parameters problem and the issue of modeling initial
observations. For ease of exposition, we shall illustrate the estimation and
inference by considering p = 1, namely, the model of

(I −�L)(wit − �i − �t) = �it ,
i = 1. . . . , N,
t = 1, . . . , T ,

(10.1.13)

We also assume that wi0 are available.
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10.1.1.2 GMM Estimation

Just as in the single-equation case, the individual effects �i can be eliminated
by first differencing (10.1.13):


wit − � = �(
wi,t−1 − �) +
�it , t = 2, . . . , T . (10.1.14)

Thus, we have the orthogonality conditions,

E
{
[(
wit − �) −�(
wi,t−1 − �)]q′

it

} = 0,

t = 2, . . . , T .
(10.1.15)

where

qit = (1,w′
io, . . . ,w

′
i,t−2)′. (10.1.16)

Stacking the (T − 1) (10.1.15) together yields

Si = Ri�′ + Ei, i = 1, 2, . . . , N, (10.1.17)

where

Si = (
wi2,
wi3. . . . , 
wiT )′, Ei = (
�i2, . . . ,
�iT )′

Ri = (Si,−1, eT−1), Si,−1 = (
wi1, . . . , 
wi,T−1)′,

� = (�, a1), a1 = (Im −�)�,
(10.1.18)

and eT−1 denotes a (T − 1) × 1 vector of 1’s. Premultiplying (10.1.17)
by the (mT/2 + 1)(T − 1) × (T − 1) block-diagonal instrumental variable
matrixQi ,

Qi =

⎛⎜⎜⎜⎜⎝
qi2 0 . . 0
0 qis . .

. . . .

. . .

0 . qiT

⎞⎟⎟⎟⎟⎠ , (10.1.19)

one obtains

QiSi = QiRi�′ +QiEi, (10.1.20)

the transpose of which in vectorized form becomes3

(Qi ⊗ Im) vec (S ′
i) = (QiRi ⊗ Im)�

+ (Qi ⊗ Im) vec (E′
i), (10.1.21)

where λ = vec (�) and vec (.) is the operator transforms a matrix into a
vector by stacking the columns of the matrix one underneath the other. Thus,

3 Vec (ABC) = (C′ ⊗ A) vec (B), see Magnus and Neudecker (1999).
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the GMM estimator of � can be obtained by minimizing (Binder, Hsiao, and
Pesaran 2005)[ N∑

i=1

(
(Qi ⊗ Im) vec (S ′

i) − (QiRi ⊗ Im)�
)]′

·
[ N∑
i=1

(Qi ⊗ Im)�̃(Qi ⊗ Im)′
]−1

·
[ N∑
i=1

(
(Qi ⊗ Im) vec (S ′

i) − (QiRi ⊗ Im)�
)]
,

(10.1.22)

where

�̃ =

⎡⎢⎢⎢⎢⎢⎣
2� −� 0 . . . 0
−� 2� −�

0 −� 2�
...

. . .
0 2�

⎤⎥⎥⎥⎥⎥⎦ . (10.1.23)

The moment conditions relevant to the estimation of � are given by

E{[
wit − � −�(
wi,t−1 − �)][
wit − �

− �(
wi,t−1 − �)]′ − 2�} = 0, t = 2, 3, . . . , T . (10.1.24)

Also, in the trend-stationary case, on estimation of a1,� may be obtained as

� = (Im − �̂)−1â1. (10.1.25)

The generalized method of moments (GMM) estimator is consistent and
asymptotically normally distributed as N → ∞ if all the roots of (10.1.3) fall
outside the unit circle, but breaks down if some roots are equal to unity. To
see this, note that a necessary condition for the GMM estimator (10.1.22) to
exist is that rank (N−1∑N

i=1QiRi) = m+ 1 as N → ∞. In the case where
� = Im,
wit = � + �it , and wit = wio + �t +∑t

�=1 �i�. Thus it follows that
for t = 2, 3, . . . , T , j = 0, 1, . . . , t − 2, as N → ∞,

1

N

N∑
i=1


wi,t−1w′
ij −→ �(wio + �j )′, (10.1.26)

which is of rank 1. In other words, when � = Im, the elements of qit are not
legitimate instruments.

10.1.1.3 (Transformed) Maximum-Likelihood Estimator

We note that given on 
wi1 (10.1.14) is well defined for t = 2, . . . , T . How-
ever, 
wi1 is random. Equation (10.1.13) implies that 
wi1 equals


wi1 − � = −(I −�)(wio − �i) + �i1. (10.1.27)
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We note that by (10.1.4) and (10.1.5), E(
wi1 − �) = −(I −�)E(wio −
�i) + E�i1 = 0 and E(
wi1 − �)(
wi1 − �)′ = (I −�)�0(I −�)′ +� =
�1 where �0 = E(wio − �i)(wio − �i)

′. Therefore, the joint likelihood of

w′

i = (
w′
i1, . . . ,
w′

iT ) is well defined and does not involve incidental
parameters. Under the assumption that �it is normally distributed, the like-
lihood function is given by

N∏
i=1

(2π )−
T
2 | �∗ |− 1

2 exp [−1

2
(ri −Hi�)′�∗−1(ri −Hi�)],

(10.1.28)

where

ri = (
wi − eT ⊗ �),

Hi = G′
i ⊗ Im,

Gi = (0,
wi1 − �, . . . ,
wi,T−1 − �),

� = vec (�),

�∗ =

⎛⎜⎜⎜⎜⎜⎝
�1 −� 0 0 . . . 0
−� 2� −� 0

0 −� 2� −�
...

. . .
0 2�

⎞⎟⎟⎟⎟⎟⎠ , (10.1.29)

and eT is a T × 1 vector of (1, . . . , 1)′. Maximizing the logarithm of (10.1.29),
�(�), with respect to �′ = (�′,�′,
′)′, where 
 denotes the unknown element
of �∗, yields the (transformed) maximum-likelihood estimator (MLE) that is
consistent and asymptotically normally distributed with asymptotic covariance
matrix given by −E( ∂2�(�)

∂�∂�′
)−1

asN → ∞ independent of whether wit contains
unit roots or cointegrated.

10.1.1.4 Minimum-Distance Estimator

We note that conditional on �∗, the MLE of � and � is equivalent to the
minimum-distance estimator (MDE) that minimizes

N∑
i=1

(ri −Hi�)′�∗−1(ri −Hi�). (10.1.30)

Furthermore, conditional on � and �∗, the MDE of � is given by

�̂ =
(
N∑
i=1

H ′
i �

∗−1Hi

)−1 ( N∑
i=1

H ′
i �

∗−1ri

)
. (10.1.31)
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Conditional on � and �∗, the MDE of � is equal to

�̂ = (NP�∗−1P ′)−1

[
N∑
i=1

P�∗−1(
wi − Li�)

]
, (10.1.32)

where

P = (Im, Im −�′, Im −�′, . . . , Im −�′), (10.1.33)

and

Li = K ′
i ⊗ Im, and Ki = (0,
wi1, . . . , 
wi,T−1).

Conditional on �,

�̂1 = 1

N

N∑
i=1

(
wi1 − �)(
wi1 − �)′, (10.1.34)

and conditional on �,�,

�̂ = 1

N (T − 1)

N∑
i=1

T∑
t=2

[
wit − � −�(
wi,t−1 − �)]

[
wit − � −�(
wi,t−1 − �)]′.

(10.1.35)

We may iterate between (10.1.31) and (10.1.35) to obtain the feasible MDE
using

�̂
(0) = 1

NT

N∑
i=1

T∑
t=1


wit , (10.1.36)

and

�(0) =
[
N∑
i=1

T∑
t=3

(
wit − �(0))(
wi,t−2 − �(0))′
]

·
[
N∑
i=1

T∑
t=3

(
wi,t−1 − �(0))(
wi,t−2 − �(0))′
]−1

(10.1.37)

to start the iteration.
Conditional on �∗, the MDE of � and � is identical to the MLE. When

� = 0 (no trend term), conditional on �∗, the asymptotic covariance matrix of
the MLE or MDE of � is equal to[

N∑
i=1

(Ki ⊗ Im)�∗−1(K ′
i ⊗ Im)

]−1

. (10.1.38)

When �∗ is unknown, the asymptotic variance–covariance matrices of MLE
and MDE of � do not converge to (10.1.38) because when lagged dependent
variables appear as regressors, the estimation of� and�∗ is not asymptotically
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independent. The asymptotic variance covariance matrix of the feasible MDE
is equal to the sum of (10.1.38) and a positive semidefinite matrix attributable
to the estimation error of �∗ (Hsiao, Pesaran, and Tahmiscioglu 2002).

Both the MLE and MDE always exist whether wit contains unit roots or
not. The MLE and MDE are asymptotically normally distributed independent
of whether wit is (trend) stationary, integrated or cointegrated as T is fixed and
N → ∞. Therefore, a conventional likelihood ratio test statistic or Wald type
test statistic of unit root or the rank of cointegration can be approximated by
chi-square statistics. Moreover, the limited Monte Carlo studies conducted by
Binder, Hsiao, and Pesaran (2005) show that both the MLE and MDE perform
very well in finite sample and dominate the conventional GMM, in particular
if the roots of (10.1.3) are near unity.

10.1.2 Heterogeneous Vector Autoregressive Models

We shall say a VAR model heterogeneous if the slope coefficients also vary
across individuals,

�i(L)wit = 	∗
i + εit , i = 1, . . . , N, (10.1.39)

where

�i(L) = Im −�i1L− . . .−�ipiLpi for i = 1, . . . , N. (10.1.40)

When �i(L) �= �j (L) for i �= j , there is no way one can get a consistent
estimator of �i(L) if T is fixed. When the roots of the determinant equation
(10.1.3) fall outside the unit circle, the least-squares estimator is consistent (at
the speed of

√
T ) and is asymptotically normally distributed as T → ∞ (e.g.,

Anderson 1971). When the roots of (10.1.3) contain unit roots, the least-squares
estimator remains consistent but it converges to the unit root at the speed of T
and its limiting distribution is nonstandard (e.g., Phillips and Durlauf 1986).
Therefore, in this subsection, we restrict the discussion to the stationary case.
We defer the discussion of nonstationary case to Section 10.2.

10.1.2.1 Cross-Sectionally Independent Processes

If �it is independent over i with mean 0 and unrestricted covariance matrix
�i and T is large, applying the least-squares method to (10.1.39) equation by
equation yields consistent and efficient estimates of �i(L) and 	∗

i .

10.1.2.2 Cross-Sectionally Dependent Processes

When �it are cross-sectionally dependent, (10.1.39) can be put in Zellner’s
(1962) seemingly unrelated regression framework if N is fixed and T is large.
We can first use ith individual’s time series observation to estimate �i(L)
and 	∗

i . Then we use the estimated �̂i(L) and 	̂∗
i to obtain estimated �̂it ,
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i = 1, . . . , N, t = 1, . . . , T and estimate �ij = E(�it�′
j t ) by

�̂ij = 1

T

T∑
t=1

�̂it �̂j t . (10.1.41)

Given �̂ij , i, j = 1, . . . , N , one can stack all N cross-sectionally equations
(10.1.39) together and apply the feasible generalized least-squares estimator to
obtain efficient estimate of �i(L) and 	∗

i , i = 1, . . . , N .

10.1.2.3 Global VAR

To obtain efficient estimates of �i(L) using the Zellner (1962) seemingly
unrelated regression approach requires T to be considerably larger than N . In
many macroeconomic applications, the number of time series observations, T ,
could be of the same magnitude as the number of cross-sectional dimensions,
N . When N is large, it is not feasible to stack all Nm equations together as
a system. Pesaran, Schuermann, and Weiner (2004) propose a global VAR
(GVAR) to accommodate dynamic cross-dependence by considering

�i(L)(wit − �iw∗
it ) = �it , i = 1, 2, . . . , N, (10.1.42)

where

w∗
it =

N∑
j=1

rijwj t , (10.1.43)

rii = 0,
N∑
j=1

rij = 1, and
N∑
j=1

r2
ij → 0 as N → ∞. (10.1.44)

The weight rij could be 1
N−1 for i �= j , or constructed from trade value or

other measures of some economic distance and could be time-varying. Just
like the cross-sectionally mean augment regression approach discussed in
Chapter 9, Section 9.4, the global average w∗

it is inserted into (10.1.39) to
take account of the cross-sectional dependence. When w∗

i,t−s can be treated
as weakly exogenous (predetermined), the estimation of (10.1.42) for each i
can proceed using standard time series estimation techniques (e.g., Pesaran,
Shin, and Smith 2000). Pesaran et al. (2004) show that the weak exogeneity
assumption of w∗

it holds for all countries except for the United States because
of the United States’ dominant position in the world. They also show that
(10.1.42) yields better results than (10.1.39) when cross-sectional units are
correlated.4

4 The computer program for GVAR and some data sources can be downloaded from http://www-
cfab.jbs.cam.ac.uk/research/gvartoolbox/index.html.
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10.2 COINTEGRATED PANEL MODELS AND
VECTOR ERROR CORRECTION

10.2.1 Properties of Cointegrated Processes

Many macro and financial data are nonstationary. The nonstationarity of a time
series is usually represented by an integrated process of order d, d ≥ 1, I (d).
A dth integrated process can be transformed into a stationary process by differ-
encing the variable d-times, (1 − L)d (e.g., Box–Jenkins 1970). For instance,
suppose all the elements of wit are I (1); then (1 − L)wit become stationary
(I (0) processes). However, differencing wit also removes the underlying long-
run relations among the elements of wit , which can have important economic
implications. If wit are driven by some common nonstationary variables, one
notable feature is that linear combinations of wit can remove these common
trends and become stationary (I (0)). Such linear combinations capture the
long-run relations among wit and are called “cointegrating” relations.

Let wit be an m× 1 vector of random variables. We assume that each
element of wit , wjit , is integrated of order 1, I (1),

wjit ∼ I (1), j = 1, . . . , m. (10.2.1)

Following Engle and Granger (1987), we say that the elements of wit forming
r(≥ 1) cointegrating relations if there exist r linearly independent combinations
of wit that are stationary I (0),

Ciwit = uit ∼ I (0), (10.2.2)

whereCi denotes the r ×m constant matrix with rank (Ci) = r , and uit denotes
the r × 1 random vectors with E(uit ) = 0, E(uitu′

it ) = �̃io, E(uitu′
i,t−s) =

�̃is , and rank (�̃io) = r .
Rewriting wit as the sum of the impact of (m− r) I (1) common trends zit

and stationary components, ξit ,

wit = Aizit + �it , i = 1, . . . , N, t = 1, . . . , T . (10.2.3)

where

zit ∼ I (1),
(m− r) × 1

(10.2.4)

and Ai = (a′
i) is an m× (m− r) constant matrix. The cointegrating relations

(10.2.2) imply that

CiAi = 0, i = 1, . . . , N. (10.2.5)

IfAi �= 0 with rank (Ai) = m− r, 0 < r < m and zit �= zj t , them× 1 I (1)
random variables wit are cointegrated. There exists an error correction repre-
sentation (VEC) of wit (Engle and Granger 1987),


wit = �∗
iwi,t−1 +

pi∑
s=1

�∗
is
wi,t−s + �it , i = 1, . . . , N, (10.2.6)
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where 
 = (1 − L) denotes the first difference operation, 
wit = wit −
wi,t−1, �it is independent, identically distributed with mean 0 and covari-
ance matrix �ii , �∗

i = −(Im −∑pi
j=1�ij ), �∗

ij = (−∑pi
s=j+1�is), j =

1, 2, . . . , pi , and

rank (�∗
i ) = r. (10.2.7)

Decompose the m×m matrix �∗
i into the product of two rank r(m× r)

matrices, Ji and �i ,

�∗
i = Ji�′

i , i = 1, . . . , m. (10.2.8)

The decomposition is not unique, �∗
i = J ∗

i �
∗′
i , where J ∗

i = �iFi,�∗
i =

�iF
′−1
i , for any r × r nonsingular matrix Fi . To uniquely define the coin-

tegrating relations, we choose the normalization

�′
i = [Ir , �̃

′
i], (10.2.9)

where �̃i is an (m− r) × r constant matrix. The advantage of considering an
error correction representation (10.2.6) rather than PVAR is that one can simul-
taneously consider the long-run (equilibrium) relations and short-run dynamics
of wit .

If the stationary components �it are cross-sectionally dependent, we can
decompose �it into the impact of q common factors f t that affect all cross-
sectional units �it and the idiosyncratic components �it ,

�it = Bi f t + �it , i = 1, . . . , N, t = 1, . . . T , (10.2.10)

where Bi is an m× q constant matrix, E(ft ) = 0, E( f t f ′
t ) is normalized to be

a q-rowed identity matrix, E(�it ) = 0, E(�it�′
it ) = Di is a diagonal matrix.

If the nonstationarity of wit , i = 1, . . . , N , is driven by the same common
trends across i, that is, if zit = zj t = zt , it also implies that each element
of wit , wkt is cointegrated across cross-sectional units. Let wkt denote the
N × 1 vector of the kth element of wit , wkit , (wk1t , . . . , wkNt )′ = wkt , and
�kt = (ξk1t , . . . , ξkNt )′, �kt = (εk1t , . . . , εkNt )′. Then

wkt = Akzt + �kt , k = 1, . . . , m, (10.2.11)

where Ak = (a′
ki) denotes the N × (m− r) constant matrix of the cross-

sectional stacked kth row of Ai . Suppose rank (Ak) = dk(≤ m− r), there also
exists an (m− dk) ×m matrix Ck with rank (m− dk) such that

CkAk = 0, k = 1, . . . , m. (10.2.12)

Then

Ckwkt = Ck�kt ∼ I (0). (10.2.13)

In other words, with nonstationary panel data, there could be cointegration
relations both over time and across individuals.
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10.2.2 Estimation

10.2.2.1 “Homogenous” Cointegrating Relations

In the case when there is at most one cointegration relation among I (1) wit , i =
1, . . . , N , the “homogenous” cointegration vector between (w1it , w̃′

it ), (1,�
′)

with individual-specific effects α1i yields

w1it = w̃′
it� + α1i + u1it , (10.2.14)

whereu1it is stationary but independently distributed across i. The cointegrating
vector � can be estimated by the within estimator,

�̂ =
[
N∑
i=1

T∑
t=1

(w̃it − ¯̃wi)(w̃it − ¯̃wi)
′
]−1

·
[
N∑
i=1

T∑
t=1

(w̃it − ¯̃wi)(w1it − w̄1i)

]
,

(10.2.15)

where w̄′
i = (w̄1i , ¯̃w′

i) = 1
T

∑T
t=1 w′

it . The least-squares estimator converges to
� in the speed of T

√
N and is asymptotically normally distributed. However,

the endogeneity and unit-root of w̃it leads to a nonzero asymptotic bias term
of order 1

T
when �̂ is multiplied by the scale factor T

√
N (Kao and Chiang

2000). The idea of Phillips and Hansen (1990) fully modified estimator can be
applied to correct the endogeneity effect,

w+
1it = w̃′

it� + α1i + u+
1it (10.2.16)

where

w+
1it = w1it −�u
w̃�−1


w̃
w̃it , (10.2.17)

u+
1it = u1it −�u
w̃�−1


w̃
w̃it , (10.2.18)

and �u
w̃ =∑∞
j=−∞ E(uit
w̃′

i,t−j ),�
w̃ =∑∞
j=−∞ E(
w̃it
w̃′

i,t−j ), are
the long-run covariance matrices of u1it and 
w̃it , and 
w̃it , respectively.
The panel fully modified within estimator takes the form,

�̂FM =
[
N∑
i=1

T∑
t=1

(w̃it − ¯̃wi)(w̃it − ¯̃wi)
′
]−1

·
[
N∑
i=1

(
T∑
t=1

(w̃it − ¯̃wi)w+
1it − T

w̃u

)]
,

(10.2.19)



382 Dynamic System

where 

w̃u =∑∞
j=0 E(
w̃i,t−ju1it ). The correction terms �u
w̃,�
w̃,



w̃u can be replaced by their consistent estimator.5 Kao and Chiang
(2000) show that T

√
N (�̂FM − �) is asymptotically normally distributed

with mean 0 and covariance matrix 2σ 2
u|
w̃�

−1

w̃, where σ 2

u|
w̃ = �u −
�u
w̃�

−1

w̃�
w̃u,�u =∑∞

j=−∞ E(u1itu1i,t−j ).
An alternative approach is to apply the dyanmic within estimator to the

lead-lag adjusted regression model (Saikkonen 1991),

w1it = w̃′
it� +

q∑
j=−q


w̃′
i,t−j�j + α1i

+ ũ1it

(10.2.20)

where Westerlund (2005) suggests a data-based choice of truncation lag order
q. Kao and Chiang (2000) show that the within estimator of (10.2.20) has the
same asymptotic distribution as the panel fully modified within estimator. The
Monte Carlo studies conduced by Kao and Chiang (2000) show that the (lead-
lag adjusted) within estimator of (10.2.20) performs better than the panel fully
modified estimator, probably because of the failure of obtaining good esimates
of �u
w̃,�
w̃, etc.

When there are more than one linearly independent cointegration relations
among the elements of wit , in principle, one can normalize the r linearly inde-
pendent cointegration relation in the form of (10.2.9),�′ = [Ir �̃′], then apply
the fully modified within estimator or the lead-lag adjusted within estimator
equation by equation.

Alternatively, one can use the methods of estimating the fixed effects PVAR
model discussed in Section10.1 to obtain the consistent estimator of �j ’s,
then solving �̂ from the estimated �̂j ’s. The error-correction representation of
cointegrated system (10.1.1) gives � = −(Im −∑P

j=1�j ) (10.1.11). If rank
(�) = r(> 1), then we can write� = J�′ where J and� arem× r with rank
r . Then the cointegrating matrix �′ is equal to

�′ = (J ′J )−1J ′�. (10.2.21)

If we choose the normalization �′ = [Ir �̃′], then J = �1 and

�̃′ = (�′
1�1)−1�′

1� (10.2.22)

where �1 is the m× r matrix consisting of the first r columns of �.
Although the above procedure is consistent, it is not efficient because the

first-stage estimator of�’s has not taken into account the reduced rank restric-
tions on � = J�′. One way to obtain efficient estimator of �j ’s is to apply
constrained GMM or constrained MDE or constrained (transformed) MLE by

5 If cross-sectional units have heteroscedastic long-run variance, Kao and Chiang (2000) suggest
using the cross-sectional average in the long-run correction terms.
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minimizing the quadratic form of the moment conditions (10.1.15) or (10.1.30)
or maximizing (10.1.28) subject to

� = H�r + Br, (10.2.23)

whereH andBr are, respectively,m× (m− r) andm× r matrices with known
elements, and � is a (m− r) × r matrix with unknown coefficients. In the case
when �′ = [Ir �̃′],H = [0, Im−r ],�r = �̃, Br = [Ir , 0]′.

10.2.2.2 Heterogeneous Cointegrating System

If individual units are independent across i (Bi = 0 in (10.2.10)), the Johansen
(1991) method can be applied to the time series data for each i to obtain the
maximum likelihood estimator (MLE) of (10.2.6). There is no need for pooling.

When Bi �= 0, individual units are correlated. If N is fixed and T is large
the covariance between �it and �j t , �ij , can simply be estimated by

�̂ij = 1

T

T∑
t=1

�̂it �̂
′
j t , (10.2.24)

where �̂it can be constructed from (10.2.6) using the Johansen MLE estimates
of �′

i = vec (�∗
i , �

∗
i1, . . . , �

∗
ipi

)′, where vec (·) denotes the operator that stacks
the columns of a matrix successively into a vector. Therefore, we shall not be
concerned with the estimation of Bi , but only with the inference of �i .

For ease of exposition, we shall first assume that all�is ≡ 0, for s ≥ 2; then


wit = �∗
iwi,t−1 + �it , i = 1, . . . , N. (10.2.25)

Let wt = (w′
1t , . . . ,w

′
Nt )

′ be the Nm× 1 vector that stacks the N cross-
sectionally observed wit one after another. Then (10.2.25) can be written as


wt = �̃wt−1 + �t , (10.2.26)

where

�̃ =

⎛⎜⎜⎜⎜⎝
�∗

1 0 . . 0
0 �∗

2 . . 0
. .

. .

0 �∗
N

⎞⎟⎟⎟⎟⎠ , (10.2.27)

and

�t = (�′
1t , . . . , �

′
Nt )

′.
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Under the assumption that �t is independently normally distributed with
mean 0 and covariance matrix

�̃ =
Nm×Nm

⎛⎜⎜⎜⎜⎝
�11 �12 . . �1N

. �22 . . .

. . . . .

. . . . .

�N1 . . . �NN

⎞⎟⎟⎟⎟⎠ , (10.2.28)

the log-likelihood function of 
wt is proportional to

− T

2
log | �̃ | −1

2
tr

[
�−1

T∑
t=1

(
wt − �̃wt−1)(
wt − �̃wt−1)′
]
. (10.2.29)

The MLE of � and � are the solutions that simultaneously satisfy

ˆ̃� = 1

T

T∑
t=1

(
wt − ˆ̃�wt−1)(
wt − ˆ̃�wt−1)′, (10.2.30)

and⎛⎜⎜⎜⎜⎝
vec (�̂∗′

1 )
vec (�̂∗′

2 )
.

.

vec (�̂∗′
N )

⎞⎟⎟⎟⎟⎠=
(

T∑
t=1

ˆ̃�−1 ⊗ wt−1w′
t−1

)−1 [ T∑
t=1

(
ˆ̃�−1 ⊗ wt−1

)
vec (
wt )

]
.

(10.2.31)

Conditional on ˆ̃�, (10.2.31) is in the form of Zellner’s (1962) seemingly
unrelated regression estimator. Sequentially iterating between (10.2.30) and
(10.2.31) until convergence will result in the MLE of�∗

i and �̃.
However, if wit are cointegrated, then �i is subject to the restrictions of

the form (10.2.8). Substituting (10.2.8) into (10.2.9) and making use of the
relations (Magnus and Neudecker 1999, p. 31)

vec (Ji�
′
i) = (Ir ⊗ Ji) vec (�′

i)

= (�i ⊗ Im) vec (Ji),
(10.2.32)

we obtain the MLE of (vec (�′
1)′, . . . , vec (�′

N )′)′ conditional on ˆ̃� and
Ĵi , i = 1, . . . , N ,⎛⎜⎜⎝

vec (�̂1)
.

.

vec (�̂N )

⎞⎟⎟⎠ =
⎧⎨⎩
[
Q̂′
[

ˆ̃�−1 ⊗
(

T∑
t=1

wt−1w′
t−1

)]
ˆ̃Q

]−1
⎫⎬⎭

−1

·
{
Q̂′
[

ˆ̃�−1 ⊗ INm
]

vec

(
T∑
t=1

wt−1
w′
t

)}
,

(10.2.33)
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and the MLE of (vec (Ĵ ′
1)′, . . . , vec (Ĵ ′

N )′)′ conditional on �̂ and �̂i, i =
1, . . . , N ,⎛⎜⎜⎝

vec (Ĵ ′
1)

.

.

vec (ĴN )′

⎞⎟⎟⎠ =
{
P̂ ′
(

ˆ̃�−1 ⊗
T∑
t=1

wt−1w′
t−1

)
P̂

}−1

·
{
P̂ ′( ˆ̃�−1 ⊗ INm) vec

(
T∑
t=1

wt−1
w′
t

)}
,

(10.2.34)

where INm denotes the Nm×Nm identity matrix,

Q̂ = [(d1 ⊗ Ĵ1
)⊗ (d1 ⊗ Ir ) , . . . ,

(
dN ⊗ ĴN

)⊗ (dN ⊗ Ir )
]
, (10.2.35)

P̂ = [(d1 ⊗ Im) ⊗ (d1 ⊗ �̂1
)
, . . . , (dN ⊗ Im) ⊗ (dN ⊗ �̂N

)]
, (10.2.36)

dj denotes the j th column of IN , and ⊗ denotes the Kronecker product. There-
fore Groen and Kleibergen (2003) suggest the following iterative scheme to
obtain the panel MLE:

1. Construct initial estimates �̂(0) and Ĵ (0)
i , i = 1, . . . , N from (10.2.30)

and (10.2.31), where the initial estimates of Ĵ (0)
i are simply the first r

columns of �̂∗(0)
i under the normalization (10.2.9).

2. Construct estimates of �i, i = 1, . . . , N from (10.2.33).
3. Revise the estimate of �∗

i from (10.2.8) and revise the estimate of �
from the revised estimate of �̂∗

i using the formula (10.2.30).
4. Revise the estimate of Ji given the revise estimator of�i and� using

(10.2.34).
5. Iterate steps 1 to 4 until the solution converges.

The MLE of �i, i = 1, . . . , N converges to their true values at rate T and
their limiting distributions are mixed normal. Therefore, conventional Wald-
type test statistics on the null hypothesis of�i is asymptotically χ2 distributed.

When the cointegrating matrix �i = �j = �, the common cointegrating
matrix can be estimated by

vec (�) =
(

ˆ̃Q′
(
�̂−1 ⊗

T∑
t=1

wt−1w′
t−1

)
ˆ̃Q

)−1

·
(

ˆ̃Q′ (�̂⊗ INm
)

vec

(
T∑
t=1

wt−1
w′
t

))
.

(10.2.37)
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Because�i or� is asymptotically mixed normally distributed, one can use the
likelihood ratio test statistic to test the null hypothesis

H0 : �1 = �2 = . . . = �N = �
versus H1 : �i �= �j .

(10.2.38)

The likelihood ratio statistic is asymptotically χ2 distributed with (N −
1)r(m− r) degrees of freedom when T −→ ∞.

When individual units contain an individual specific effects 	∗
i and pi

in (10.2.6) different from 0, one can follow Johansen (1991) to concen-
trate out constants and �∗

is by regressing 
wit and wi,t−1 on the constants
and 
wi,t−s , s = 1, . . . , pi respectively, to obtain 
w̃it and w̃i,t−1, then pro-
ceed to estimate �i and �i . Once the MLE of �i , �i and � are obtained,
the individual-specific constants and �∗

ij can then be obtained by regress-
ing
(

w̃ − Ĵi�̂′

iw̃i,t−1
)

on constants,
w̃i,t−pi−1, . . . ,
w̃i,t−1 using Zellner’s
(1962) seemingly unrelated regression method.

When N is large, it is not feasible to use either the likelihood approach
or the Zellner (1962) unrelated regression framework to estimate either the
homogeneous or the heterogeneous cointegration relations. Pesaran et al. (2004)
suggest using a global VAR (GVAR) ((10.1.42)–(10.1.44)) to filter out cross-
sectional dependence. Whenw∗

it can be treated as weakly exogenous the system
(10.1.42) subject to the rank condition (10.2.8) for each i can be estimated using
standard time series estimator techniques (e.g., Pesaran et al. 2000).

10.3 UNIT ROOT AND COINTEGRATION TESTS

10.3.1 Unit Root Tests

Panels have been used to analyze regional growth convergence (e.g., Bernard
and Jones 1996, exchange rate determination (e.g., testing of purchasing power
parity hypothesis; Frankel and Rose 1996), business cycle synchronization, etc.
In such analysis the time series property of a variable is of significant interests
to economists. The statistical properties of time series estimators also depend
on whether the data is stationary or nonstationary. In the case of inference
based on time series (i.e., N = 1), the limiting distributions of most estimators
will be approximately normal when T −→ ∞ if the variables are stationary.
Standard normal, χ2 tables can be used to construct confidence intervals or
test hypotheses. If the data are nonstationary, or contain unit roots, standard
estimators will have nonstandard distributions as T −→ ∞. The conventional
Wald type test statistics cannot be approximated well by t- or χ2 distributions
(e.g., Dickey and Fuller 1979, 1981; Phillips and Durlauf 1986). Computer
simulations will have to be used to find the critical values under the null. In
cases where N is fixed and T is large, standard time series techniques can be
used and the panel aspect of the data does not pose new techniques. If N is
large, panel data provides the possibility of invoking a version of central limit
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theorem along the cross-sectional dimension. Hence, contrary to the time series
literature, the null hypothesis of panel unit root tests can be either unit root or
stationarity. However, because most applications of panel unit root tests still
follow the convention that the null of a time series of yit contain a unit root, we
shall therefore discuss only tests based on the null of unit root. For reference of
tests under the null of stationarity, see, for example, Kwiatkowski et al. (1992),
Hadri (2000), and Hadri and Larsson (2005).

10.3.1.1 Cross-Sectional Independent Data

Since Quah (1994), many people have suggested panel unit root test statistics
whenN and T are large. When cross-sectional units are independent, following
Dickey and Fuller (1979, 1981); Levin and Lin (1993) (LL); Levin, Lin, and
Chu (LLC) (2002), consider a panel extension of the null hypothesis that each
individual time series in the panel contains a unit root against the alternative
hypothesis that all individual series are stationary by considering the model


yit = αi + δi t + γiyi,t−1 +
pi∑
�=1

φi�
yi,t−� + εit , i = 1, . . . , N,
t = 1, . . . , T , (10.3.1)

where εit is assumed to be independently distributed across i and 
 denotes
the first difference operator, 1 − L, with L being the lag operator that shifts the
observation by one period,Lyit = yi,t−1. If γi = 0, then yit contains a unit root.
If γi < 0, yit is stationary. Levin and Lin (1993) specify the null hypothesis as

H0 : γ1 = γ2 = . . . = γN = 0, (10.3.2)

and the alternative hypothesis as

H1 : γ1 = γ2 = . . . = γN = γ < 0. (10.3.3)

To test H0 against H1, Levin and Lin (1993) suggest taking out the impact
of variables in (10.3.1) that are not directly relevant to the estimation of γ by
first regressing
yit and yi,t−1 on the remaining variables in (10.3.1) for each i,
providing the residuals êit and v̂i,t−1, respectively. Then estimate γ by running
the regression of the following model

êit = γ v̂i,t−1 + εit . (10.3.4)

To adjust for heteroscedasticity across i in (10.3.4), they suggest using the
least-squares estimate of γ , γ̂ , to compute the variance of êit ,

σ̂ 2
ei = (T − pi − 1)−1

T∑
t=pi+2

(êit − γ̂ v̂i,t−1)2. (10.3.5)
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Then divide (10.3.4) by σ̂ei for each i, to obtain the heteroscedasticity adjusted
model

ẽit = γ ṽi,t−1 + ε̃it , (10.3.6)

where ẽit = êit
σ̂ei
, ε̃it = εit

σ̂ei
, ṽi,t−1 = v̂i,t−1

σ̂ei
.

The t-statistic for testing γ = 0 is

tγ̃ = γ̃

sdγ̃
, (10.3.7)

where γ̃ is the least squares estimates of (10.3.6),

sdγ̃ = σ̂ε
⎡⎣ N∑
i=1

T∑
t=pi+2

ṽ2
i,t−1

⎤⎦−1/2

σ̂ 2
ε = (NT̃ )−1

N∑
i=1

T∑
t=pi+2

(ẽit − γ̃ ṽi,t−1)2,

p̄ = 1

N

N∑
i=1

pi, T̃ = (T − p̄ − 1).

Although regressing eit on vit over t for given i leads to a random variable
with non-standard distributions as T −→ ∞ (e.g., Phillips and Durlauf 1986),
averaging over i allows the invocation of central limit theorem across cross-
sectional dimension when N is large. However, tγ̃ is not centered at 0. To
correct the asymptotic bias, Levin and Lin (1993) suggest adjusting (10.3.7) by

t∗ = tγ̃ −NT̃ SN,T σ̂−2
ε · sdγ̃ · μT̃

σT̃
, (10.3.8)

where

SNT = N−1
N∑
i=1

ω̂yi

σ̂ei
, (10.3.9)

and ω̂2
yi is an estimate of the long-run variance of yi , say,

ω̂2
yi = (T − 1)−1

T∑
t=2


y2
it + 2

K̄∑
L=1

WK̄ (L)

(
(T − 1)−1

T∑
t=L+2


yit
yi,t−L

)
,

(10.3.10)



10.3 Unit Root and Cointegration Tests 389

where WK̄ (L) is the lag kernel to ensure the positivity of ω̂2
yi ; for instance,

Newey and West (1987) suggest that

WK̄ (L) =
{

1 − L
T

if L < K̄,
0 if L ≥ K̄. (10.3.11)

The μT̃ and σT̃ are mean and standard deviation adjustment terms, which are
computed by Monte Carlo simulation and tabulated in their paper. They show
that provided the augment Dickey–Fuller (1981) lag order p increases at some
rate T p where 0 ≤ p ≤ 1/4 and the lag truncation parameter K̄ increases at
rate T q where 0 < q < 1, the panel test statistic tγ̃ under the null of γ = 0
converges to a standard normal distribution as T ,N → ∞.

In the special case that αi = δi = φi� = 0, and εit is independently, identi-
cally distributed with mean 0 and variance σ 2

ε , Levin and Lin (1993), Levin et al.
(2002) show that under the null of γ = 0, T

√
Nγ̂ of the pooled least-squares

estimator, γ̂ , converges to a normal distribution with mean 0 and variance
2 and the t statistic of γ̂ converges to a standard normal as

√
N/T → 0 as

N, T → ∞ (i.e., the time dimension can expand more slowly than the cross
section). When T is fixed andN → ∞,√Nγ̂ is asymptotically biased. For the
correction of asymptotic bias of the t-statistics, see Harris and Tzaralis (1999).

Im, Pesaran, and Shin (2003) (IPS) relax the LL, LLC strong assumption
of homogeneity for (10.3.1) under the alternative (i.e., allowing γi �= γj ) by
postulating the alternative hypothesis as

H ∗
A : γi < 0 for some i, and

N0

N
= c > 0, (10.3.12)

where N0 denotes the number of cross-sectional units with γi < 0.6 Thus,
instead of pooling the data, Im et al. suggest taking the average of separate unit
root tests forN individual cross-sectional units of the augmented Dickey–Fuller
(ADF) (Dickey and Fuller 1981) t-ratios τi, τ̄ . Because τi are independent
across i, τ̄ converges to a normal distribution under the null with mean E(τ̄ )
and variance, Var (τ̄N ), as T −→ ∞ and N −→ ∞. However, the statistic
τ̄ /

√
Var (τ̄ ) is equivalent to multiplying each τi by

√
N . Although the limiting

distribution of each ADF statistic as T −→ ∞ is well defined, multiplying τi
by

√
N introduces a nonnegligble bias term as N also goes to ∞. Therefore,

IPS suggest using the statistics

Z =
√
N (τ̄ − E(τi))√

Var (τi)
. (10.3.13)

Because E(τi) and Var(τi) will vary as the lag length in the ADF regression
varies, Im et al. (2003) tabulate E(τi) and var (τi) for different lag lengths.
They show in their Monte Carlos studies that their test is more powerful than

6 Technically speaking, the alternative can be formulated for at least with one i, γi < 0. However,
the test will have no power if c → as N → ∞.
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the Levin et al. test under certain cases. However, if the null is rejected, all we
can say is that a fraction of cross-sectional units is stationary. It does not provide
explicit guidance as to the size of this fraction or the identity of cross-sectional
units that are stationary.

Alternatively, Maddala and Wu (1999) (MW) and Choi (2001) suggest using
Fisher (1932) Pλ to test the null (10.3.2) against (10.3.12) by combining the
evidence from several independent tests. The idea is as follows: Suppose there
are N unit root tests as in Im et al. (2003). Let Pi be the observed significance
level (P -value) for the ith test. Then

Pλ = −2 log Pi, (10.3.14)

has a χ2 distribution with 2N degrees of freedom as Ti → ∞ (Rao (1952, p.
44)). When N is large, Choi (2001) proposes a modified Pλ test,

Pm =
1√
N

∑N
i=1(−2 log Pi − 2)

2
, (10.3.15)

because E(−2 log Pi) = 2 and Var (−2 log Pi) = 4. Using a sequential limit
argument (Ti → ∞ followed by N → ∞), Choi (2001) shows that the Pm test
is asymptotically normally distributed with mean 0 and variance 1.

The LL test is based on homogeneity of the autoregressive parameter
(although it allows heterogeneity in the error variances and the serial corre-
lation structure of the errors). Thus the test is based on pooled regressions. On
the other hand, both the MW (or Choi) test or the IPS test are based on the
heterogeneity of the autoregressive parameter under the alternative. The tests
amount to a combination of different independent tests. However, they are all
consistent tests against either alternative. The advantage of the MW (or Choi)
test is that it does not require a balanced panel, nor the identical lag length in the
individual ADF regressions. In fact, it can be carried out for any unit root test
derived. It is nonparametric. Whatever test statistic we use for testing for a unit
root for each individual unit, we can get the P -values, Pi . The disadvantage is
that the P -values have to be derived by Monte Carlo simulation. On the other
hand, the LL and the IPS tests are parametric. Although the distribution of the
tγ̃ or τ̄ statistic involves the adjustment of the mean and variance, they are easy
to use because ready tables are available from their papers. However, these
tables are valid only for the ADF test.

The heterogeneity of panel data introduces an asymmetry in the way the null
and the alternative hypotheses are treated, which is not present in the univariate
time series models. This is because the same null hypothesis is imposed across
i but the alternative could be either homogeneous across i or be allowed to vary
with i. The IPS and MW tests allow the alternative to be heterogeneous. The
drawback of their approach is that the model is overly parameterized, in the
sense that the information contained in the unit-specific t-statistics is not used
in an efficient way. The tests will have power only if

√
N
T

= c <∞. Because
the interest is only in whether the null holds or not, Westerlund and Larsson
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(2012) consider a random specification of ρi = 1 + γi where ρi is assumed
independently identically distributed with mean μρ and variance σ 2

ρ . Under the
null of unit root,

H0 : μρ = 1 and σ 2
ρ = 0 (10.3.16)

The alternative is

H1 :μρ �= 1

or σ 2
ρ > 0

or both.

(10.3.17)

The Lagrangian multiplier (LM) test statistics of the null (10.3.16) takes the
form

LMμρ,σ 2
ρ

= LMμρ |σ 2
ρ
+ LMσ 2

ρ |μρ , (10.3.18)

where

LMμρ |σρ = (ANT )2

BNT
+ 1

2

(CNT )2

DNT
, (10.3.19)

ANT = 1√
NT

N∑
i=1

T∑
t=p+1


eitvi,t−1, (10.3.20)

BNT = 1

NT 2

N∑
i=1

T∑
t=p+1

v2
i,t−1, (10.3.21)

CNT = 1√
NT 3/2

N∑
i=1

T∑
t=p+1

[
(
eit )

2 − 1
]
v2
i,t−1, (10.3.22)

DNT = 1

NT 3

N∑
i=1

T∑
t=p+1

(
eit )
2v4
i,t−1. (10.3.23)

TheLMμρ |σ 2
ρ

can be viewed as LM test statistic for testingμρ = 1 versusμρ �=
1 given σ 2

ρ = 0. The LMσ 2
ρ |μρ is the LM test statistic for testing σ 2

ρ = 0 versus
σ 2
ρ > 0 given μe = 1. Westerlund and Larsson (2012) show that when both
N and T → ∞ and T

N
= Nθ−1 for θ > 1, under the null (10.3.16), LMσ 2

ρ |μρ
is χ2 distributed with one degree of freedom. The distribution of LMσ 2

ρ |μρ
is asymptotically independent of the limiting distribution of LMμρ |σ 2

ρ
and is

asymptotically equal to 5(κ−1)
24 times a chi-square degree 1 variable, where

κ = 1 + 1
T

∑T
t=p+1[E(ε4

it ) − 1]. If εit ∼ N (0, 1), then κ = 3 and 12
5 LMσ 2

ρ |μe is
asymptotically χ2 distributed with one degree of freedom.

When eit and vi,t−1 are unknown one can construct the feasible LM test
using êit and v̂i,t−1 as in LL test. The feasible LM is asymptotically equal to
LM test. (i.e., δi = 0 in (10.3.1)).
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Assuming the ρi random has the advantage that the number of parameters
needed to be estimated is reduced. Neither does it rule out that under the alter-
native, some of the units may be explosive. Moreover, by considering not only
the mean of ρi , but also the variance, the random coefficient formulation takes
account more information, hence is more powerful in detecting the alternative
than LL or IPS test.

In large N or small T case, it only makes sense to discuss powerful unit
root tests that are informative if either all cross-sectional units have the same
dynamic response or a significant fraction of cross-sectional units reject the null
under heterogeneity. However, to identify the exact proportion of the sample for
which the null hypothesis is rejected requires T being very large. (For further
discussion, see Pesaran 2012).

10.3.1.2 Cross-Sectionally Correlated Data

When vit are cross-sectionally dependent, the preceding tests are subject to
severe size distortion (e.g., Banerjee, Marcellino, and Osbat 2005; Breitung
and Das (2008). Chang (2002) suggests using some nonlinear transformation
of the lagged level variable, yi,t−1, F (yi,t−1) as an instrument (IV) for yi,t−1 for
the usual Dickey–Fuller type regression (10.3.1). As long as F (·) is regularly
integreable, say F (yi,t−1) = yi,t−1e

−ci |yi,t−1|, where ci is a positive constant, the
IV t-ratio

Zi = γ̂i − 1

s(γ̂i)
, (10.3.24)

will converge to a standard normal when Ti −→ ∞ where s(γ̂i) is the standard
error of the IV estimator γ̂i and Ti denotes the time series observation of the ith
unit because F (yi,t−1) tends to 0 and yi,t−1 tends to ±∞, the nonstationarity
of yi,t−1 is eliminated. Moreover, the product of F (yi,t−1) and F (yj,t−1) from
different cross-sectional units i and j are asymptotically uncorrelated even
though yi,t−1 and yj,t−1 are correlated; therefore the average IV t-ratio statistic

SN = 1√
N

N∑
i=1

Zi (10.3.25)

possesses a standard normally limiting distribution as N also tends to infinity.
When yit are correlated across cross-sectional units, Bai and Ng (2004, 2010)

and Moon and Perron (2004) consider that the cross-correlations are driven by
some common factors, f ′

t = (f1t , . . . , fkt ) that vary over time. Rewrite yit
as the sum of the impact of the common factors, b′

i f t and the idiosyncratic
component, uit ,

yit =
k∑
j=1

bijfjt + uit , (10.3.26)
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where b′
i = (bi1, . . . , bik) is a k × 1 vector of constants, uit is independent

across i with mean 0. If bi = bj = b then λt = b′ f t is the common time-
specific effects. The impact of common factors, f t , can be eliminated by
subtracting the cross-sectional mean yt = 1

N

∑N
i=1 yit from yit . If N is large,

the demeaned series can be treated as if they are uncorrelated. We shall therefore
consider the case that bi �= bj .

Bai and Ng (2004, 2010) and Moon and Perron (2004) propose testing unit
roots in both f t and uit . The factors are estimated from k principal components
of 
yit (e.g., Chapter 9, Section 9.3). Augmented Dickey–Fuller tests (ADF)
are then applied to test if f t is integrated or not (I(1) versus I(0)). If it is found
that the estimated factors contain unit roots and are not cointegrated, the N
series are integrated of order 1. If the presence of a unit root in the factors is
rejected, panel unit root tests such as the Maddala and Wu (1999) Pλ or Choi
(2001) Pm test is then applied to the defactored observations, uit , (yit − b̂

′
i f̂ t ).

7

If bi �= bj and k = 1, Pesaran (2007) suggests augmenting (10.3.1) by
the cross-sectional averaged values of ȳt−1 = 1

N

∑N
i=1 yi,t−1 and 
ȳt−j =

1
N

∑N
i=1
yi,t−j ,


yit = αi + δi t + γiyi,t−1 +
pi∑
�=1

φi�
yi,t−�
(10.3.27)

+ ci ȳt−1 +
pi∑
�=1

di�
ȳt−� + eit ,

to filter out the cross-sectional dependency, then taking the average of separate
unit root tests for N individual cross-sectional units of the augmented Dickey–
Fuller t-ratios, τi, τ̄ , as in Im et al. (2003).

When k > 1, if there exist K(≥ k − 1) observed time series wit , Kapetan-
ios, Pesaran, and Yamagata (2011) and Pesaran, Smith, and Yamagata (2013)
suggest further augmenting (10.3.1) by cross-sectional mean of wt


yit = αi + δi t + γiyi,t−1 +
pi∑
�=1


yi,t−�

+
pi∑
�=1

di�
ȳt−�

+Wt� + εit , i = 1, . . . , N

(10.3.28)

whereWt = (
w′
t , 
w′

t−1, . . . ,
w′
t−pi−1,w

′
t−1) and � is anmpi × 1 vector of

constants. Pesaran, Smith, and Yamagata (2013) suggest either constructing an

7 This approach is called PANIC (panel analysis of nonstationarity in idiosyncratic and common
components) by Bai and Ng (2004, 2010).
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IPS type test statistic by taking the average of t-statistics for γi, i = 1, . . . , N
or taking the average of the Sargan and Bhargava test statistic (SB) (1983),

SBi = T −2
T∑
t=1

S2
it /σ̂

2
i , i = 1, . . . , (10.3.29)

where

Sit =
t∑
s=1

ε̂is , σ̂
2
i =

T∑
t=1
ε̂2
it

T −K∗ ,

ε̂it is the least-squares residual of (10.3.28), andK∗ is the number of unknown
constants in (10.3.28). Each of the SBi converges to a functional of Brownian
motion which is independent of the factors as well as their loadings. Pesaran
et al. (2013) have provided the critical values of the augmented IPS and SB
tests for K = 0, 1, 2, 3 and pi = 0, 1, . . . , 4 for N, T = 20, 30, 50, 70, 100,
200.

When the process of driving cross-sectional dependence is unknown, Choi
and Chue (2007) suggest using a subsample testing procedure. They suggest to
group the sample into a number of overlapping blocks of b time periods. Using
all (T − b + 1) possible overlapping blocks, the critical value of a test statistic
is estimated by the empirical distribution of the (T − b + 1) test statistics
computed. Although the null distribution of the test statistic may depend on
the unknown nuisance parameters when T −→ ∞ andN fixed, the subsample
critical values will converge in probability to the true critical values. The
Monte Carlo simulation conducted by Choi and Chue (2007) show that the size
of the subsample test is indeed robust against various forms of cross-sectional
dependence.

All the unit root tests discussed above assume there is no structural breaks.
Structural changes are likely to happen over long horizons. Failing to con-
sider the presence of structural breaks may lead to misleading conclusions
about the order of integration of a time series. For instance, it is well known
that a stationary time series that evolves around a broken trend might be
regarded as a nonstationary process (e.g., Perron 1989). For panel unit root tests
allowing structural break with cross-sectional independent data, see, e.g. Im,
Lee, and Tieslau (2005), with cross-sectional dependent data, see, e.g. Bai and
Carrion-i-Silvestre (2009).

10.3.2 Tests of Cointegration

10.3.2.1 Residual-Based Tests

One can test the existence of cointegration relationships by testing if the residu-
als of regressing one element of wit on the rest elements of wit have a unit root
or not. For instance, if the residuals of (10.2.14) contain a unit root, wit are not
cointegrated. If the residuals are stationary, wit are cointegrated. In a time series
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framework, the null of time series unit root tests is unit root. In other words,
the null is no cointegration. Under the null, time series regression of � fails to
converge (Phillips (1986)). On the other hand, panels with large N and large
T can yield convergent estimate of �. If there is no cointegration, Kao (1999),
using a sequential limit argument (first T → ∞, followed by N → ∞), has
shown that the least-squares estimator of (10.2.14) converges to �−1


w̃�
w̃u. If
there is cointegration, then the panel fully modified within estimator (10.2.19)
or the within estimator for the lead-lag adjusted regression model (10.2.20) is
consistent and asymptotically normally distributed. Moreover, because uit is
independently distributed across i, a version of the central limit theorem can
be invoked on the cross-sectional average of a statistic. That is, even though
a statistic could have different asymptotic properties depending on whether
uit contains a unit root or not along time series dimension, the properly scaled
cross-sectional average of such a statistic is asymptotically normally distributed
as N → ∞. What this implies is that the panel null for the distribution of uit
could either be unit root (no cointegration) or stationary (cointegration).

McCoskey and Kao (1998) propose to test the null of cointegration using
the statistic

LM =
1
N

N∑
i=1

1
T 2

T∑
t=1
S+2
it

s+2
, (10.3.30)

where

S+
it =

t∑
s=1

û1is , s
+2 = 1

NT

N∑
i=1

T∑
t=1

û+2
1it ,

û1it are the estimated residuals of (10.2.14) with � estimated by either (10.2.19)
or applying the within estimator to (10.2.20) and û+

1it is the estimated residual
of (10.2.18). McCoskey and Kao (1998) show that

√
N (LM) is asymptotically

normally distributed with mean μ and variance σ 2
v , if individual units are

independent of each other where μ and σ 2
v can be found through Monte Carlo

simulations.
Kao (1999) and Pedroni (2004) propose test cointegration under the null of

no cointegration (residuals contain unit root). Kao proposes modified Dickey–
Fuller type test statistics to take account of correlations between regressors
and error or serial correlations. Pedroni (2004) considers the unit root test
statistic against “homogeneous” alternatives or “heterogeneous” alternative.
For surveys of panel unit root and cointegration tests, see Baltagi and Kao
(2000), Banerjee (1999), Breitung and Pesaran (2008), Choi (2006), etc.

10.3.2.2 Likelihood Approach

The residual-based tests can only tell if there exist cointegration relations
among elements of wit , they cannot tell the cointegration rank, nor account
the correlations across cross-sectional units. For the “homogeneous” PVAR
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model, a test of the cointegration rank can be conducted by maximizing the
(transformed) likelihood function (10.1.28) subject to either

�r = Hr�r + Br, (10.3.31)

or

�r+1 = Hr+1�r+1 + Br+1, (10.3.32)

whereHr andHr+1 are, respectively,m× (m− r) andm× (m− r − 1) matri-
ces with known elements,Br andBr+1 are, respectively,m× r andm× (r + 1)
matrices with known elements, �r and �r+1 are, respectively, r ×m and
(r + 1) ×m matrices with unknown elements. When T is fixed and N → ∞,
the likelihood ratio test statistic of cointegration rank r versus rank (r + 1) is
asymptotically χ2 distributed with (m− r)2 − (m− r − 1)2 = 2(m− r) − 1
degrees of freedom (Binder et al. 2005 (imposing � to be of rank r leaves
m2 − (m− r)2 unrestricted coefficients in �).

For the case of “heterogeneous” PVAR, the panel VEC approach discussed
in the previous section can provide a basis to test for a common rank of
cointegration on all individual units while allowing different dynamics across
the individuals and interdependencies between the different individuals.

When rank (�∗
i ) = m, (10.3.1) implies wit is stationary. For given i Johansen

(1991, 1995) provided the likelihood ratio tests for each of the restrictions r =
0, . . . , m− 1 versus stationarity (rank (�∗

i ) = m). He showed that as T −→
∞, the likelihood ratio statistic of testing rank (�∗

i ) = r versus rank (�∗
i ) = m

converges in distribution to

tr

(∫
dBm−rB ′

m−r

[∫
Bm−rB ′

m−r

]−1 ∫
Bm−rdB ′

m−r

)
, (10.3.33)

whereBm−r is an (m− r)-dimensional vector Brownian motion with an identity
covariance matrix. Larsson et al. (1998) presented a likelihood-based panel test
of cointegrating rank for heterogeneous panels based on the average of the
individual (Johansen) rank trace statistics. When N is fixed and T is large,
Groen and Kleibergen (2003) show that the likelihood ratio test of common
cointegration rank r(r = 0, 1, . . . , m− 1) across cross-sectional units versus
r = m (stationarity) converges in distribution to

N∑
i=1

LRi(r | m) =
N∑
i=1

tr

(∫
dBm−r,iB ′

m−r,i

[∫
Bm−r,iB ′

m−r,i

]−1

·
∫
Bm−r,idB ′

m−r,i

)
, (10.3.34)

where Bm−r,i is an (m− r)-dimensional Brownian motion for individual i.
They show that (10.3.34) is robust with respect to cross-sectional depen-
dence. Using a sequential limit argument (T → ∞ followed by N → ∞),
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Groen and Kleibergen (2003) show that

LR(r | m) − E(LR(r | m))√
Var (LR(r | m))

(10.3.35)

converges to a standard normal, where LR(r | m) = 1
N

∑N
i=1 LRi(r | m).

10.4 DYNAMIC SIMULTANEOUS EQUATIONS
MODELS

10.4.1 The Model

The discussions in previous sections, in particular, the panel VAR model
(10.1.1), can be considered as a reduced form specification of the panel
dynamic simultaneous equations model of the form (assuming � = 0 for ease of
exposition),

�(L)wit + Cxit = 	∗
i + �it , (10.4.1)

where xit is a K × 1 vector satisfying E(xit�′
is) = 0,

�(L) = �0 + �1L+ . . . ,+�pLp, (10.4.2)

and

�0 �= Im, (10.4.3)

with C = 0. For simplicity, we maintain the assumption that �it is indepen-
dently, identically distributed (i.i.d) across i and over t with covariance matrix
�. Model (10.4.1), in addition to the issues of (1) the presence of time-invariant
individual effects and (2) the assumption about initial observations, also (3) con-
tains contemporaneous dependence among elements of wit . Because statistical
inference can be made only in terms of observed data, the joint dependence
of observed variables raises the possibility that many observational equivalent
structures could generate the same observed phenomena (e.g. Hood and Koop-
mans 1953). To uniquely identify (10.4.1) from observed data, prior restrictions
are needed. However, the presence of 	∗

i creates correlations between wit and
all future or past wis ,	

∗
i can be removed from the system through a linear trans-

formation. For instance, taking first difference of (10.4.1) yields a system of

�(L)
wit + C
xit = 
�it . (10.4.4)

System (10.4.4) is in the form of Coweles Commission dynamic simultaneous
equations model with first-order moving average error terms; hence the usual
rank condition is necessary and sufficient to identify an equation in the system
(e.g., Hsiao 1983) if we assume that the prior information takes the form
of exclusion restrictions, that is, some variables are excluded from the gth
equation. Let [�0g, . . . , �pg, Cg] be the matrix formed from the columns of
[�0, . . . , �p, C] that are zero on the gth row. Then the necessary and sufficient
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condition for the identification of the gth equation of (10.4.1) is (e.g., Hsiao
1983),8

rank
[
�og, . . . , �pg, Cg

] = m− 1. (10.4.5)

For ease of exposition, we assume p = 1; then (10.4.1) becomes

�0wit + �1wi,t−1 + Cxit = 	∗
i + �it . (10.4.6)

When model (10.4.6) is identified, and 	∗
i is treated random and uncorrelated

with xis with known distribution, one can estimate the model by the maximum
likelihood method. The resulting estimator is consistent and asymptotically
normally distributed irrespective of how N and T → ∞. However, the MLE
involves multiple integration of the joint likelihood function over time, which
can be computationally complicated. On the other hand, conditional on 	∗

i , �it
is independently distributed across i and over t . Furthermore, one can ignore
the issue of whether α∗

i is correlated with xis or not. So we shall concentrate
on the estimation methods assuming 	∗

i fixed.
We consider the Anderson–Rubin (1949) type limited information approach

in which only the prior information on the gth equation is utilized. Let g = 1.
Because only the prior restrictions of the first equation are utilized in inference
there is no loss of to write (10.4.6) in the form,

�0 =
[

1 − �′
10

0 Im−1

]
, �1 = −

[
γ11 �′

12
�21 �22

]
,

C = −
[

c′
1

�23

]
.

(10.4.7)

We assume that the prior restrictions are in the form of exclusion restrictions
and there are at least (m− 1) elements in the vector (�′

10, γ11,�
′
12, c

′
1) which are

0 and the rank condition for the identification of the first equation is satisfied.
Premultiplying �−1

0 to (10.4.6) yields the reduced form

wit = H1wi,t−1 +H2xit + �i + vit , (10.4.8)

where H1 = −�−1
0 �1,H2 = −�−1

0 C,�i = �−1
0 	∗

i , vit = �−1
0 �it .

Taking the first difference of (10.4.6) yields

�0
wit + �1
wi,t−1 + C
xit = 
�it , t = 2, . . . , T ,

i = 1, . . . , N.
(10.4.9)

10.4.2 Likelihood Approach

For ease of notations, we assume all m elements of wit appear in the first
equation. Let �′ denote the unknown elements of the vector (�′

10, γ11,�
′
12, c

′
1).

8 The vector error correction representation (10.2.6) subject to (10.2.7) is a reduced form specifi-
cation with the prior knowledge of the rank of cointegrations among wit . For the identification
for a structural VAR and dichotomization between long-run equilibrium and short-run dynamics,
see Hsiao (2001).



10.4 Dynamic Simultaneous Equations Models 399

The likelihood approach assumes that the data-generating process of wi0 is no
different from the data-generating process of any wit ; hence

wi0 = [I −H1L]−1[H2xi0 + �i + vi0], (10.4.10)

where L denotes the lag operator, Lwit = wi,t−1. Under the assumption that
the data-generating process of xit is homogeneous (e.g., (4.3.21) or (4.5.3)),
we can write

[I −H1L]−1H2xi0 = Ax̄i + �i , (10.4.11)

where x̄i = 1
T

∑T
t=1 xit , and �i is i.i.d. across i. Substituting (10.4.11) into

(10.4.10) yields

wi0 = Ax̄i + [I −H1]−1�i + �i + [I −H1L]−1vi0. (10.4.12)

Premultiplying �0 to the 
wi1 equation yields9

�0
wi1 + Cxi1 + A∗ x̄i = �i + �i1, i = 1, . . . , N, (10.4.13)

where A∗ = �0A, �i = �0�i − (�0 + �1)(I −H1L)−1vi0.
Maximizing the log-likelihood of the system (10.4.9) and (10.4.13) involves

the complicated computation of the determinant and inversion of the covari-
ance matrix of (ξi + εi1,
εi2, . . . ,
εiT ), which takes the form of a first-order
moving average process. Therefore, instead of using the first difference, Hsiao
and Zhou (2013), following the suggestion of Grassetti (2011), use the long
difference, w∗

it = wit − wio to eliminate the individual specific effects, 	∗
i .

The alternative transformed system, making use of (10.4.12), becomes

�0w∗
it + �1w∗

i,t−1 + Cxit + A∗ x̄i = �i + �it ,

i = 1, . . . , N

t = 1, . . . , T .

(10.4.14)

The (mT × 1) error term vi = [(�i + �i1)′, . . . , (�i + �iT )′]′ has mean 0 and
covariance matrix of the form analogous to the single equation random effects
covariance matrix,

� = Eviv′
i = �ε ⊗ IT +�ξ ⊗ eT e′

T , (10.4.15)

where �ε = E(�it�′
it ),�ξ = E(�i�

′
i) and eT is a T × 1 vector (1, . . . , 1)′.

Rewrite the covariance matrix in terms of the eigenvalues �ε and �ξ∗ = �ε +
T�ξ (Chapter 5, Section 5.2 or Avery 1977),

� = �ε ⊗Q+�ξ∗ ⊗ J, (10.4.16)

whereQ = IT − 1
T

eT e′
T and J = 1

T
eT e′

T . It follows that

�−1 = �−1
ε ⊗Q+�−1

ξ∗ ⊗ J. (10.4.17)

9 Should (4.5.3) be assumed as a data-generating process for xit , then (10.4.12) should be specified
as �0
wi,t−1 + Cxit + A∗
xi = �i + �it , where 
xi = 1

T

∑T
t=1
xit .
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Thus, the log-likelihood function of the transformed system (10.4.14) takes the
multivariate analogue of the single equation log-likelihood function (3.3.19),

log = −N (T − 1)

2
log | �ε | −N

2
log | �ξ∗ |

−1

2

N∑
i=1

{
[w∗′

1i − �̃
′
Z′
i , vec (W ∗′

2i )
′ − vec (�′)′(Im−1 ⊗ X̃′

i)]�
−1

[w∗′
1i − �̃

′
Z′
i , vec (W ∗′

2i )
′ − vec (�′)′(Im−1 ⊗ X̃′

i)]
′
}
.

(10.4.18)

where W ∗
i = (w∗

1i ,W
∗
2i),W

∗
2i = (w∗

2i , . . . ,w
∗
mi),w

∗′
ji = (w∗

ji1, . . . , w
∗
jiT ), j =

1, . . . , m,Zi = (W ∗
2i , W̃

∗
i,−1, X1i , eT x̄′

i), X̃i = (W ∗
i,−1, Xi, eT x̄′

i),W
∗
i,−1 =

(W̃ ∗
i,−1,

˜̃W ∗
i,−1), W̃ ∗

i,−1 and ˜̃Wi,−1 denote the T × m̃ and T × (m− m̃) matrix
of w∗

ji,−1 = (0, w∗
ji1, . . . , w

∗
ji,T−1)′ that appear or excluded from equa-

tion 1, respectively, Xi = (X1i , X2i), X1i and X2i denote the T × k and
T × (K − k) included and excluded xit in the first equation, respectively,
�̃ = (�′, a∗′

1 ),� = (�21,�22,�23, A
∗
2), where a∗′

1 and A∗
2 denote the 1 ×K

and (m− 1) ×K of A∗ = (a∗′
1
A∗

2

)
, respectively.

The panel limited information maximum likelihood estimator (PLIML) can
be obtained by iterating between

�ε = 1

N (T − 1)

N∑
i=1

{[
w∗′

1i − ˆ̃�′
1Z

′
i , vec (W ∗′

2i ) − vec (�′)′(Im−1 ⊗ X̃′
i)
]

[
Im ⊗Q][w∗′

1i − ˆ̃�′Z′
i , vec (W ∗′

2i )
′ − vec (�′)′(Im−1 ⊗ X̃′

i)
]′}
, (10.4.19)

�̂ξ∗ = 1

N

N∑
i=1

[
ˆ̄u2
i1

ˆ̄ui1 ˆ̄u′
2i

ˆ̄u2i ˆ̄ui1 ˆ̄u2i ˆ̄u′
2i

]
, (10.4.20)

(
�̂1

vec (�̂′)

)
=
{
N∑
i=1

(
Z′
i 0

0 Im−1 ⊗ X̃′
i

)
�̂−1

(
Zi 0
0 Im−1 ⊗ X̃i

)}−1

·
{
N∑
i=1

(
Z′
i 0

0 Im−1 ⊗ X̃′
i

)
�̂−1

(
w∗

1i
vec (W ∗′

2i )

)}
,

(10.4.21)

until convergence, where �−1 = �−1
ε ⊗Q+�−1

ξ∗ ⊗ J , ūi1 = 1
T

e′
T (w∗

1i −
Zi �̃), ū′

2i = 1
T

e′
T [W ∗

2i − X̃i�′]. Hsiao and Zhou (2013) show that the PLIML
is consistent and asymptotically normally distributed centered at the true value
(i.e., no asymptotic bias) independent of the way N or T or both go to infinity.
However, if the initial value wi0 is mistakenly treated as fixed constants,
maximizing the log-likelihood function of the system (10.4.9) is consistent
and asymptotically unbiased only if N is fixed and T tends to infinity. If both
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N and T tend to infinity and N
T

→ c �= 0 <∞, the (quasi) MLE mistakenly
treating 
wi1 as fixed constants is asymptotically biased of order

√
N
T

.

10.4.3 Method of Moments Estimator

The method of moments method derives the estimator from the orthogonality
conditions:

E(qit
�′
it ) = 0 (10.4.22)

for some variables, qit . However, panel data is multidimensional. How
the sample moments approximate the population moments plays a piv-
otal role in the asymptotic distribution of a method of moments estimator.
For instance, generalization of Anderson and Hsiao (1981, 1982) (Section
4.3.3.c) simple instrumental variable estimator using the moment conditions

E
[(wi,t−2


xit

)

ε1it

] = 0, or E
[(
wi,t−2


xit

)

ε1it

] = 0, yields consistent and

asymptotically unbiased estimator of � independent of the way N or T or
both tend to infinity (for details, see Hsiao and Zhang 2013). However, wi,t−2

or 
wi,t−2 are not the only instruments that satisfy (10.4.22). All wi,t−2−j
(or 
wi,t−2−j ), j = 1, . . . , t − 2 and 
x′

i = (
x′
i2, . . . , 
x′

iT ) are legitimate
instruments. Let q′

it = (w′
i,t−2, . . . ,w

′
i0,
x′

i) and let

Di =

⎡⎢⎢⎣
qi2 0 0 · 0
0 qi3 0 · 0
· · · · 0
0 · · · qiT

⎤⎥⎥⎦ , (10.4.23)

be the R × (T − 1) block dimensional matrix, where R denotes the dimension
of (q′

i2, . . . ,q
′
iT )′; then

E(Di
�1i) = 0, i = 1, . . . , N, (10.4.24)

where 
�′
1i = (
ε1i2, . . . ,
ε1iT ) with E(
�1i) = 0 and E(
�1i
�′

1i) =
σ 2

1 Ã, σ 2
1 = E(ε2

1it ),

Ã =

⎡⎢⎢⎢⎢⎣
2 − 1 0 · 0

−1 2 − 1 · ·
0 − 1 2 · ·
· · · · ·
0 · · − 1 2

⎤⎥⎥⎥⎥⎦ .
The Arellano–Bond (1991) type GMM estimator of � is to find �̂ that minimizes(

N∑
i=1


�′
1iD

′
i

)(
N∑
i=1

DiÃD
′
i

)−1 ( N∑
i=1

Di
�1i

)
, (10.4.25)

which yields an estimator of the form (4.3.47).
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WhenT is fixed andN → ∞,√NT (�̂GMM − �) is asymptotically normally
distributed with mean 0 and covariance matrix

σ 2
1

⎧⎨⎩ 1

NT

[
N∑
i=1

Z̃′
iD

′
i

](
N∑
i=1

DiÃD
′
i

)−1 [ N∑
i=1

DiZ̃i

]⎫⎬⎭
−1

, (10.4.26)

where Z̃i = (
W2i , 
W̃i,−1,
X1i),
W2i , 
W̃i,−1 denote the T time series
stacked (
w2it , . . . , 
wmit ) and the lagged (
w1i,−1, . . . ,
wmi,−1) that
appear in the first equation respectively. However, because

E

⎡⎣( 
W2i


W̃ ′
i,−1

)
D′
i

(
N∑
i=1

DiÃD
′
i

)−1

Di
�1i

⎤⎦ �= 0, (10.4.27)

the process of removing individual-specific effects creates a second-order bias
that is of order log T . If T increases withN , it is shown by Akashi and Kunitomo
(2011, 2012) that the GMM is inconsistent if T

N
→ c �= 0 as N → ∞. Even

when c → 0, as long as T
3

N
<∞ asN → ∞,√NT (�̂GMM − �) is not centered

at 0. Monte Carlo studies conducted by Akashi and Kunitomo (2012a,b) show
that the GMM estimator is badly biased when N and T are both large.

Akashi and Kunitomo (2011, 2012) propose a panel least variance ratio
estimator (PLVAR), which is a panel generalization of Anderson and Rubin
(1949) limited information maximum likelihood estimator formula.10 They
show that when T

N
→ 0 as N → ∞, the panel least variance ratio estimator is

asymptotically normally distributed centered at the true value. They have also
derived the asymptotic bias of PLVAR when T

N
→ c �= 0. Monte Carlo studies

confirm that the PLVAR is almost median-unbiased after correcting the bias.
Whether an estimator of � multiplied by the scale factor

√
NT (the mag-

nitude of the inverse of the standard error) is centered at the true value or not
has important implication in hypothesis testing. A consistent but asymptoti-
cally biased estimataor could lead to significant size distortion in hypothesis
testing (Hsiao and Zhou 2013). The source of asymptotic bias of the Arellano–
Bond type GMM is the use of using cross-sectional mean 1

N

∑N
i=1Di
�1i to

approximate the population moments E(Di
�1i) = 0. On the other hand, the
MLE or the simple instrumental variable estimator uses all NT observations
to approximate the moment conditions (10.4.22), and hence is asymptotically
unbiased independent of the way N or T or both tend to infinity.

10 Akashi and Kunitomo (2012) actually called their estimator PLIML. However, it appears that
their estimator is more in the spirit of LVR estimator, see (10.4.18)–(10.4.21).



CHAPTER 11

Incomplete Panel Data

Thus far our discussions have been concentrated on situations in which the
sample ofN cross-sectional units over T time periods is sufficient to identify a
behavioral model. In this chapter we turn to issues of incomplete panel data. We
first discuss issues when some individuals are dropped out of the experiment
or survey. We note that when individuals are followed over time, there is a high
probability that this may occur. Because the situations where individuals are
missing for a variety of behavioral reasons have been discussed in Chapter 8,
Section 8.3, in this chapter we consider only the situations where (1) individuals
are missing randomly or are being rotated; (2) a series of independent cross-
sections are observed over time; and (3) only a single set of cross-sectional
data is available in conjunction with the aggregate time series observations. We
then consider the problems of estimating dynamic models when the length of
time series is shorter than the maximum order of the lagged variables included
in the equation.

11.1 ROTATING OR RANDOMLY MISSING DATA

In many situations we do not have complete time series observations on
cross-sectional units. Instead, individuals are selected according to a “rotat-
ing” scheme that can be briefly stated as follows: Let all individuals in
the population be numbered consecutively. Suppose the sample in period
1 consists of individuals 1, 2, . . . , N . In period 2, individuals 1, . . . , m1

(0 ≤ m1 ≤ N ) are replaced by individuals N + 1, . . . , N +m1. In period 3,
individuals m1 + 1, . . . , m1 +m2 (0 ≤ m2 ≤ N ) are replaced by individuals
N +m1 + 1, . . . , N +m1 +m2, and so on. This procedure of dropping the
first mt−1 individuals from the sample selected in the previous period and aug-
menting the sample by drawing mt−1 individuals from the population so that
the sample size remains the same continues through all periods. Hence, for T
periods, although the total number of observations remains at NT , we have
observed N +∑T−1

t=1 mt individuals.
“Rotation” of a sample of micro units over time is quite common. It can

be caused by deliberate policy of the data-collecting agency (e.g., the Bureau
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of the Census) because of the worry that if the number of times respondents
have been exposed to a survey gets large, the data may be affected and even
behavioral changes may be induced. Or it can arise because of the consideration
of optimal simple design so as to gain as much information as possible from a
given budget (e.g., Aigner and Balestra 1988; Nijman, Verbeek, and van Soest
1991). It can also arise because the data-collecting agency can neither force
nor persuade randomly selected individuals to report more than once or twice,
particularly if detailed and time-consuming reporting is required. For example,
the Survey of Income and Program Participation, which began field work in
October 1983, has been designed as an ongoing series of national panels, each
consisting of about 20,000 interviewed households and having a duration of
2.5 years. Every four months the Census Bureau will interview each individual
of age 15 years or older in the panel. Information will be collected on a
monthly basis for most sources of money and non-money income, participation
in various governmental transfer programs, labor-force status, and household
composition.

Statistical methods developed for analyzing complete panel data can be
extended in a straightforward manner to analyze rotating samples if rotation
is by design (i.e., randomly dropping and addition of individuals) and if a
model is static and the error terms are assumed to be independently distributed
across cross-sectional units. The likelihood function for the observed sam-
ples in this case is simply the product of the N +∑T−1

t=1 mt joint density of
(yiti , yi,ti+1, . . . , yiTi ),

L =
N+∑T−1

t=1 mt∏
i=1

f (yiti , . . . , yiTi ), (11.1.1)

where ti and Ti denote the first and the last periods during which the ith
individual was observed. Apart from the minor modifications of ti for 1 and Ti
for T , (11.1.1) is basically of the same form as the likelihood functions for the
complete panel data.

As an illustration, we consider a single-equation error-components model
(Biørn 1981). Let

yit = x′
it� + vit , (11.1.2)

where � and xit are k × 1 vectors of parameters and explanatory variables,
respectively, and

vit = αi + uit . (11.1.3)

The error terms αi and uit are independent of each other and are independently
distributed, with zero means and constant variances σ 2

α and σ 2
u , respectively.

For ease of exposition, we assume that αi and uit are uncorrelated with xit .1

1 If αi are correlated with xit , we can eliminate the linear dependence between αi and xit by
assuming αi = 
ta′

t xit + εi . For details, see Chapter 3 or Mundlak (1978a).
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We also assume that in each period a fixed number of individuals are dropped
out of the sample and the same number of individuals from the population are
added back to the sample (namely,mt = m for all t). Thus, the total number of
individuals observed is

H = (T − 1)m+N. (11.1.4)

Denote the number of times the ith individual is observed by qi , then qi =
Ti − ti + 1. Stacking the time series observations for the ith individual in
vector form, we have

yi = Xi� + vi , (11.1.5)

where

yi
qi×1

= (yiti , . . . , yiTi )
′, Xi

qi×k
= (x′

it ),

vi = (αi + uiti , . . . , αi + uiTi )′.
The variance–covariance matrix of vi is

Vi = σ 2
u + σ 2

α if qi = 1 (11.1.6a)

and is

Vi = Eviv′
i = σ 2

u Iqi + σ 2
αJi if qi > 1, (11.1.6b)

where Ji is a qi × qi matrix with all elements equal to 1. Then, for qi = 1,

V −1
i = (σ 2

u + σ 2
α )−1, (11.1.7a)

and for qi > 1,

V −1
i = 1

σ 2
u

[
Iqi −

σ 2
α

σ 2
u + qiσ 2

α

Ji

]
. (11.1.7b)

Because yi and yj are uncorrelated, the variance–covariance matrix of the
stacked equations (y ′

1, . . . , y
′
N+(T−1)m)′ is block-diagonal. Therefore, the GLS

estimator of β is

�̂GLS =
[
N+(T−1)m∑

i=1

X′
iV

−1
i Xi

]−1 [N+(T−1)m∑
i=1

X′
iV

−1
i yi

]
. (11.1.8)

The GLS estimator of � is equivalent to first premultiplying the observation
matrix [yi , Xi] by Pi , where P ′

i Pi = V −1
i , and then regressing Pi yi on PiXi

(Theil 1971, Chapter 6). In other words, the least-squares method is applied
to the data transformed by the following procedure: For individuals who are
observed only once, multiply the corresponding y’s and x’s by (σ 2

u + σ 2
α )−1/2.

For individuals who are observed qi times, subtract from the corresponding
y’s and x’s a fraction 1 − [σu/(σ 2

u + qiσ 2
α )1/2] of their group means, yi and xi ,

where yi = (1/qi)
∑
t yit and xi = (1/qi)

∑
t xit and then divide them by σu.
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To obtain separate estimates σ 2
u and σ 2

α we need at least one group for which
qi > 1. Let denote the set of those individuals with qi > 1, = {i | qi > 1},
and H ∗ =∑i∈ qi . Then σ 2

u and σ 2
α can be consistently estimated by

σ̂ 2
u = 1

H ∗
∑
i∈ 

T i∑
t=ti

[(yit − yi) − �̂
′
(xit − xi)]2, (11.1.9)

and

σ̂ 2
α = 1

N + (T − 1)m

N+(T−1)m∑
i=1

[
(yi − �̂

′
xi)2 − 1

qi
σ̂ 2
u

]
. (11.1.10)

Similarly, we can apply the MLE by maximizing the logarithm of the likelihood
function (11.1.1):

logL = −NT
2

log 2π − 1

2

N+(T−1)m∑
i=1

log | Vi |

− 1

2

N+(T−1)m∑
i=1

(yi −Xi�)′V −1
i (yi −Xi�)

= −NT
2

log 2π − 1

2

[
N+(T−1)m∑

i=1

(qi − 1)

]
log σ 2

u

− 1

2

N+(T−1)m∑
i=1

log(σ 2
u + qiσ 2

α )

− 1

2

N+(T−1)m∑
i=1

(yi −Xi�)′V −1
i (yi −Xi�).

(11.1.11)

Conditioning on σ 2
u and σ 2

α , the MLE is the GLS (11.1.8). Conditioning on
�, the MLEs of σ 2

u and σ 2
α are the simultaneous solutions of the following

equations:

∂log L

∂σ 2
u

= − 1

2σ 2
u

[
N+(T−1)m∑

i=1

(qi − 1)

]

− 1

2

[
N+(T−1)m∑

i=1

1

(σ 2
u + qiσ 2

α )

]

+ 1

2σ 4
u

N+(T−1)m∑
i=1

(yi −Xi�)′Qi(yi −Xi�)

+ 1

2

N+(T−1)m∑
i=1

qi

(σ 2
u + qiσ 2

α )2
(yi − x′

i�)2 = 0

(11.1.12)
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and

∂log L

∂σ 2
α

= − 1

2

N+(T−1)m∑
i=1

×
[

qi

σ 2
u + qiσ 2

α

− q2
i

(σ 2
u + qiσ 2

α )2
(yi − x′

i�)2

]
= 0

(11.1.13)

whereQi = Iqi − (1/qi)eqie
′
qi

, and eqi is a qi × 1 vector of ones. Unfortunately,
because qi are different for different i, (11.1.12) and (11.1.13) cannot be put
in the simple form of (3.3.25) and (3.3.26). Numerical methods will have to
be used to obtain a solution. However, computation of the MLEs of �, σ 2

u and
σ 2
α can be simplified by iteratively switching between (11.1.8) and (11.1.12)–

(11.1.13).
If αi are treated as fixed constants, � can be consistently estimated through

the within transformation,

�̂cv =
[
N∑
i=1

T i∑
t=ti

(xit − x̄i)(xit − x̄i)′
]−1

·
[
N∑
i=1

T i∑
t=ti

(xit − x̄i)(yit − ȳi)
]
.

(11.1.14)

If the model is dynamic, similar modification of the GMM (e.g., (4.3.47)) (e.g.,
Collado (1997); Moffitt 1993) can be applied to obtain consistent estimators of
the coefficients. The likelihood approach for dynamic models has the issue of
initial conditions.2 Different assumptions about initial conditions will suggest
different ways of incorporating new observations with those already in the
sample. If αi are treated as random, it would appear a reasonable approximation
in this case is to modify the methods based on the assumption that initial
observations are correlated with individual effects and have stationary variances
(Chapter 4, Case IVc or IVc′). However, the assumption imposed on the model
will have to be even more restrictive. If αi are treated as fixed, a similar
modification can be applied to the transform MLE (e.g., (4.5.6)).

When data are randomly missing, a common procedure is to focus on the
subset of individuals for which complete time series observations are available.
However, the subset of incompletely observed individuals also contains some
information about unknown parameters. A more efficient and computationally
somewhat more complicated way is to treat randomly missing samples in the
same way as rotating samples. For instance, the likelihood function (11.1.1),
with the modification that ti = 1 for all i, can also be viewed the likelihood
function for this situation: In time period 1 there areN +∑T−1

t=1 mt individuals;
in period 2, m1 of them randomly drop out, and so on, such that at the end
of T periods there are only N individuals remaining in the sample. Thus, the

2 For details, see Chapters 4 and 6.
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procedure for obtaining the GLS or MLE for unknown parameters with all the
observations utilized is similar to the situation of rotating samples.

To test if attrition is indeed random, we note that either the complete sample
unbalanced panel estimators discussed above or the estimators based on the
balanced panel subsample estimators converge to the true value under the null.
Under the alternative that attrition is behaviorally related, neither estimators are
consistent. However, if the individual-specific effects αi and the error uit are
independent of the regressors xit , and are independently normally distributed,
a test of random attrition versus behaviorally related attrition is a student
t-test of the significance of sample selection effect (e.g., (8.2.7)). If αi are
correlated with xit , one can construct a Hausman (1978) type test statistic for
the significance of the difference between the Kyriazidou (1997) fixed effects
sample selection estimator (e.g., (8.5.4)) and the complete sample unbalanced
panel data with estimator (11.1.14). Further, if all initial samples are observed
for at least two periods before attrition occurs, then the within estimator based
on initial complete samples within estimator and the within estimator based on
all observed samples (unbalanced panel) converge to the true value under the
null and converge to different values under the alternative. A straightforward
Hausman (1978) test statistic,

(�̂cv − �̃cvs)
′
[
Cov(�̃cvs) − Cov(�̂cv)

]−1
(�̂cv − �̃cvs) (11.1.15)

can be used to test the null of attrition being random, where �̃cvs and Cov(�̃cvs)
denote the within estimator of � and its covariance matrix based on the initial
sample from period 1 to t∗, where t∗ denotes the last time period before any
attrition (at period t∗ + 1) occurs.

11.2 PSEUDO-PANELS (OR REPEATED
CROSS-SECTIONAL DATA)

In many situations there could be no genuine panel where specific individuals or
firms are followed over time. However, repeated cross-sectional surveys may be
available, where random samples are taken from the population at consecutive
points in time. The major limitation of repeated cross-sectional data is that
individual histories are not available, so it is not possible to control the impact
of unobserved individual characteristics in a linear model of the form

yit = x′
it� + αi + uit , (11.2.1)

if αi and xit are correlated through the fixed effects estimator discussed in
Chapter 3.3 However, several authors have argued that with some additional
assumptions � may be identifiable from a single cross-section or a series of

3 If αi and xit are uncorrelated, there is no problem of consistently estimating (11.2.1) with
repeated cross-sectional data because E(αi + uit | xit ) = 0.
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independent cross-sections (e.g., Blundell, Browning, and Meghir 1994; Deaton
1985; Heckman and Robb 1985; Moffitt 1993).

Deaton (1985) suggests using a cohort approach to obtain consistent esti-
mators of � of (11.2.1) if repeated cross-sectional data are available. In this
approach individuals sharing common observed characteristics, such as age,
sex, education, or socioeconomic background are grouped into cohorts. For
instance, suppose that one can divide the sample into C cohorts in terms of
an L× 1 vector of individual characteristics, zc, c = 1, . . . , C. Let zit be the
corresponding L-dimensional vector of individual-specific variables for the ith
individual of the t th cross-sectional data. Then (yit , xit ) belong to the cth cohort
if zit = zc. Let ψct = {i | zit = zc for the t th cross-sectional data} be the set of
individuals that belong to the cohort c at time t , c = 1, . . . , C, t = 1, . . . , T .
LetNct be the number of individuals inψct . Deaton (1985) assumes individuals
belonging to the same cohort have the same specific effects,

αi =
C∑
c=1

αcditc, (11.2.2)

where ditc = 1 if the ith individual of the t th cross-sectional data belongs
to cohort c and 0 otherwise. Let ȳct = 1

Nct

∑
i∈ψct yit and x̄ct = 1

Nct

∑
iεψct

xit ,
then the data (ȳct , x̄′

ct ) becomes a pseudo-panel with repeated observations on
C cohorts over T time periods. Aggregation of observations to cohort level for
the model (11.2.1) leads to

ȳct = x̄′
ct� + αc + ūct , c = 1, . . . , C,

t = 1, . . . , T ,
(11.2.3)

where ūct = 1
Nct

∑
i∈ψct uit .

If xit are uncorrelated with uit , the within estimator (3.2.8) can be applied
to the pseudo panel

�̂w =
(

C∑
c=1

T∑
t=1

(x̄ct − x̄c)(x̄ct − x̄c)′
)−1 ( C∑

c=1

T∑
t=1

(x̄ct − x̄c)(ȳct − ȳc)
)
,

(11.2.4)

where x̄c = 1
T

∑T
t=1 x̄ct , and ȳc = 1

T

∑T
t=1 ȳct . When T → ∞ or if T is fixed

but N → ∞, C → ∞, and C
N

−→ 0, (11.2.4) is consistent.
Although the cohort approach offers a useful framework to make use of

independent cross-sectional information, there are problems with some of its
features. First, the assertion of intra-cohort homogeneity (11.2.2) appears very
strong, in particular, in view of the cohort classification is often arbitrary.
Second, the practice of establishing the large sample properties of economet-
ric estimators and test statistics by assuming that the number of cohorts, C,
tends to infinity is not satisfactory. There is often a physical limit beyond
which one cannot increase the number of cohorts. The oft-cited example
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of date of birth cohorts is a case in point. Third, grouping or aggregat-
ing individuals may result in the loss of information. Moreover, in general,
the number of individuals at different cohorts or different time are differ-
ent, Nct �= Nc′s . Even uit is homoscedastic and independently distributed,

Var (ūct ) = σ 2
u

Nct
�= Var (ūc′s) = σ 2

u

Nc′s
. Therefore, the t-statistic based on the

conventional within estimator formula is not asymptotically standard normally
distributed unless Nct = Nc′s for all c, c′, t, s, and var (uit ) is a constant across
i. Hence, the resulting inference can be misleading (Inoue 2008).

Suppose (11.2.2) indeed holds and if uit is independently, identically dis-
tributed the problem of heterocesdasticity of ūct can be corrected by applying
the weighted within estimator,

�̂ww =
{

C∑
c=1

T∑
t=1

[
Nct (x̄ct − x̄c)(x̄ct − x̄c)′

]}−1

·
{

C∑
c=1

T∑
t=1

[Nct (x̄ct − x̄c)(ȳct − ȳc)]
}
.

(11.2.5)

The variance covariance matrix of �̂ww is

Cov (�̂ww) = σ 2

{
C∑
c=1

T∑
t=1

[
Nct (x̄ct − x̄c)(x̄ct − x̄c)′

]}−1

. (11.2.6)

A cohort approach also raises a complicated issue for the estimation of a
dynamic model of the form,

yit = γyi,t−1 + x′
it� + αi + uit , (11.2.7)

because yi,t−1 is unavailable. The cohort approach will have to use the y-
values of other individuals observed at t − 1 to predict the missing yi,t−1, ŷi,t−1.
Suppose there exists a set of instruments zit such that the orthogonal projection
of yit on zit are available,

E∗(yit | zit ) = z′
it�t , (11.2.8)

where E∗(y | z) denotes the minimum mean-square-error linear predictor of y
by z. Let ŷi,t−1 = zi,t−1�̂t−1, then (11.2.7) becomes

yit = γ ŷi,t−1 + x′
it� + vit , (11.2.9)

where

vit = αi + uit + γ (yi,t−1 − ŷi,t−1). (11.2.10)

Girma (2000); Moffitt (1993); and McKenzie (2004) assume that zit = zc, are
a set of cohort dummies for all i belonging to cohort c. This is equivalent to
simply using the dummy variable ditc, as instruments for yit where ditc = 1 if
yit belongs to cohort c and 0 otherwise, for c = 1, . . . , C. Taking the average
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of yit or ŷit for i belonging to cohort c leads to the following pseudo panel
dynamic model

ȳct = γ ȳc,t−1 + αc + x̄′
ct� + vct , c = 1, . . . , C,

t = 1, . . . , T ,
(11.2.11)

where all variables denote period-by-period averages within each cohort. The
covariance estimator of (11.2.11) would be consistent estimators of γ and �
provided

Cov (vct , ȳc,t−1) = 0, (11.2.12)

and

Cov (vct , x̄ct ) = 0. (11.2.13)

However, even under the assumption (11.2.2),

E[(αi + uit )zi,t−1 | i ∈ ψc,t−1] = 0, (11.2.14)

in general,

E[(yi,t−1 − ŷi,t−1)ŷi,t−1] �= 0. (11.2.15)

Moreover, as pointed out by Verbeek (2007); Verbeek and Vella (2005) that
although under the exogeneity assumption

Cov [(αi + uit )xit ] = 0, (11.2.16)

(11.2.13) is unlikely to hold because xi,t−1 drives yi,t−1 and xit is likely to
be serially correlated. To overcome the problem of correlations between the
regressors and errors in (11.2.11), one will have to also find instruments for
xit as well. Unfortunately, the availability of such instruments in addition to
zi in many applications may be questionable (e.g., Verbeek and Vella 2005).
It remains to be seen whether in empirical applications of cohort approach
suitable instruments can be found that have time-varying relationships with
xit and yi,t−1, while in the meantime they should not have any time-varying
relationship with the error term (11.2.10) (e.g., Verbeek 2007; Verbeek and
Vella 2005).

11.3 POOLING OF SINGLE CROSS-SECTIONAL
AND SINGLE TIME SERIES DATA

11.3.1 Introduction

In this section we consider the problem of pooling when we have a single
cross-sectional and a single time series data set. Empirical studies based solely
on time series data often result in very inaccurate parameter estimates because
of the high collinearity among the explanatory variables. For instance, income
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and price time series can be highly correlated. On the other hand, a cross-
sectional data set may contain good information on household income, but not
on price, because the same price is likely to be faced by all households. Thus,
each data set contains useful information on some of the variables, but not on
all the variables to allow accurate estimates of all the parameters of interest. A
classic example of this is provided in a study (Stone 1954) of aggregate-demand
systems in which there was no cross-sectional variation in commodity prices
and inadequate time-series variation in real incomes.

To overcome the problem of lack of information on interesting parameters
from time series or cross-sectional data alone, one frequently estimates some
parameters from cross-sectional data, then introduces these estimates into time
series regression to estimate other parameters of the model. For instance, Tobin
(1950) calculated income elasticity from cross-sectional data, then multiplied
it by the time series income variable and subtracted the product from the annual
time series of quantity demand to form a new dependent variable. This new
dependent-variable series was then regressed against the time series of the price
variable to obtain an estimate of the price elasticity of demand.

The purpose of pooling here, as in the cases analyzed earlier, is to get more
efficient estimates for the parameters that are of interest. In a time series, the
number of observations is usually limited, and variables are highly correlated.
Moreover, an aggregate data set, or a single individual time series data set
does not contain information on micro-sociodemographic variables that affect
economic behavior. Neither are cross-sectional data more structurally complete.
Observations on individuals at one point in time are likely to be affected by prior
observations. These raise two fundamental problems: One is that the source
of estimation bias in cross-sectional estimates may be different from that in
time series estimates. In fact, many people have questioned the suitability and
comparability of estimates from different kinds of data (micro or aggregate,
cross section or time series) (e.g., Kuh 1959; Kuh and Meyer 1957). The second
is that if pooling is desirable, what is the optimal way to do it? It turns out that
both problems can be approached simultaneously from the framework of an
analysis of the likelihood functions (Maddala 1971b) or a Bayesian approach
(Hsiao et al. 1995).

The likelihood function provides a useful way to extract the information
contained in the sample provided that the model is correctly specified. Yet a
model is a simplification of complex real-world phenomena. To be most useful,
a model must strike a reasonable balance between realism and manageability.
It should be realistic in incorporating the main elements of the phenomena
being represented and at the same time be manageable in eliminating extrane-
ous influences. Thus, when specifying a regression equation, it is common to
assume that the numerous factors that affect the outcome of the dependent vari-
able, but are individually unimportant or unobservable, can be appropriately
summarized by a random disturbance term. However, the covariations of these
omitted variables and the included explanatory variables in a cross-sectional
regression may be different from those in a time series regression. For example,
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if high income is associated with high consumption levels and is also correlated
with age, the regression of consumption on income cross-sectionally will yield
an income coefficient that measures the joint effects of age and income on
consumption, unless age is introduced as another explanatory variable. But the
age composition of the population could either be constant or be subject only to
gradual, slow change in aggregate time series. Hence, the time series estimate
of the income elasticity, ignoring the age variable, could be smaller than the
cross-sectional estimates because of the negligible age-income correlation.

Another reason that cross-sectional and time series estimates in demand
analysis may differ is that cross-sectional estimates tend to measure long-
run behavior and time series estimates tend to measure short-run adjustment
(Kuh 1959; Kuh and Meyer 1957). The assumption is that the majority of
the observed families have enjoyed their present positions for some time, and
the disequilibrium among households tends to be synchronized in response
to common market forces and business cycles. Hence, many disequilibrium
effects wash out (or appear in the regression intercept), so that the higher
cross-sectional slope estimates may be interpreted as long-run coefficients.
However, this will not be true for time series observations. Specifically, changes
over time usually represent temporary shifts. Recipients or losers from this
change probably will not adjust immediately to their new levels. A incompletely
adjusted response will typically have a lower coefficient than the fully adjusted
response.

These observations on differential cross-sectional and time series behav-
ior suggest that the impacts of omitted variables can be strikingly different in
time series and cross sections. Unless the assumption that the random term
(representing the omitted-variables effect) is uncorrelated with the included
explanatory variables holds, the time series and cross-sectional estimates of the
common coefficients can diverge. In fact, if the time series and cross-sectional
estimates differ, this is an indication that either or both models are misspecified.
In Chapter 3 we discussed specification tests without using extraneous infor-
mation. We now discuss a likelihood approach when extraneous information in
the form of cross-sectional data for the time series model, or time series data
for the cross-sectional model, is available.

11.3.2 The Likelihood Approach to Pooling Cross-Sectional
and Time Series Data

Assume that we have a single cross section consisting of N units and a time
series extending over T time periods. Suppose that the cross-sectional model
is

yc = Z1�1 + Z2�2 + uc, (11.3.1)

where yc is an N × 1 vector of observations on the dependent variable, Z1 and
Z2 areN ×K andN × Lmatrices of independent variables, and �1 and �2 are
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K × 1 and L× 1 vectors of parameters, respectively. The N × 1 error term uc
is independently distributed, with variance–covariance matrix σ 2

u IN .
The time series model is

yT = X1�1 +X2�2 + vT . (11.3.2)

where yT is aT × 1 vector of observations on the dependent variable,X1 andX2

are T ×K and T ×M matrices of observations on the independent variables,
�1 and �2 areK × 1 andM × 1 vectors of parameters, and vT is a T × 1 vector
of disturbances.4 For simplicity, we assume that vT is uncorrelated with uc and
is serially uncorrelated, with the variance–covariance matrix EvT v′

T = σ 2
v IT .

The null hypothesis here is that �1 = �1. So with regard to the question
whether or not to pool, we can use a likelihood-ratio test. Let L∗

1 and L∗
2 denote

the maxima of the log joint likelihood functions for (11.3.1) and (11.3.2)
with and without the restriction that δ1 = β1. Then, under the null hypothesis,
2(L∗

2 − L∗
1) is asymptotically χ2 distributed, with K degrees of freedom. The

only question is: What is the appropriate level of significance? If the costs of
mistakenly accepting the pooling hypothesis and rejecting the pooling hypoth-
esis are the same, Maddala (1971b) suggested using something like a 25 to
30 percent level of significance, rather than the conventional 5 percent, in our
preliminary test of significance.

The specifications of the maximum-likelihood estimates and their variance–
covariances merely summarize the likelihood function in terms of the location
of its maximum and its curvature around the maximum. It is possible that
the information that the likelihood function contains is not fully expressed by
these. When the compatibility of cross-sectional and time series estimates is
investigated, it is useful to plot the likelihood function extensively. For this
purpose, Maddala (1971b) suggested that one should also tabulate and plot the
relative maximum likelihoods of each data set,

RM (δ1) =
Max

�
L(�1,�)

Max
�1,�

L(�1,�)
, (11.3.3)

where � represents the set of nuisance parameters, maxθ L(�1,�) denotes the
maximum of L with respect to �, given �1 and max�1,� L(�1,�) denotes the
maximum of L with respect to both �1 and �. The plot of (11.3.3) summarizes
almost all the information contained in the data on �1. Hence, the shapes and
locations of the relative maximum likelihoods will reveal more information

4 If the cross-sectional data consist of all individuals in the population, then in the year in which
cross-sectional observations are collected, the sum across individual observations of a variable
should be equal to the corresponding aggregate time-series variable. Because in most cases
cross-sectional samples consist of a small portion of the population, we shall ignore this relation
and assume that the variables are unrelated.
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about the compatibility of the different bodies of data than a single test statistic
can.

If the hypothesis �1 = �1 is acceptable, then, as Chetty (1968), Durbin
(1953), and Maddala (1971b) have suggested, we can stack (11.3.1) and (11.3.2)
together as

[
yc
yt

]
=
[
Z1

X1

]
�1 +

[
Z2

0

]
�2 +

[
0
X2

]
�2 +

[
uc
v T

]
. (11.3.4)

It is clear that an efficient method of estimating of �1, �2, and �2 is to apply
the maximum-likelihood method to (11.3.4). An asymptotically equivalent
procedure is to first apply least-squares separately to (11.3.1) and (11.3.2) to
obtain consistent estimates of σ 2

u and σ 2
v , and then substitute the estimated σ 2

u

and σ 2
v into the equation

⎡⎢⎢⎢⎣
1

σ u
yc

1

σ v
yT

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎣
1

σ u
Z1

1

σ v
X1

⎤⎥⎥⎦�1 +
⎡⎣ 1

σ u
Z2

0

⎤⎦ �2

+

⎡⎢⎣ 0

1

σ v
X2

⎤⎥⎦�2 +

⎡⎢⎢⎣
1

σ u
uc

1

σ v
vT

⎤⎥⎥⎦ (11.3.5)

and apply the least-squares method to (11.3.5).
The conventional procedure of substituting the cross-sectional estimates of

�1, �̂1c, into the time series model

yT −X1�̂1c = X2�2 + vT +X1(�1 − �̂1c), (11.3.6)

and then regressing (yT −X1�̂1c) on X2, yields only conditional estimates
of the parameters �2 – conditional on the estimates obtained from the cross-
sectional data.5 However, there is also some information about �1 in the time
series sample, and this should be utilized. Moreover, one should be careful in
the use of two-step procedures. Proper evaluation of the asymptotic variance–
covariance matrix of �2 should take account of the uncertainty (variance) in
substituting �̂1c for �1. (For details, see Chetty 1968; Hsiao et al. 1995; Jeong
1978; and Maddala 1971b.)

5 In the Bayesian framework this is analogous to making inferences based on the conditional
distribution of �2, f (�2 | �1 = �1c), whereas it is the marginal distribution of �2 that should
be used whenever �1 is not known with certainty. For details see Chetty (1968).
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11.3.3 An Example

To illustrate application of the likelihood approach to pooling, Maddala (1971b)
analyzed a simple econometric model relating to the demand for food in the
United States. The model and the data were taken from Tobin (1950).

The cross-sectional demand equation is

y1i = δ0 + δ1z1i + δ2z2i + ui, i = 1, . . . , N, (11.3.7)

where y1i is the logarithm of the average food consumption of the group of
families at a point in time, and z1i and z2i are the logarithms of the average
income of the ith family and the average family size, respectively. The time
series demand function is

y2t = β0 + β1(x1t − β2x2t ) + β3(x2t − x2,t−1) + vt , t = 1, . . . , T .

(11.3.8)

where y2t , x1t , and x2t are the logarithms of the food price index, per capita
food supply for domestic consumption, and per capita disposable income,
respectively. The income elasticity of demand, δ1, was assumed common to
both regressions, namely, δ1 = β2. The error terms ui and vt were independent
of each other and were assumed independently normally distributed, with 0
means and constant variances σ 2

u and σ 2
v , respectively.

The results of the cross-sectional estimates are

ŷ1i = 0.569 + 0.5611z1i + 0.2540z2i

(0.0297) + (0.0367)
, (11.3.9)

where standard errors are in parentheses. The results of the time series regres-
sion are

ŷ2t = 7.231 + 1.144x2t − 0.1519(x2t − x2,t−1) − 3.644x1t

(0.0612) (0.0906) (0.4010).

(11.3.10)

The implied income elasticity, δ1, is 0.314.
When the cross-sectional estimate of δ1, 0.56, is introduced into the time

series regression, the estimated β1 is reduced to −1.863, with a standard error
of 0.1358. When δ1 and β1 are estimated simultaneously by the maximum-
likelihood method, the estimated δ1 and β1 are 0.5355 and −1.64, with a

covariance

[
0.00206 0.00827

0.04245

]
.

Although there is substantial improvement in the accuracy of the estimated
coefficient using the combined data, the likelihood-ratio statistic turns out to be
17.2, which is significant at the 0.001 level with 1 degree of freedom. It strongly
suggests that in this case we should not pool the time series and cross-sectional
data.

Figure 11.1 reproduces Maddala’s plot of the relative maximum likelihood
RM (δ1) for the parameter δ1 (the income elasticity of demand) in the Tobin
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Figure 11.1. Relative maximum likelihood for the parameter δ1. Source: Mad-
dala (1971b, fig. 1).

model from cross-sectional data alone, from time series data alone, and from
the pooled sample. The figure reveals that the information on δ1 provided by
the time series data is almost as precise as that provided by the cross-sectional
data (otherwise the likelihood function would be relatively flat). Furthermore,
there is very little overlap between the likelihood functions from time series and
cross-sectional data. Again, this unambiguously suggests that the data should
not be pooled.6

Given that the time series data arise by aggregating some microeconomic
process, there cannot possibly be a conflict between the time series and cross-
sectional inferences if individual differences conditional on explanatory vari-
ables are viewed as chance outcomes. Thus, whenever the empirical results
differ systematically between the two, as in the foregoing example, this is an
indication that either or both models may be misspecified. The existence of
supporting extraneous information in the form of cross-sectional or time series
data provides an additional check to the appropriateness of a model specifica-
tion that cannot be provided by a single cross-sectional or time series data set,
because there may be no internal evidence of this omitted-variable bias. How-
ever, until a great deal is learned about the cross-sectional time series relation,

6 It should be noted that the foregoing result is based on the assumption that both ui and vt are
independently normally distributed. In practice, careful diagnostic checks should be performed
before exploring the pooling issue, using the likelihood-ratio test or relative maximum likeli-
hoods. In fact, Izan (1980) redid the analysis by allowing vt to follow a first-order autoregressive
process. The likelihood-ratio test after allowing for autocorrelation resulted in accepting the
pooling hypothesis.
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there appears no substitute for the completeness of information. Sequential
observations on a number of individuals or panel data are essential for a full
understanding of the systematic interrelations at different periods of time.

11.4 ESTIMATING DISTRIBUTED LAGS
IN SHORT PANELS7

11.4.1 Introduction

Because of technical, institutional, and psychological rigidities, often behavior
is not adapted immediately to changes in the variables that condition it. In most
cases this adaptation is progressive. The progressive nature of adaptations in
behavior can be expressed in various ways. Depending on the rationale behind
it, we can set up an autoregressive model with the current value of y being
a function of lagged dependent variables and exogenous variables, or we can
set up a distributed-lag model, with the current value of y being a function
of current and previous values of exogenous variables. Although usually a
linear distributed-lag model can be expressed in an autoregressive form, and,
similarly, as a rule any stable linear autoregressive model can be transformed
into a distributed-lag model,8 the empirical determination of time lags is very
important in applied economics. The roles of many economic measures can
be correctly understood only if we know when they will begin to take effect
and when their effects will be fully worked out. Therefore, we would like to
distinguish these two types of dynamic models when a precise specification
(or reasoning) is possible. In Chapter 4 we discussed the issues of estimating
autoregressive models with panel data. In this section we discuss estimation of
distributed-lag models (Pakes and Griliches 1984).

A general distributed-lag model for a single time series of observations is
usually written as

yt = μ+
∞∑
τ=0

βτxt−τ + ut , t = 1, . . . , T , (11.4.1)

where, for simplicity, we assume that there is only one exogenous variable,
x, and, conditional on {xt}, the ut are independent draws from a common
distribution function. When no restrictions are imposed on the lag coefficients,
one cannot obtain consistent estimates of βτ even when T → ∞, because the
number of unknown parameters increases with the number of observations.
Moreover, the available samples often consist of fairly short time series on
variables that are highly correlated over time. There is not sufficient information
to obtain precise estimates of any of the lag coefficients without specifying, a

7 The material in this section is adapted from Pakes and Griliches (1984) with permission.
8 We must point out that the errors are also transformed when we go from one form to the other

(e.g., Malinvaud 1970, Chapter 15).
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priori, that all of them are functions of only a very small number of parameters
(Koyck lag, Almon lag, etc.) (Dhrymes 1971; Malinvaud 1970).

On the other hand, when there areN time series, we can use cross-sectional
information to identify and estimate (at least some of the) lag coefficients
without having to specify a priori that the sequence of lag coefficients progresses
in a particular way. For instance, consider the problem of using panel data to
estimate the model (11.4.1), which for a given t we rewrite as

yit = μ+
t−1∑
τ=0

βτxi,t−τ + bit + uit , i = 1, . . . , N, (11.4.2)

where

bit =
∞∑
τ=0

βt+τ xi,−τ (11.4.3)

is the contribution of the unobserved presample x values to the current values
of y, to which we shall refer as the truncation remainder. Under certain assump-
tions about the relationships between the unobserved bit and the observed xit ,
it is possible to obtain consistent estimates of βτ , τ = 0, . . . , t − 1, by regress-
ing (11.4.2) cross-sectionally. Furthermore, the problem of collinearity among
xt , xt−1, . . . , in a single time series can be reduced or avoided by use of the
cross-sectional differences in individual characteristics.

11.4.2 Common Assumptions

To see under what conditions the addition of a cross-sectional dimension can
provide information that cannot be obtained in a single time series, first we note
that if the lag coefficients vary across individuals {βiτ }∞τ=0, for i = 1, . . . , N ,
and if there is no restriction on the distribution of these sequences over mem-
bers of the population, each time series contains information on only a sin-
gle sequence of coefficients. The problem of lack of information remains for
panel data. Second, even if the lag coefficients do not vary across individuals
(βiτ = βτ for i = 1, . . . , N and τ = 0, 1, 2, . . .), the (often very significant)
increase in sample size that accompanies the availability of panel data is entirely
an increase in cross-sectional dimension. Panel data sets, in fact, usually track
their observations over only a relatively short time interval. As a result, the
contributions of the unobserved presample x values to the current values of y
(the truncation remainder, bit ) are likely to be particularly important if we do
not wish to impose the same type of restrictions on the lag coefficients as we
often do when a single time-series data set is used to estimate a distributed-
lag model. Regression analysis, ignoring the unobserved truncation-remainder
term, will suffer from the usual omitted-variable bias.

Thus, to combine N time series to estimate a distributed-lag model, we
have to impose restrictions on the distribution of lag coefficients across cross-
sectional units and/or on the way the unobserved presample terms affect current
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behavior. Pakes and Griliches (1984) considered a distributed-lag model of the
form

yit = α∗
i +

∞∑
τ=0

βiτ xi,t−τ + uit , i = 1, . . . , N,

t = 1, . . . , T ,

(11.4.4)

where uit is independent of xis and is independently, identically distributed,
with mean zero and variance σ 2

u . The coefficients of α∗
i and βiτ are assumed to

satisfy the following assumptions.

Assumption 11.4.1: E(βiτ ) = βτ .
Assumption 11.4.2: Let β̄iτ = βiτ − βτ , ξit =∑∞

τ=0 β̄iτ xi,t−τ , and �′
i =

(ξi1, . . . , ξiT ); then E∗[�i | xi] = 0.

Assumption 11.4.3: E∗(α∗
i | xi) = μ+ a′xi

Here E∗(Z1 | Z2) refers to the minimum mean-square-error linear predictor
(or the projection) of Z1 onto Z2; xi denotes the vector of all observed xit . We
assume that there are �+ 1 observations on x before the first observation on y,
and the 1 × (�+ 1 + T ) vector x′

i = [xi,−�, . . . , xiT ] is an independent draw
from a common distribution with E(xix′

i) =∑xx positive definite.9

A sufficient condition for Assumption 11.4.2 to hold is that differences in lag
coefficients across individuals are uncorrelated with the xi [i.e., βiτ is a random
variable defined in the sense of Swamy (1970), or see Chapter 6]. However,
Assumption 11.4.3 does allow for individual-specific constant terms (the α∗

i ) to
be correlated with xi . The combination of Assumptions 11.4.1–11.4.3 is suffi-
cient to allow us to identify the expected value of the lag-coefficient sequence
{βτ } if both N and T tend to infinity.

If T is fixed, substituting Assumptions 11.4.1 and 11.4.2 into equation
(11.4.4), we rewrite the distributed-lag model as

yit = α∗
i +

t+�∑
τ=0

βτxi,t−τ + bit + ũit , i = 1, . . . , N,

t = 1, . . . , T ,

(11.4.5)

where bit =∑∞
τ=�+1 βt+τ xi,−τ is the truncation remainder for individual i in

period t , and ũit = ξit + uit is the amalgamated error term satisfying E∗[ũit |
xi] = 0. The unobserved truncation remainders are usually correlated with
the included explanatory variables. Therefore, without additional restrictions,
we still cannot get consistent estimates of any of the lag coefficients βτ by
regressing yit on xi,t−τ , even when N → ∞.

9 Note that assuming that there exist �+ 1 observations on x before the first observation on y is
not restrictive. If xit does not exist before time period 0, we can always let � = −1. If � has to
be fixed, we can throw away the first �+ 1 observations of y.
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Because the values of the truncation remainders bit are determined by the
lag coefficients and the presample x values, identification requires constraints
either on the lag coefficients or on the stochastic process generating these x
values. Because there usually are many more degrees of freedom available in
panel data, this allows us to use prior restrictions of different kind than in the
usual approach of constraining lag coefficients to identify truncation remainders
(e.g., Dhrymes 1971). In the next two subsections we illustrate how various
restrictions can be used to identify the lag coefficients.

11.4.3 Identification Using Prior Structure on the Process
of the Exogenous Variable

In this subsection we consider the identification of a distributed-lag model using
a kind of restriction different from that in the usual approach of constraining
lag coefficients. Our interest is focused on estimating at least some of the
population parameters βτ = E(βiτ ) for τ = 0, 1, . . . , without restricting βτ to
be a function of a small number of parameters. We consider a lag coefficient
identified if it can be calculated from the matrix of coefficients obtained from
the projection of yi onto xi , a T × (T + �+ 1) matrix labeled�, whereE∗(yi |
xi) = �∗ +�xi , �∗ = (μ∗

1, . . . , μ
∗
T )′ and y′

i = (yi1 , . . . , yiT ) is a 1 × T vector.
Equation (11.4.5) makes it clear that each row of� will contain a combina-

tion of the lag coefficients of interest and the coefficients from the projections
of the two unobserved components, α∗

i and bit , on xi . Therefore, the problem
is to separate out the lag coefficients from the coefficients defining these two
projections.

Using equation (11.4.5), the projection of yi onto xi and α∗
i is given by10

E∗(yi | xi , α∗
i ) = [B +W ]xi + [e + c]α∗

i (11.4.6)

where B is the T × (T + �+ 1) matrix of the lag coefficients

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

β�+1 β� . β1 β0 0 . . . 0
β�+2 β�+1 . β2 β1 β0 0 . . 0
. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

βT+�−1 βt+�−2 . βT+1 βT . . . β0 0
βT+� βT+�−1 . βT βT−1 . . . β1 β0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
W and c are defined by the unconstrained projection of bi = (bi1, . . . , biT )′

onto xi and α∗
i ,

E∗[bi | xi , α∗
i ] = W xi + cα∗

i . (11.4.7)

10 Note that we allow the projection of presample xi,−τ on in-sample xi and α∗
i to depend freely

on the α∗
i by permitting each element of the vector c to be different.
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Equation (11.4.6) and the fact that E∗{E∗(yi | xi , α∗
i ) | xi} = E∗[yi | xi] =

(e + c)μ+�xi imply that

� = B + [W + (e + c)a′]. (11.4.8)

where a is defined by the unconstrained projection of α∗
i onto xi , [E∗(α∗

i |
xi) = μ+ a′xi].

Clearly, if the T × (T + �+ 1) matrixW is unrestricted, we cannot separate
out the lag coefficients,B, and the impact of the truncation-remainder term from
the�matrix. But given that ca′ is a matrix of rank 1, we may be able to identify
some elements of B if there are restrictions onW . Thus, to identify some of the
lag coefficients from�, we shall have to restrictW .W will be restricted if it is
reasonable to assume that the stochastic process generating {xit }Tt=−∞ restricts
the coefficients on xi in the projection of the presample xi,−j values onto the in-
sample xi and α∗

i . The particular case analyzed by Pakes and Griliches (1984)
is given by the following assumption.11

Assumption 11.4.4: For q ≥ 1, E∗[xi,−�−q | xi , α∗
i ] = cqα∗

i +
pj=1ρ
(q)
j

xi,−�+j−1. That is, in the projection of the unseen presample x values onto xi
and α∗

i , only [xi,−�, xi,−�+1, . . . , xi,−�+p−1] have nonzero coefficients.

If cq = 0, a sufficient condition for Assumption 11.4.4 to hold is that x is
generated by a pth-order autoregressive process.12

Because each element of bi is just a different linear combination of the same
presample x values, the addition of Assumption 11.4.4 implies that

E∗[bit | xi , α∗
i ] = ctα∗

i +
p∑
j=1

wt,j−�−1xi,j−�−1, i = 1, . . . , N,

t = 1, . . . , T ,

(11.4.9)

where wt,j−�−1 = 
∞
q=1βt+�+qρ

(q)
j , j = 1, . . . , p, and ct = 
∞

q=1βt+l+qcq .
This determines the vector c and the matrix W in (11.4.7). In particular, it
implies that W can be partitioned into a T × (T + �− p + 1) matrix of zeros
and T × p matrix of free coefficients,

W =
[
W̃

T × p
...

0
T × (T + �− p + 1).

]
. (11.4.10)

Substituting (11.4.10) into (11.4.8) and taking partial derivatives of � with
respect to the leading (T + �− p + 1) lag coefficients, we can show that the
resulting Jacobian matrix satisfies the rank condition for identification of these
coefficients (e.g., Hsiao 1983, Theorem 5.1.2). A simple way to check that

11 One can use various model-selection criteria to determine p (e.g., Amemiya 1980a).
12 We note that cq = 0 implies that α∗

i is uncorrelated with presample xi .
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the leading (T + �− p + 1) lag coefficients are indeed identified is to show
that consistent estimators for them exist. We note that by construction, cross-
sectional regression of yi on xi yields consistent estimates of�. For the special
case in which cq = 0, the projections of each period’s value of yit on all in-
sample values of x′

i = (xi,−�, xi,−�+1, . . . , xiT ) are13

E∗ (yi1 | xi) = μ+
p∑
j=1

φ1,j−�−1xi,j−�−1,

E∗ (yi2 | xi) = μ+ β0xi2 +
p∑
j=1

φ2,j−�−1xi,j−�−1,

E∗ (yi3 | xi) = μ+ β0xi3 + β1xi2 +
p∑
j=1

φ3,j−�−1xi,j−�−1

...

E∗ (yiT | xi) = μ+ β0xiT + · · · + βT+�−pxi,p−� +
p∑
j=1

φT,j−�−1xi,j−�−1,

(11.4.11)

where φt,j−�−1 = βt+�+1−j + wt,j−�−1 for t = 1, . . . , T , and j = 1, . . . , p,
and for simplicity we have let p = �+ 2. The first p values of xi in each
projection have nonzero partial correlations with the truncation remainders
(the bit ). Hence, their coefficients do not identify the parameters of the lag
distribution. Only when (t + �− p + 1) > 0, the leading coefficients in each
equation are, in fact, estimates of the leading lag coefficients. As t increases,
we gradually uncover the lag structure.

When cq �= 0, the finding of consistent estimators (hence identification)
for the leading (T + �− p + 1) lag coefficients is slightly more complicated.
Substituting (11.4.9) into (11.4.5), we have

E∗ (yit | xi , α∗
i

) = (1 + ct )α∗
i +

t+�−p∑
τ=0

βτxi,t−τ

+
p∑
j=1

φt,j−�−1xi,j−�−1, t = 1, . . . , T ,

(11.4.12)

where again (for simplicity) we have assumed p = �+ 2. Conditioning
this equation on xi , and passing through the projection operator once more,

13 The coefficient of (11.4.11) is another way of writing � (11.4.8).
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we obtain

E∗ (yi1 | xi) = μ(1 + c1) + (1 + c1)
T∑

t=p−�
atxit

+
p∑
j=1

[(1 + c1)aj−�−1 + φ1,j−�−1]xi,j−�−1,

E∗ (yi2 | xi) = μ(1 + c2) + β0xi2 + (1 + c2)
T∑

t=p−�
atxit

+
p∑
j=1

[(1 + c2)aj−�−1 + φ2,j−�−1]xi,j−�−1,

...

E∗ (yiT | xi) = μ(1 + cT ) +
T+�−p∑
τ=0

βτxi,T−τ + (1 + cT )
T∑

t=p−�
atxit

+
p∑
j=1

[(1 + cT )aj−�−1 + φT,j−�−1]xi,j−�−1.

(11.4.13)

Multiplying yi1 by c̃t and subtracting it from yit , we produce the system of
equations

yit = c̃t yi1 +
t+�−p∑
τ=0

βτxi,t−τ +
p∑
j=1

φ̃t,j−�−1xi,j−�−1 + νit , (11.4.14)

for t = 2, . . . , T , where

c̃t = (1 + ct )
1 + c1

, φ̃t,j−�−1 = φt,j−�−1 − c̃tφ1,j−�−1,

and

νit = yit − c̃t yi1 − E∗(yit − c̃t yi1 | xi).

By construction, E∗(νit | xi) = 0.
For given t , the only variable on the right-hand side of (11.4.14) that is cor-

related with νit is yi1. If we know the values of {c̃t }Tt=2, the system (11.4.14) will
allow us to estimate the leading (T + �− p + 1) lag coefficients consistently
by first forming ỹit = yit − c̃t yi1 (for t = 2, . . . , T ) and then regressing this
sequence on in-sample xit values cross-sectionally. In the case in which all ct
values are identical, we know that the sequence {c̃t }Tt=2 is just a sequence of 1’s.
In the case in which α∗

i have a free coefficient in each period of the sample, we
have unknown (1 + ct ). However, we can consistently estimate c̃t , βτ , and φ̃t,j
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by the instrumental-variable method, provided there is at least one xis that is
excluded from the determinants of yit − c̃t yi1 and that is correlated with yi1. If
T ≥ 3, xi3, . . . , xiT are excluded from the equation determining (yi2 − c̃2yi1),
and provided that not all of a3 to aT are 0, at least one of them will have the
required correlation with yi1.

We have shown that under Assumptions 11.4.1–11.4.4, the use of panel
data allows us to identify the leading T + �− p + 1 lag coefficients without
imposing any restrictions on the sequence {βτ }∞τ=0. Of course, if T + � is small
relative to p, we will not be able to build up much information on the tail
of the lag distribution. This simply reflects the fact that short panels, by their
very nature, do not contain unconstrained information on that tail. However,
the early coefficients are often of significant interest in themselves. Moreover,
they may provide a basis for restricting the lag structure (to be a function of a
small number of parameters) in further work.

11.4.4 Identification Using Prior Structure on the Lag Coefficients

In many situations we may know that all βτ are positive. We may also know
that the first few coefficients β0, β1, and β2 are the largest and that βτ decreases
with τ at least after a certain value of τ . In this subsection we show how the
conventional approach of constraining the lag coefficients to be a function of
a finite number of parameters can be used and generalized for identification of
a distributed-lag model in the panel data context. Therefore, we drop Assump-
tion 11.4.4. Instead, we assume that we have prior knowledge of the structure
of lag coefficients. The particular example we use here is the one assumed by
Pakes and Griliches (1984), where the sequence of lag coefficients, after the
first few free lags, has an autoregressive structure. This restriction is formalized
as follows.

Assumption 11.4.5:

βτ =

⎧⎪⎨⎪⎩
βτ , for τ ≤ k1,

J∑
j=1
δjβτ−j , otherwise,

where the roots of the characteristic equation 1 −∑J
j=1 δjL

j = 0, say,

λ−1
1 , . . . , λ

−1
J , lie outside the unit circle.14 For simplicity, we assume that

k1 = �+ 1, and that λ1, . . . , λJ are real and distinct.

Assumption 11.4.5 implies that βτ declines geometrically after the first k1

lags. Solving the J th-order difference equation

βτ − δ1βτ−1 − · · · − δJ βτ−J = 0, (11.4.15)

14 The condition for the roots of the characteristics equation to lie outside the unit circle is to
ensure that �τ declines geometrically as τ → ∞ (e.g., Anderson 1971, their Chapter 5), so that
the truncation remember term will stay finite for any reasonable assumption on the x sequence.
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we obtain the general solution (e.g., Box and Jenkins 1970, Chapter 3)

βτ =
J∑
j=1

Ajλ
τ
j , (11.4.16)

where Aj are constants to be determined by the initial conditions of the differ-
ence equation.

Substituting (11.4.16) into (11.4.5), we write the truncation-remainder term
bit as

bit =
∞∑

τ=�+1

⎛⎝ J∑
j=1

Ajλ
t+τ
j

⎞⎠ xi,−τ
=

J∑
j=1

λtj

(
Aj

∞∑
τ=�+1

λτj xi,−τ

)

=
J∑
j=1

λtj bij ,

(11.4.17)

where bij = Aj
∑∞
τ=�+1 λ

τ
j xi,−τ . That is, we can represent the truncation

remainder bit in terms of J unobserved initial conditions (bi1, . . . , biJ ).
Thus, under Assumptions 11.4.1–11.4.3 and 11.4.5, the distributed-lag model
becomes a system of T regressions with J + 1 freely correlated unobserved
factors (α∗

i , bi1, . . . , biJ ) with J of them decaying geometrically over time.
Because the conditions for identification of a model in which there are J + 1

unobserved factors is a straightforward generalization from a model with two
unobserved factors, we deal first with the case J = 1 and then point out the
extensions required for J > 1.

When J = 1, it is the familiar case of a modified Koyck (or geometric) lag
model. The truncation remainder becomes an unobserved factor that follows
an exact first-order autoregression (i.e., bit = δbi,t−1). Substituting this result
into (11.4.5), we have

yit = α∗
i +

�+1∑
τ=0

βτxi,t−τ + β�+1

t+�∑
τ=�+2

δτ−(�+1)xi,t−τ + δt−1bi + ũit ,

(11.4.18)

where, bi = β�+1
∑∞
τ=1 δ

τ xi,−τ−�.
Recall from the discussion in Section 11.4.3 that to identify the lag parame-

ters we require a set of restrictions on the projection matrixE∗(bi | xi) = [W +
ca′]xi [equation (11.4.7)]. The Koyck lag model implies that bit = δbi,t−1,
which implies that E∗(bit | xi) = δE∗(bi,t−1 | xi); that is, wtr = δwt−1,r for
r = 1, . . . , T + �+ 1 and t = 2, . . . , T . It follows that the � matrix has
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the form

� = B∗ + �∗w∗′ + ea′, (11.4.19)

where �∗′ = [1, δ, . . . , δT−1],w∗ is the vector of coefficients from the projec-
tion of bi on xi [i.e., E∗(bi | xi) =∑T

t=−� w
∗
t xit ], and

B∗ =

⎡⎢⎢⎢⎢⎢⎢⎣
β�+1 . . β1 β0 0
δβ�+1 . . β2 β1 β0

. . . . . .

. . . . . .

. . . . . .

δT−1β�+1 . . . δT−�−1β�+1 δT−�−2β�+1

. . . . 0 0

. . . . 0 0

. . . . . .

. . . . . .

. . . . . .

. δβ�+1 β�+1 . β1 β0

⎤⎥⎥⎥⎥⎥⎥⎦ .

Taking partial derivatives of (11.4.19) with respect to unknown parameters, it
can be shown that the resulting Jacobian matrix satisfies the rank condition
for identification of the lag coefficients, provided T ≥ 3 (e.g., Hsiao 1983,
Theorem 5.1.2). In fact, an easy way to see that the lag coefficients are identified
is to note that (11.4.18) implies that

(yit − yi,t−1) − δ(yi,t−1 − yi,t−2) = β0xit + [β1 − β0(1 + δ)]xi,t−1

+
�∑
τ=2

[βτ − (1 + δ)βτ−1 + δβτ−2]xi,t−τ + νit ,

i = 1, . . . , N,

t = 1, . . . , T ,

(11.4.20)

where νit = ũit − (1 + δ)ũi,t−1 + δũi,t−2 and E∗[� i | xi] = 0. Provided T ≥
3, xi3, . . . , xiT can serve as instruments for cross-sectional regression of the
equation determining yi2 − yi1.

In the more general case, with J > 1, �∗w∗′ in (11.4.19) will be replaced
by
∑J
j=1�∗

jw
∗
j
′, where �∗

j
′ = [1, λj , . . . , λ

T−1
j ], and w∗

j is the vector of coeffi-
cients from the projection of bij on xi . Using a similar procedure, we can show
that the � matrix will identify the lag coefficients if T ≥ J + 2.

Of course, if in addition to Assumption 11.4.5 we also have information on
the structure of x process, there will be more restrictions on the�matrices than
in the models in this subsection. Identification conditions can consequently be
relaxed.
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11.4.5 Estimation and Testing

We can estimate the unknown parameters of a distributed-lag model using
short panels by first stacking all T period equations as a system of reduced-
form equations:

yi = �∗ + [IT ⊗ x′
i]
 + � i , i = 1, . . . , N,

T×1
(11.4.21)

where � i = yi − E∗[yi | xi], and 
′ = [
′
1, . . . ,


′
T ], where 
′

j is the j th row
of the matrix �. By construction, E(� i ⊗ xi) = 0. Under the assumption that
theN vectors (y′

i , x′
i) are independent draws from a common distribution, with

finite fourth-order moments and with Exix′
i = 
xx positive definite, the least-

squares estimator of 
, 
̂, is consistent, and
√
N (
̂ − 
) is asymptotically

normally distributed, with mean 0 and variance–covariance matrix�, which is
given by (3.8.11).

The models of Sections 11.4.3 and 11.4.4 imply that 
 = f (�), where �
is a vector of the model’s parameters of dimensions m ≤ (T + �+ 1). We can
impose these restrictions by a minimum-distance estimator that chooses �̂ to
minimize

[
̂ − f (�)]′�̂−1[
̂ − f (�)], (11.4.22)

where �̂ is a consistent estimator of (3.8.11). Under fairly general conditions,
the estimator �̂ is consistent, and

√
N (�̂ − �) is asymptotically normally dis-

tributed, with asymptotic variance–covariance matrix

(F ′�−1F )−1, (11.4.23)

where F = ∂ f (�)/∂�′. The identification condition ensures that F has rank
m. The quadratic form

N [
̂ − f (�̂)]′�−1[
̂ − f (�̂)] (11.4.24)

is asymptotically χ2 distributed with T (T + �+ 1) −m degrees of freedom.
Equation (11.4.24) provides us with a test of the T (T + �+ 1) −m con-

straints f (�) placed on 
. To test nested restrictions, consider the null hypoth-
esis � = g(�), where � is a k-dimensional vector (k ≤ m) of the parameters of
the restricted model. Let h(�) = f [g(�)]; that is, h embodies the restrictions
of the constrained model. Then, under the null hypothesis,

N [
̂ − h(�̂)]′�−1[
̂ − h(�̂)] (11.4.25)

is asymptotically χ2 distributed with T (T + �+ 1) − k degrees of freedom,
where �̂ minimizes (11.4.25). Hence, to test the null hypothesis, we can use
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the statistic15

N [π̂ − h(�̂)]′�̂−1[
̂ − h(�̂)]

− N [
̂ − f (�̂)]′�̂−1[
̂ − f (�̂)], (11.4.26)

which is asymptotically χ2 distributed, with m− k degrees of freedom.
To illustrate the method of estimating unconstrained distributed-lag models

using panel data, Pakes and Griliches (1984) investigated empirically the issues
of how to construct the “stock of capital (G)” for analysis of rates of return.
The basic assumption of their model is that there exists a stable relationship
between earnings (gross or net profits) (y) and past investments (x), and firms or
industries differ only in terms of the level of the yield on their past investments,
with the time shapes of these yields being the same across firms and implicit
in the assumed depreciation formula. Namely,

E∗[yit | Git , α∗
i ] = α∗

i + γGit , (11.4.27)

and

Git =
∞∑
τ=1

βiτ xit−τ . (11.4.28)

Substituting (11.4.28) into (11.4.27), we have a model that consists in regressing
the operating profits of firms on a distributed lag of their past investment
expenditures.

Using a sample of 258 manufacturing firms’ annual profit data for the years
1964–72 and investment data for the years 1961–71, and assuming that p in
Assumption 11.4.4 equals three,16 they found that the estimated lag coefficients
rose over the first three periods and remained fairly constant over the next four
or five. This pattern implies that the contribution of past investment to the capital
stock first “appreciates” in the early years as investments are completed, shaken
down, or adjusted to. This is distinctly different from the pattern implied by
the commonly used straight-line or declining-balance depreciation formula to
construct the “stock of capital.” Both formulas imply that the lag coefficients
decline monotonically in τ , with the decline being the greatest in earlier periods
for the second case.

15 See Neyman (1949) or Hsiao (1984).
16 Thus, they assume that this year’s investment does not affect this year’s profits and that there

are two presample observations (� = 1) on investment.



CHAPTER 12

Miscellaneous Topics

In this chapter we give brief introduction to some miscellaneous topics. We shall
first consider panel duration and count data models in Section 12.1 and 12.2,
respectively. Section 12.3 introduces the quantile regression model. Section
12.4 considers statistical inference using simulation methods. Section 12.5
discusses the conventional error components formulation for panels with more
than two dimensions. Section 12.6 considers issues of measurement errors
and indicates how one can take advantage of the panel structure to identify and
estimate an otherwise unidentified model. Section 12.7 discusses nonparametric
approaches for panel data modeling.

12.1 DURATION MODEL

Duration models study the length of time spent in a given state before transition
to another state, such as the length of time unemployed. The length of the
interval between two successive events is called a duration. A duration is
a nonnegative random variable, denoted by D, representing the length of a
time period spent by an individual or a firm in a given state. The cumulative
distribution function of D is defined as

F (t) = Prob(D < t)
= ∫ t

0 f (s) ds,
(12.1.1)

where

f (t) = dF (t)

dt
. (12.1.2)

Let Aits denote the event that nothing happens between time period t and
t + s for individual i; then an event of interest (say doctor visit) occurs at
t + s. Suppose the probability of event Ait,t+
 occurs where the time distance
between two adjacent time periods approaches 0 is given by

P (Ait,t+
) = μit
t. (12.1.3)

430
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Under the assumption that μit stays constant between period t and t + s,
P (Aits) = (1 − μit
t) s


t μit
t. (12.1.4)

Let n = s

t

, then 
t −→ 0, n −→ ∞. Using the identity lim
n−→∞ (1 − n−1)n =

e−1, we obtain that for small 
t ,

P (Aits) = exp (−μit s)μit
t. (12.1.5)

Supposeμit stays constant between time period 0 and t +
t , the probability
that an individual stayed in a state (say unemployment) from 0 to t and moved
out at t +
t, fi(t)
t , is given by (12.1.5). Then

Prob(Di ≥ t) = exp (−μit t). (12.1.6)

The cumulative distribution function of D,

Fi(t) = Prob(Di < t)

= 1 − Prob(Di ≥ t)
= 1 − exp(−μit t).

(12.1.7)

Hence

μit = lim

t→0

Prob[t ≤ Di < t +
t | Di ≥ t]

t

= fi(t)

1 − Fi(t) ,
(12.1.8)

where μit is called the hazard function of the duration variable Di and fi(t) =
exp(−μit t)μit . The hazard function, μit , gives the instantaneous conditional
probability of leaving the current state (the death of a process) and

Si(t) = 1 − Fi(t) = Prob[Di ≥ t], (12.1.9)

is called the survival function. Let μis be the instant hazard rate at time s, the
probability that the ith individual survives from time s to s +
s is equal to
e−μis
s ((12.1.6)). Breaking up the interval (0, t) to n subintervals, n = t


s
, and

using S(0) = 1 yields the probability that the ith individual survives at time t
equals to

n∏
s=1

exp(−μis
s) = exp

{
−

n∑
s=1

μis
s

}
. (12.1.10)

As 
s → 0, it yields the survival function as

Si(t) = exp

(
−
∫ t

0
μisds

)
. (12.1.11)

It follows that

μit = Prob(Di = t | Dit ≥ t) = −d lnSi(t)
dt

. (12.1.12)
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When μit = μi , the expected duration for the ith individual is

E(Di) =
∫ ∞

0
tμi exp (−μit)dt = 1

μi
. (12.1.13)

Suppose the data on N individuals take the form that each individual either
experiences one complete spell at time ti , that is, Di = ti , or right-censored
at time t∗i , that is, Di ≥ t∗i . Suppose μit = μi and i = 1, . . . , n complete their
spells of duration ti ; then

fi(ti) = μi exp(−μiti), i = 1, . . . , n, (12.1.14)

Suppose i = n+ 1, . . . , N are right-censored at t∗i , then

Si(t
∗
i ) = 1 − Fi(t∗i ) = exp(−μit∗i ), i = n+ 1, . . . , N. (12.1.15)

Under the assumption that cross-sectional units are independently dis-
tributed, the likelihood function for the N units takes the form,

L =
n∏
i=1

fi(ti) ·
N∏

i=n+1

[1 − Fi(t∗i )]. (12.1.16)

The hazard rate μit or μi is often assumed to be a function of socio-
demographic variables, xi . Because duration is a nonnegative random variable,
μi (or μit ) should clear to be nonnegative. A simple way to ensure this is to let

μi = exp(x′
i�). (12.1.17)

Substituting (12.1.17) into (12.1.16), one can obtain the maximum-
likelihood estimator of � by maximizing the logarithm of (12.1.16).

Alternatively, noting that

E log ti = μi
∫ ∞

0
(log t) exp(−μit) dt

= −c − log μi,

(12.1.18)

where c � 0.577 is Euler’s constant, and

Var (log ti) = E(log ti)
2 − [E log ti]

2

= π2

6
,

(12.1.19)

one can put the duration model in a regression framework,

log ti + 0.557 = −x′
i� + ui,

i = 1, . . . , n,
(12.1.20)

whereE(ui) = 0 and var (ui) = π2

6 . Consistent estimate of � can be obtained by
the least-squares method using the n subsample of individuals who experience
one complete spell. However, the least-squares estimator has covariance matrix
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π2

6

(∑n
i=1 xix′

i

)−1
, which is greater than the covariance matrix of the MLE of

(12.1.16).
Cox (1972) proposes a proportional hazard model to take account the het-

erogeneity across individuals (and over time) by letting

μit = μ(t)g(xi), (12.1.21)

where μ(t) is the so-called baseline hazard function and g(·) is a known
function of observable exogenous variables xi . To ensure nonnegativity of μit ,
a common formulation for g(xi) is to let

g(xi) = exp(x′
i�). (12.1.22)

Then

∂μit

∂xki
= βk · exp(x′

i�)μ(t) = βk · μit (12.1.23)

has a constant proportional effect on the instantaneous conditional probability
of leaving the state. However, μit = μ(t)cc−1g(xi) for any c > 0. We need to
define a reference individual. A common approach is to choose a particular
value of x = x∗ such that g(x∗) = 1.

One can simultaneously estimate the baseline hazard functionμ(t) and � by
maximizing the logarithm of the likelihood function (12.1.16). However, Cox’s
proportional hazard model allows the separation of the estimation of g(xi) from
the estimation of the baseline hazard μ(t). Let t1 < t2 < · · · < tj < · · · < tn
denote the observed ordered discrete exit times of the spell (it is referred as
failure time when the date of change is interpreted as a breakdown or a failure)
for i = 1, . . . , n, in a sample consisting of N individuals, N ≥ n, and let
t∗i , i = n+ 1, . . . , N be the censored time for those with censored durations.
Substituting (12.1.21) and (12.1.22) into the likelihood function (12.1.16) yields
Cox’s proportional hazard model likelihood function,

L =
n∏
i=1

exp(x′
i�)μ(ti) · exp[− exp(x′

i�)
∫ ti

0
μ(s)ds]

·
N∏

i=n+1

exp[−exp(x′
i�)
∫ t∗i

0
μ(s)ds]

=
n∏
i=1

exp(x′
i�)μ(ti)

· exp

⎧⎨⎩−
∫ ∞

0

⎡⎣ ∑
hεR(t�)

exp (x′
h�)

⎤⎦μ(t)dt

⎫⎬⎭
= L1 · L2,

(12.1.24)
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where

R(t�) = {i | Si(t) ≥ t�}
denotes the set of individuals who are at risk of exiting just before the �th
ordered exiting,

L1 =
n∏
i=1

exp(x′
i�)∑

hεR(ti )
exp(x′

h�)
, (12.1.25)

L2 =
n∑
i=1

⎡⎣ ∑
hεR(ti )

exp(x′
h�)μ(ti)

⎤⎦
· exp

⎧⎨⎩−
∫ ∞

0

⎡⎣ ∑
hεR(tj )

exp(x′
h�)

⎤⎦μ(s)ds

⎫⎬⎭ .
(12.1.26)

Because L1 does not depend on μ(t), Cox (1975) suggests maximizing the
partial likelihood function L1 to obtain the PMLE estimator �̂p. It was shown
by Tsiatis (1981) that the partial MLE of �, �̂p is consistent and asymptotically
normally distributed with the asymptotic covariance

Cov(�̂p) = −
[
E
∂2log L1

∂�∂�′

]−1

. (12.1.27)

Once �̂p is obtained, one can estimate μ(t) parametrically by substituting �̂p
for � in the likelihood function (12.1.16) or semiparametrically through the
relation

− log Si(ti) = x′
i� +

∫ ti

0
μ(s)ds + εi (12.1.28)

(For details, see Han and Hausman 1990 or Florens, Fougére, and Mouchart
2008).

To allow for the presence of unobserved heterogeneity, mixture models have
been proposed for the hazard rate,

μit = μ(t) exp(x′
i�)αi, αi > 0 (12.1.29)

where αi denotes an unobserved heterogeneity term for the ith individual,
independent of xi and normalized with E(αi) = 1. Common assumptions for
the heterogeneity are gamma, inverse gamma, or log-normal. Once the hetero-
geneity distribution is specified, one can integrate out αi to derive the marginal
survivor function or expected duration conditional on xi .

The idea of studying the duration of an event based on the hazard rate (instant
rate of exit) has wide applications in economics and finance, for example,
duration of a strike, unemployment, or a mortgage. It can also be applied to
predict exit of an event in the future based on current state variables. For
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instance, Duan et al. (2012) define the average exit intensity for the period
[t, t + τ ] as:

μit (τ ) = − ln[1 − Fit (τ )]

τ
, (12.1.30)

where Fit (τ ) is the conditional distribution function of the exit at time t + τ
evaluated at time t for the ith individual. (When τ = 0, μit (0) is the hazard
function defined at (12.1.8) or (12.1.12), which they call the forward intensity
rate.) Then as in (12.1.9) and (12.1.12), the average exit intensity for the period
[t, t + τ ] becomes

μit (τ ) = − ln[1 − Fit (τ )]

τ

= − ln[exp (− ∫ t+τ
t
μisds)]

τ
.

(12.1.31)

Hence the survival probability over [t, t + τ ] becomes exp [−μit (τ )τ ].
Assume μit (τ ) is differentiable with τ , it follows from (12.1.8) that the

instantaneous forward exit intensity at time t + τ is:

ψit (τ ) = F ′
it (τ )

1 − Fit (τ )
= μit (τ ) + μ′

it (τ )τ. (12.1.32)

Then μit (τ ) · τ = ∫ τ0 ψit (s)ds. The forward exit probability at time t for the
period [t + τ, t + τ + 1] is then equal to∫ 1

0
e−μit (τ+s)sψit (τ + s) ds. (12.1.33)

A firm can exit either due to bankruptcy or other reasons such as mergers
or acquisitions. In other words, ψit (s) is a combined exit intensity of default
and other exit. Let φit (τ ) denote the forward default intensity. Then the default
probability over [t + τ, t + τ + 1] at time t is∫ 1

0
e−μit (τ+s)sφit (τ + s) ds. (12.1.34)

The actual exit is recorded at discrete time, say in a month or year. Dis-
cretizing the continuous version by
t for empirical implementation yields the
forward (combined) exit probability and forward default probability at time t
for the period [t + τ, t + τ + 1] as

e−μit (τ )τ
t
[
1 − e−ψit (τ )
t

]
, (12.1.35)

and

e−μit (τ )τ
t
[
1 − e−φit (τ )
t

]
, (12.1.36)
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Table 12.1. Total number of active firms, defaults/bankruptcies, and
other exits for each year over the sample period 1991–2011

Year Active firms Defaults/bankruptcies (%) Other exit (%)

1991 4012 32 0.80 257 6.41
1992 4009 28 0.70 325 8.11
1993 4195 25 0.6 206 4.91
1994 4433 24 0.54 273 6.16
1995 5069 19 0.37 393 7.75
1996 5462 20 0.37 463 8.48
1997 5649 44 0.78 560 9.91
1998 5703 64 1.12 753 13.20
1999 5422 77 1.42 738 13.61
2000 5082 104 2.05 616 12.12
2001 4902 160 3.26 577 11.77
2002 4666 81 1.74 397 8.51
2003 4330 61 1.41 368 8.50
2004 4070 25 0.61 302 7.42
2005 3915 24 0.61 291 7.43
2006 3848 15 0.39 279 7.25
2007 3767 19 0.50 352 9.34
2008 3676 59 1.61 285 7.75
2009 3586 67 1.87 244 6.80
2010 3396 25 0.74 242 7.13
2011 3224 21 0.65 226 7.01

The number of active firms is computed by averaging over the number of active firms
across all months of the year.
Source: Duan, Sun, and Wang (2012, Table 1).

respectively with spot (instantaneous) exit intensity at time t for the period
[t, t + τ ] being

μit (τ ) = 1

τ
[μit (τ − 1)(τ − 1) + ψit (τ − 1)]. (12.1.37)

Default is only one of the possibilities for a firm to exit; φit (τ ) must be
no greater than ψit (τ ). Suppose ψit (τ ) and φit (τ ) depend on a set of macroe-
conomic factors and firm-specific attribute, xit , a convenient specification to
ensure φit (τ ) ≤ ψit (τ ) is to let

φit (τ ) = exp(x′
it�(τ )), (12.1.38)

and

ψit (τ ) = φit (τ ) + exp(x′
it�(τ )). (12.1.39)

Duan, Sun, and Wang (2012) use the monthly data (
t = 1
12 ) of 12,268 pub-

licly traded firms for the period 1991 to 2011 to predict the multiperiod ahead
default probabilities for the horizon τ from 0 to 35 months. Table 12.1 provides
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the summaries of the number of active companies, defaults/bankruptcies, and
other exits each year. The overall default rate ranges between 0.37 percent
and 3.26 percent of the firms in each sample year. Other forms of exit are
significantly higher, ranging from 4.91 percent to 13.61 percent. The macro
and firm-specific attributes for φit (τ ) and ψit (τ ) include (trailing) one-year
S&P 500 return (SP500); three-month US Treasury bill rate; the firm’s distance
to default (DTD), which is a volatility-adjusted leverage measure based on
Merton (1974) (for details, see Duan and Wang 2012); ratio of cash and short-
term investments to the total assets (CASH/TA); ratio of net income to the total
assets (NI/TA); logarithm of the ratio of a firm’s market equity value to the aver-
age market equity value of the S&P 500 firms (SIZE); market-to-book asset ratio
(M/B); one-year idiosyncratic volatility, calculated by regressing individual
monthly stock return on the value-weighted the Center for Research in Secu-
rity Prices (CRSP) monthly return over the preceding 12 months (Sigma). Both
level and trend measures for DTD, CASH/TA, NI/TA and SIZE are employed
in the empirical analysis. To take account the impact of the massive US gov-
ernmental interventions during the 2008–09 financial crisis, Duan et al. (2012)
also include a common bail out term, λ(τ )exp{−δ(τ )(t − tB)} · 1[(t − tB) > 0]
for τ = 0, 1, . . . , 11, to the forward default intensity function where tB denotes
the end of August 2008 and 1(A) is the indicator function that equals 1 if event
A occurs and 0 otherwise. Specifically

φit (τ ) = exp{λ(τ ) exp [−δ(τ )(t − tB)]1((t − tB) > 0)

+ x′
it�(τ )},

(12.1.40)

for τ = 0, 1, . . . , 11.
Assuming the firms are cross-sectional independent conditional on xit , and

ignoring the time dependence, Duan et al. (2012) obtain the estimated φit (τ )
and ψit (τ ) by maximizing the pseudo-likelihood function,

N∏
i=1

T−1∏
t=0

Lit (τ ). (12.1.41)

Let toi , τoi , and τci denote the first month that appeared in the sample, default
time, and combined exit time for firm i, respectively, Lit (τ ) is defined as,

Lit (τ ) = 1{toi ≤ t, τci > t + τ }Pt (τci > t + τ )

+ 1{toi < t, τci = τoi ≤ t + τ }Pt (τci ; τci = τoi ≤ t + τ )

+ 1{toi < t, τci �= τoi, τci ≤ t + τ }Pt (τci ; τci �= τoi
and τci ≤ t + τ ) + 1{toi > t} + 1{τci ≤ t},

(12.1.42)

Pt (τci > t + τ ) = exp

[
−
τ−1∑
s=0

ψit (s)
t

]
, (12.1.43)
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Pt (τci | τci = τoi ≤ t + τ )

=
⎧⎨⎩

1 − exp[−φit (0)
t], if τoi = t + 1,

exp

[
−
τci−t−2∑
s=0

ψit (s)
t

]
(12.1.44)

· [1 − exp[−φit (τci − t − 1)
t]}, if t + 1 < τci ≤ t + τ,

Pt (τci | τci �= τoi ≤ t + τ )

=
⎧⎨⎩

exp[−φit (0)
t] − exp [−ψit (0)
t], if τoi = t + 1,

exp[−
τci−t−2∑
s=0

ψit (s)
t]

· {exp[−φit (τci − t − 1)
t] − exp[−ψit (τci − t − 1)]},
if t + 1 < τci ≤ t + τ, (12.1.45)

with 
t = 1
12 , and ψit (s) and φit (s) take the form of (12.1.38) and (12.1.39),

respectively. The first term on the right-hand side of Lit (τ ) is the probability
of surviving both forms of exit. The second term is the probability that the firm
defaults at a particular time point. The third term is the probability that the
firm exits due to other reasons at a particular time point. If the firm does not
appear in the sample in month t , it is set equal to 1, which is transformed to 0 in
the log-pseudo-likelihood function. The forward intensity approach allows an
investigator to predict the forward exiting time of interest τ , φit (τ ), and ψit (τ )
as functions of conditional variables available at time t without the need to
predict future conditional variables.

Figure 12.1 plots each of the estimated �(τ ) and �(τ ) and its 90% confidence
interval with τ ranging from 0 month to 35 months. They show that some
firm-specific attributes influence the forward intensity both in terms of level
and trend. Figure 12.2 plot the estimated term structure of predicted default
probabilities of Lehman Brothers, Merrill Lynch, Bank of America, and the
averages of the US financial sector at several time points prior to Lehman
Brothers bankruptcy filing on September 15, 2008. The term structures for
Lehman Brothers in June 2008, three months before its bankruptcy filing, show
that the company’s short-term credit risk reached its historical high. The peak of
the forward default probability is one month. The one-year cumulative default
probability increased sharply to 8.5 percent, which is about 35 times of the
value three years earlier. This case study appears to suggest that the forward
intensity model is quite informative for short prediction horizons.

12.2 COUNT DATA MODEL

The count data model is the dual of the duration model. The duration model
considers the probability that an event stays for certain time period before
another event occurs. The count data models consider the probability that a
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Figure 12.1. Parameter estimates for the forward default intensity function.
The solid line is for the parameter estimates and the dotted lines depict the
90% confidence interval. Source: Duan, Sun, and Wang (2012, Fig. 1).

certain number of an event would occur during a fixed period of time. Under the
assumption that the instant arrival rate isμit . The probability of the nonnegative
integer count number yit in a unit interval is given by a Poisson process.

P (yit ) = e−μit (μit )yit

yit !
, yit = 0, 1, 2, . . . (12.2.1)

To see this, suppose yit = 2. Let t + s1 and t + s1 + s2 be the time that the
first and the second occurrence of the event of interest. Then 0 ≤ s1 < 1, 0 <
s2 < 1 − s1, and the probability that yit = 2 is equal to the probability that one
event occurs at t + s1, another at t + s1 + s2 (or s2 between 0 and 1 − s1), and
no event occurs between t + s1 + s2 and t + 1),

P (yit = 2) =
∫ 1

0
μit exp (−μit s1)

{∫ 1−s1

0
μit exp [−μit s2]

·exp[−μit (1 − s1 − s2)]ds2

}
ds1

= (μit )2e−μit

2
.

(12.2.2)
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Figure 12.1 (continued).

Similarly, one can show that

P (yit = r) = (μit )r exp (−μit )
r!

. (12.2.3)

The Poisson model implies yit is independent over time,

Prob(yit = r | yi,t−s = �) = P (yit = r), (12.2.4)

E(yit ) = μit , (12.2.5)

and

Var(yit ) = μit . (12.2.6)
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Figure 12.2. Lehman Brothers’ term structure of forward and cumulative
default probabilities. This figure shows the estimated term structure of forward
default probabilities and that of cumulative default probabilities for Lehman
Brothers, Merrill Lynch, Bank of America as well as the average values of
the financial sector at 36 months, 24 months, 12 months, and 3 months before
Lehman Brothers’ bankruptcy filing date (September 15, 2008). Source: Duan,
Sun, and Wang (2012, Fig. 4).

Therefore, under the assumption that yit is independently distributed across i,
the log-likelihood function is given by

log L =
N∑
i=1

T∑
t=1

[yit log (μit ) − μit − log (yit !)] (12.2.7)

The intensity μit is often assumed a function of K strictly exogenous vari-
ables, xit , and individual-specific effects, αi . Becauseμit has to be nonnegative,
two popular specifications to ensure nonnegativeμit without the need to impose
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restrictions on the parameters are to let

μit = exp(x′
it� + αi), (12.2.8)

or to let

μit = αi exp(x′
it�), αi > 0 (12.2.9)

and E(αi) = 1.
When αi is treated random and independent of xit with known density

function g(α), the marginal distribution of (yi1, . . . , yiT ) takes the form

f (yi1, . . . , yiT ) =
∫ T∏

t=1

[
(μit )yit exp(−μit )

yit !

]
g(α)dα. (12.2.10)

The MLE of � is consistent and asymptotically normally distributed either N
or T or both tend to infinity. However, the computation can be tedious because
the need to take multiple integration. For instance, suppose g(α) has gamma
density g(α) = αν−1 exp(−α)/�(ν) with E(α) = 1 and variance ν(ν > 0).
When T = 1 (cross-sectional data),

f (yi) = [exp(x′
i�)]yi�(yi + ν)

yi!�(ν)

(
1

exp(x′
i�) + ν

)yi+ν
, i = 1, . . . , N,

(12.2.11)

has a negative binomial distribution. But if T > 1, (12.2.10) no longer has
the closed form. One computationally simpler method to obtain consistent
estimator of � is to ignore the serial dependence of yit because of the presence
of αi by considering the marginal (or unconditional) distribution of yit . For
instance, if μit takes the form of (12.2.9) and α is gamma distributed, then the
unconditional distribution of yit takes the form of (12.2.11). Maximizing the
pseudo-joint likelihood function

∏N
i=1

∏T
t=1 f (yit ) yields consistent estimator

of � either N or T or both tend to infinity. The pseudo-MLE can also be used
as initial values of the iterative schemes to obtain the MLE.

Conditional on αi , the log-likelihood function remains of the simple form
(12.2.7). When αi is treated as fixed and μit takes either the form (12.2.8) or
(12.2.9), the maximum-likelihood estimator of � and ηi , where ηi = exp(αi)
or ηi = αi if μit takes the form (12.2.8) or (12.2.9), respectively, are obtained
by simultaneously solving the first-order conditions

∂ log L

∂ηi
=

T∑
t=1

[
yit

ηi
− exp(x′

it�)

]
= 0, i = 1, . . . , N, (12.2.12)

∂ log L

∂�
=

N∑
i=1

T∑
t=1

[yit − ηi exp(x′
it�)]xit = 0. (12.2.13)

Solving (12.2.12) yields the MLE of ηi conditional on � as

η̂i = ȳi

μ̄i
, i = 1, . . . , N. (12.2.14)
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where ȳi = T −1∑T
t=1 yit , μ̄i = T −1∑T

t=1 exp(x′
it�). Substituting η̂i for ηi in

(12.2.13), the MLE of � is the solution to

N∑
i=1

T∑
t=1

[
yit − ȳi

ˆ̄μi
exp(x′

it �̂)

]
xit = 0, (12.2.15)

where ˆ̄μi = 1
T

∑T
t=1 exp(x′

it �̂). When �̂ = �, (12.2.15) is equivalent to

plim
N−→∞

1

N

N∑
i=1

T∑
t=1

[
uit − ūi

μ̄i
exp(x′

it�)

]
xit = 0, (12.2.16)

where

uit = yit − E(yit | xit , αi),

= yit − ηi exp(x′
it�),

(12.2.17)

and ūi = 1
T

∑T
t=1 uit .

The strict exogeneity of xit implies that

E(yit | xit , αi) = E(yit | xi , αi), (12.2.18)

where xi = (x′
i1, . . . , x′

iT )′. Therefore, E(uit | xi) = 0, and hence (12.2.17)
follows. However, the MLE of αi (or ηi) is consistent only when T −→ ∞.

The sufficient statistic for ηi is
∑T
t=1 yit . Conditional on

∑T
t=1 yit , the

Poisson conditional log-likelihood function is given by (Hausman, Hall, and
Griliches 1984)

log L∗ =
N∑
i=1

T∑
t=1

�(yit + 1) −
N∑
i=1

T∑
t=1

yit log

{
T∑
s=1

exp[−(xit − xis)′�]

}
,

(12.2.19)

where �(·) is the gamma function. Equation (12.2.19) no longer involves the
incidental parameters αi . Maximizing (12.2.19) yields consistent and asymp-
totic normally distributed estimator under the usual regularity conditions. As
a matter of fact, ∂ log L∗

∂�
is identical to (12.2.16) (for details, see Windmeijer

(2008)).
The limitations of Poisson models are the mean-variance equality restriction

((12.2.5) and (12.2.6)) and conditional on αi, yit independent of yi,t−1. These
features often contradict to the observed phenomena that the (conditional)
variance usually exceeds the (conditional) mean and yit are not independent of
yi,t−1. The introduction of individual-specific effects, αi , partially get around
the overdispersion problem. For instance, under the assumption that μit takes
the form of (12.2.9) and αi follows a gamma distribution, (12.2.11) leads to

E(y | x) = exp(x′�) (12.2.20)

and

Var (y | x) = exp(x′�)[1 + ν exp (x′�)] > E(y | x). (12.2.21)
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One way to explicitly take account of serial dependence of yit is to include
lagged yi,t−1 into the specification of the mean arrival function μit . However,
inclusion of the lagged dependent variable in an exponential mean function may
lead to rapidly exploding series. Crépon and Duguet (1997) suggest specifying

μit = h(yi,t−1) exp(x′
it� + αi). (12.2.22)

Possible choice for h(·) could be

h(yi,t−1) = exp(γ (1 − di,t−1)), (12.2.23)

or

h(yi,t−1) = exp(γ1�n(yi,t−1 + cdi,t−1) + γ2di,t−1), (12.2.24)

where c is a pre-specified constant, dit = 1 if yit = 0 and 0 otherwise. In this
case, �nyi,t−1 is included as a regressor for positive yi,t−1, and 0 values of yi,t−1

have a separate effect on current values of yit . Alternatively, Blundell, Griffith,
and Windmeijer (2002) propose a linear feedback model of the form

μit = γyi,t−1 + exp(x′
it� + αi). (12.2.25)

Unfortunately, neither specification leads to easy to device MLE (because of the
complications in formulating the distribution for the initial values) or moment
conditions (because of the nonlinear nature of the moment functions).

Another often observed phenomena in data is that there is a much larger
probability mass at the 0 (count) value than predicted by the Poisson model.
One way to deal with this “excess zeros” in the data is to assume a two-part
model or zero-inflated model in which the 0’s and the positives come from
two different data-generating process (e.g., Gurmu and Trivedi 1996; Harris
and Zhao 2007), in which the probability of y = 0 or not is given by a binary
process, say F ∗

1 (0) and (1 − F ∗
1 (0)), and the probability y takes the count

values of 0,1,2, . . . from the count probability F2(y = r). Then the two part
model assumes

Prob(y = 0) = F ∗
1 (0) (12.2.26)

Prob(y = r) = [1 − F ∗
1 (0)]F2(y = r), r ≥ 1. (12.2.27)

The zero-inflated model assumes the zero-inflated model has probability

P (y = 0) = F ∗
1 (0) + [1 − F ∗

1 (0)]F2(y = 0) (12.2.28)

and

P (y = r) = [1 − F ∗
1 (0)]F ∗

2 (y = r) if r ≥ 1. (12.2.29)

For additional discussions on modifying Poisson model to take account endo-
geneity, etc., see Trivedi and Munkin (2011) and Windmeijer (2008).
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12.3 PANEL QUANTILE REGRESSION

The τ th quantile of a random variable y, yτ , for 0 < τ < 1 is defined as

Prob(y ≤ yτ ) =
∫ yτ

−∞
f (y)dy = F (yτ ) = τ, (12.3.1)

where f (y) denotes the probability density function of y. The sample location
quantiles estimator for the τ th sample quantile, 0 < τ < 1, for N random
sample yi is the solution to the minimization problem

Min
c

⎧⎨⎩∑
i∈ψc

τ | yi − c | +
∑
i∈ψ̄c

(1 − τ ) | yi − c |
⎫⎬⎭ (12.3.2)

where ψc = {i | yi ≥ c} and ψ̄c = {i | yi < c}.
As N → ∞, eq. (12.3.2) divided by N converges to

S(c) = (1 − τ )
∫ c

−∞
| y − c | f (y) dy

+ (τ )
∫ ∞

c

| y − c | f (y) dy.

(12.3.3)

Suppose 0 < c < yτ . For y < c, | y − c |=| y − yτ | − | yτ − c |. For c <
y < yτ , | y − c |=| yτ − c | − | y − yτ |. For y > yτ , | y − c |=| y − yτ |
+ | yτ − c |. Equation (12.3.3) can be written as

S(c) = (1 − τ )
∫ c

−∞
| y − c | f (y) dy

+ τ
∫ yτ

c

| y − c | f (y) dy

+ τ
∫ ∞

yτ

| y − c | f (y) dy

= S(yτ )+ | yτ − c | (τ − F (c)) −
∫ yτ

c

| y − yτ | f (y)dy

≥ S(yτ ),

(12.3.4)

where S(yτ ) = (1 − τ )
∫ yτ
−∞ |y − yτ |f (y)dy + τ ∫∞

yτ
|y − yτ |f (y)dy. Simi-

larly, one can show that for other values of c where c �= yτ , S(c) ≥ S(yτ ).
Therefore, as N → ∞, the solution (12.3.2) yields a consistent estimator
of yτ .

Koenker and Bassett (1978) generalize the ordinary notion of sample quan-
tiles based on an ordering sample observations to the regression framework

min
b

⎧⎨⎩∑
i∈ψb

τ | yi − x′
ib | +

∑
i∈ψ̄b

(1 − τ ) | yi − x′
ib |
⎫⎬⎭ , (12.3.5)
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where ψb = {i | yi ≥ x′
ib} and ψ̄b = {i | yi < x′

ib}. When τ = 1
2 , the quantile

estimator (12.3.5) is the least absolute deviation estimator. Minimizing (12.3.5)
can also be written in the form

Min
b

N∑
i=1

ρτ (yi − xib), (12.3.6)

where ρτ (u) := [τ − 1(u ≤ 0)]u, and 1(A) = 1 if A occurs and 0 otherwise.
Equation (12.3.6) is equivalent to the linear programming form,

Min [τe′u+ + (1 − τ )e′u−] (12.3.7)

subject to

y = Xb + u+ − u−, (12.3.8)

(u+,u−) ∈ R2N
+ , (12.3.9)

where e is an N × 1 vector of (1, . . . ,1), R2N
+ denotes the positive quadrant

of the 2N dimensional real space such that if u+
i > 0, u−

i = 0 and if u−
i >

0, u+
i = 0. Sparse linear algebra and interior point methods for solving large

linear programs are essential computational tools.
The quantile estimator for the panel data model,

yit = x′
it� + αi + uit , i = 1, . . . , N,

t = 1, . . . , T ,
(12.3.10)

is the solution of

Min
b(τ ),αi (τ )

N∑
i=1

T∑
t=1

ρτ (yit − x′
itb(τ ) − αi(τ )), (12.3.11)

where

Qτ (yit | xit , αi) = x′
itb(τ ) + αi(τ ) (12.3.12)

is the τ th conditional quantile.
The main idea of regression quantile is to break up the common assumption

that uit are independently, identically distributed. The conditional quantile
(12.3.12) provides information on how x influence the location, scale and
shape of the conditional distribution of the response. For instance,

uit = (1 + x′
it�)εit , (12.3.13)

where x′
it� > 0 and �it has distribution function Fε(·). Then

Qτ (yit | xit , αi) = x′
it

(
� + �F−1

ε (τ )
)+ (αi + F−1

ε (τ )
)

= x′
it�(τ ) + αi(τ ).

(12.3.14)

In other words, (12.3.14) is just a straightline describing the τ th quantile of
yit given xit . One should not confuse (12.3.14) with the traditional meaning of
E(yit | xit , αi).
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Kato, Galvao, and Montes-Rojas (2012) show that the quantile estimator
of (b(τ ), αi(τ )) of (12.3.11) is consistent and asymptotically normally dis-
tributed provided N2(log N)3

T
−→ 0 as N −→ ∞. The requirement that the

time-dimension of a panel, T , to grow much faster than the cross-sectional
dimension, N , as N increases is because directly estimating the individual-
specific effects significantly increases the variability of the estimates of b(τ ).
Standard linear transformation procedures such as first-differencing or mean
differencing are not applicable in quantile regression. Koenker (2004) noted
that shrinking the individual-specific effects toward a common mean can reduce
the variability due to directly estimating the large number of individual-specific
effects. He suggested a penalized version of (12.3.11),

Min
b(τ ),αi (τ )

N∑
i=1

T∑
t=1

ρτ (yit − x′
itb(τ ) − αi(τ )) + d

N∑
i=1

| αi(τ ) | (12.3.15)

The penalty d |∑N
i=1 αi(τ ) | serves to shrink the individual effects estimates

toward zero. When d −→ 0, (12.3.15) yields the quantile fixed effects estima-
tor (12.3.11). When d −→ ∞, α̂i(τ ) −→ 0 for all i = 1, . . . , N . Minimizing
(12.3.15) leads to improved performance for the estimates of the slope param-
eter �(τ ).

One trouble with (12.3.11) or (12.3.15) is that the individual-specific effects
could change because the realized value of yit at different time periods could
fall into different quantiles. One way to get around this problem is to view the
individual-specific effect summarizing the impact of some time-invariant latent
variables while the error, uit , bounces the responses yit around from quantile to
quantile. In other words, we condition not only on the observed covariates, xit ,
but also on the individual fixed effects, αi , and replace the objective function
(12.3.15) by pooling the estimates of individual quantile through

Min
J∑
j=1

N∑
i=1

T∑
t=1

ωjρτj (yit − x′
itb(τ ) − αi) + d

N∑
i=1

| αi |, (12.3.16)

where ωj is a relative weight given to the τj -th quantile. Monte Carlo stud-
ies show that shrinking the unconstrained individual-specific effects toward a
common value helps to achieve improved performance for the estimates of the
individual-specific effects and b(τj ).

Although introducing the penalty factor d
∑N
i=1 | αi(τ ) | achieves the

improved performance of panel quantile estimates, deciding d is a challenging
question. Lamarche (2010) shows that when the individual-specific effects αi
are independent of xit the penalized quantile estimator is asymptotically unbi-
ased and normally distributed if the individual-specific effects, αi , are drawn
from a class of zero-median distribution functions. The regularization param-
eter, d, can thus be selected accordingly to minimize the estimated asymptotic
variance.
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12.4 SIMULATION METHODS

Panel data contains two dimensions – a cross-sectional dimension and a time
dimension. Models using panel data also often contain unobserved hetero-
geneity factors. To transform a latent variable model involving missing data,
random coefficients, heterogeneity, etc., into an observable model often requires
the integration of latent variables over multiple dimensions (e.g., Hsiao 1989,
1991a,b, 1992a). The resulting panel data model estimators can be quite dif-
ficult to compute. Simulation methods have been suggested to get around the
complex computational issues involving multiple integrations (e.g., Geweke
1991; Gourieroux and Monfort 1996; Hajivassiliou 1990; Hsiao and Wang
2000; Keane 1994; McFadden 1989; Pakes and Pollard 1989; and Richard and
Zhang 2007).

The basic idea of simulation approach is to rely on the law of large numbers
to obtain the approximation of the integrals through taking the averages of
random drawings from a known probability distribution function. For instance,
consider the problem of computing the conditional density function of yi given
xi , f (yi | xi ; �) or some conditional moments m(yi , xi ; �) say E(yi | xi ; �)
or E(yi y

′
i | xi ; �), where � is the vector of parameters characterizing these

functions. In many cases, it is difficult to compute these functions because
they do not have closed forms. However, if the conditional density or moments
conditional on x and another vector �, f ∗(yi | xi ,�; �) or m∗(y, x | �; �), have
closed forms and the probability distribution of �, P (�), is known, then from

f (yi | xi ; �) =
∫
f ∗(yi | xi ,�; �)dP (�), (12.4.1)

and

m(yi , xi ; �) =
∫

m∗(yi , xi | �; �)dP (�), (12.4.2)

we may approximate (12.4.1) and (12.4.2) by

f̃H (yi | xi ; �) = 1

H

H∑
h=1

f ∗(yi | xi ,�ih; �), (12.4.3)

and

m̃H (yi , xi ; �) = 1

H

H∑
h=1

m∗(yi , xi | �ih; �), (12.4.4)

where (�i1, . . . ,�iH ) are H random draws from P (�).
For example, consider the random effects panel Probit and Tobit models

defined by the latent response function

y∗
it = �′xit + αi + uit , (12.4.5)

where αi and uit are assumed to be independently normally distributed with
mean 0 and variance σ 2

α and 1, respectively, and are mutually independent. The
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Probit model assumes that the observed yit takes the form

yit =
{

1 if y∗
it > 0,

0 if y∗
it ≤ 0.

(12.4.6)

The Tobit model assumes that

yit =
{
y∗
it if y∗

it > 0,
0 if y∗

it ≤ 0.
(12.4.7)

We note that the density function of αi and uit can be expressed as transforma-
tions of some standard distributions, here, standard normal, so that the density
function of y′

i = (yi1, . . . , yiT ) becomes an integral of a conditional function
over the range of these standard distributions A:

f (yi | xi ; �) =
∫
A

f ∗(yi | xi , η; �) dP (η) (12.4.8)

with p(η) ∼ N (0, 1). For instance, in the case of Probit model,

f ∗(yi | xi , η; �) =
T∑
t=1

�(x′
it� + σαηi)yit [1 −�(x′

it� + σαηi)]1−yit ,

(12.4.9)

and in the case of Tobit model,

f ∗(yi | xi , η; �) =
∏
tε�1

φ(yit − x′
it� − σαηi)

.
∏
tε�0

�(−x′
it� − σαηi),

(12.4.10)

where φ(·) and�(·) denote the standard normal density and integrated normal,
respectively, and �1 = {t | yit > 0} and �0 = {t | yit = 0}. Since conditional
on xit and each of theH random draws of η from a standard normal distribution,
ηih, h = 1, . . . , H , the conditional density function (12.4.9) on (12.4.10) is
well defined in terms of �, σ 2

α , the approximation of f (yi | xi ; �, σ 2
α ) can be

obtained by taking their averages as in (12.4.3).
Random draws of ηh from P (η) can be obtained through the inversion

technique from a sequence of independent uniform [0, 1] pseudo-random draws

ηh = P−1(εh),

where P−1(·) denote the inverse of P . For instance, if ε is normally dis-
tributed with mean μ and variance σ 2

ε , then ηh = �−1( εh−μ
σε

). If η is a Weibull
random variable with parameters a and b, P (ηh) = 1 − exp(−bηah), then

ηh = [− 1
b
lnεh

] 1
a .

The generation of a multivariate �h can be obtained through recursive
factorization of its density into lower dimensional density (e.g., Liesen-
feld and Richard 2008). The basic idea of factorization of a k-dimensional
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�h = (η1h, . . . , ηkh) is to write

P (�h) = P (ηkh | �∗
k−1,h)P (ηk−1,h | �∗

k−2,h) . . . P (η2h | η1h)P (η1h),

(12.4.11)

where η∗
j,h = (η1h, . . . , ηjh). For example, random draws from a multivariate

normal density are typically obtained based on Cholesdy decomposition of
its covariance matrix

∑ =∧∧′
,�h =∧�∗

h, where
∧

is a lower triangular
matrix and �∗ is standard multivariate normal with identity covariance matrix.

A particularly useful technique for evaluating high-dimensional integrals
is known as Importance Sampling. The idea of importance sampling is to
replace P (�i) by an alternative simulator with density μ(·). Substituting μ(·)
into (12.4.11)

f (yi | xi ; �) =
∫
f ∗(yi | xi ,�; �)ω(�i)μ(�i) d�i , (12.4.12)

where dP (�i) = p(�i) d�i ,

ω(�i) = p(�i)

μ(�i)
. (12.4.13)

Then the corresponding Monte Carlo simulator of (12.4.3), known as the
“importance sampling” estimator, is given by

f̃H (yi | xi ; �) = 1

H

H∑
h=1

ω(�∗
ih)μ(�∗

ih)f
∗(yi | xi ,�∗

ih; �), (12.4.14)

where �∗
ih are random draws from μ(�∗

i ).
If uit in the above example follows a first-order autoregressive process

uit = ρui,t−1 + εit , | ρ |< 1, (12.4.15)

then we can rewrite (12.4.5) as

y∗
it = �′xit + σαηi +

t∑
τ=1

atτ η
∗
iτ , (12.4.16)

where η∗
iτ , τ = 1, . . . , T are random draws from independent N (0, 1), and

atτ are the entries of the lower triangular matrix �. It turns out that here
atτ = (1 − ρ2)−

1
2 ρt−τ if t ≥ τ and atτ = 0 if t < τ .

Using the approach described above, we can obtain an unbiased, differ-
entiable and positive simulator of f (yi | xi ; �),� = (�′, σα, ρ)′, in the Probit
case by considering the following drawings:

ηih is drawn from N(0,1).
η∗
i1h is drawn from N(0,1) restricted to
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[−(�′xi1 + σαηih)/a11,∞] if yi1 = 1 or [−∞,−(�′xi1 + σαηih)/
a11] if yi1 = 0, η∗

i2h is drawn from N(0,1) restricted to

[−(�′xi2 + σαηih + a21η
∗
i1h)/a22,∞] if yi2 = 1,

and

[−∞,−(�′xi2 + σαηih + a21η
∗
i1h)/a22] if yi2 = 0,

and so on. The simulator of f (yi | xi ; �) is

f̃H (yi | xi ; �) = 1

H

H∑
h=1

T∏
t=1

�

[
(−1)1−yit

(
�′xit + σαηih +

t−1∑
τ=1

atτ η
∗
iτh

)
/att

]
,

(12.4.17)

where for t = 1, the sum over τ disappears.
In the Tobit case, the same kind of method can be used. The only difference

is that the simulator of f (yi | xi ; �) becomes

f̃H (yi |xi ; �) = 1

H

H∑
i=1

[∏
tε�1

1

att
φ

([
yit−

(
�′xit + σαηih +

t−1∑
τ=1

atτ η
∗
iτh

)]
/att

)]

·
∏
tε�0

�

[
−
(

�′xit + σαηih +
t−1∑
τ=1

atτ η
∗
iτh

)
/att

]
. (12.4.18)

The simulated maximum likelihood estimator (SMLE) is obtained from
maximizing the simulated log-likelihood function. The simulated method of
moments estimator (SMM) is obtained from the simulated moments. The sim-
ulated least squares estimator (SLS) is obtained if we let m(yi , xi ; �) = E(yi |
xi ; �) and minimize

∑N
i=1[yi − E(yi | xi ; �)]2.

Although we need H → ∞ to obtain consistent simulator of f (yi | xi ; �)
and m(yi , xi ; �), it is shown by McFadden (1989) that when finite H vectors
(�i1, . . . ,�iH ) are drawn by simple random sampling and independently for
different i from the marginal density P (�), the simulation errors are indepen-
dent across observations; hence the variance introduced by simulation will be
controlled by the law of large numbers operating across observations, mak-
ing it unnecessary to consistently estimate each theoretical m(yi , xi ; �) for the
consistency of SMM, �̂SGMM, as N → ∞.

The asymptotic covariance matrix of
√
N (�̂SMM − �) obtained from mini-

mizing [m̂(�) − m(�)]′A[m̂(�) − m(�)] where A is a positive definite matrix
such as moments of the form (4.3.38) can be approximated by

(R′AR)−1R′AGNHAR(R′AR)−1, (12.4.19)
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where

R = 1

N

N∑
i=1

W ′
i

∂m̃H (yi , xi ; �)

∂�′ ,

GNH = 1

N

N∑
i=1

Wi

(
�+ 1

H

H

)
W ′
i ,

� = Cov (mi(yi , xi ; �))


H = Cov [m̃H (yi , xi ; �) − m(yi, xi ; �)],

(12.4.20)

andWi is given by (4.3.41). When A = [plim Cov (m̂i(yi, xi ; �)]−1, the SMM
is the simulated generalized method of moments estimator (SGMM). It is clear
that as H → ∞, the SGMM has the same asymptotic efficiency as the GMM.
However, even with finiteH , the relative efficiency of SGMM is quite high. For
instance, for the simple frequency simulator, 
H = �, one draw per observa-
tion gives fifty percent of the asymptotic efficiency of the corresponding GMM
estimator, and nine draws per observation gives 90 percent relative efficiency.

The consistency of SMLE or SLS needs consistently estimated conditional
density or moments. With a finiteH , the approximation error of the conditional
density or moments is of order H−1. This will lead to the asymptotic bias of
O(1/H ) (e.g., Gourieroux and Monfort 1996; Hsiao, Wang, and Wang 1997).
Nevertheless, with a finite H it is still possible to propose SLS estimator that is
consistent and asymptotically normally distributed as N → ∞ by noting that
for the sequence of 2H random draws (�i1, . . . ,�iH ,�i,H+1, . . . ,�i,2H ) for
each i,

E

[
1

H

H∑
h=1

m∗(yi , xi | �ih; �)

]
= E

[
1

H

H∑
h=1

m∗(yi , xi | �i,H+h; �)

]
= m(yi , xi ; �), (12.4.21)

and

E

[
yi −

1

H

H∑
h=1

m∗(yi , xi | �ih; �)

]′ [
yi −

1

H

H∑
h=1

m∗(yi , xi | �i,H+h; �)

]
(12.4.22)

= E [yi − m(yi , xi ; �)
]′ [

yi − m(yi , xi ; �)
]
,

because of the independence between (�i1, . . . ,�iH ) and (�i,H+1, . . . ,�i,2H ).
Then the SLS estimator that minimizes
N∑
i=1

[
yi −

1

H

H∑
h=1

m∗(yi , xi | �ih; �)

]′ [
yi −

1

H

H∑
h=1

m∗(yi, xi | �i,H+h; �)

]
(12.4.23)

is consistent as N → ∞ even H is fixed (e.g., Gourieroux and Monfort 1996;
Hsiao and Wang 2000).
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12.5 DATA WITH MULTILEVEL STRUCTURES

We have illustrated panel data methodology by assuming the presence of indi-
vidual and/or time effects only. However, panel data need not be restricted to
two dimensions. We can have a more complicated “clustering” or “hierarchi-
cal” structure. For example, Antweiler (2001), Baltagi, Song, and Jung (2001),
and Davis (2002), following the methodology developed by Wansbeek (1982)
Wansbeek and Kapteyn (1978), consider the multiway error components model
of the form

yij�t = x′
ij�t� + vij�t , (12.5.1)

for i = 1, . . . , N, j = 1, . . . ,Mi, � = 1, . . . , Lij , and t = 1, . . . , Tij�. For
example, the dependent variable yij�t could denote the air pollution measured
at station � in city j of country i in time period t . This means that there are N
countries, and each country i has Mi cities in which Lij observation stations
are located. At each station, air pollution is observed for Tij� periods. The xij�t
denotes a vector ofK explanatory variables, and the disturbance is assumed to
have a multiway error components structure,

vij�t = αi + λij + νij� + εij�t (12.5.2)

where αi, λij , νij� and εij�t are assumed to be independently, identically dis-
tributed and are mutually independent with mean 0 and variances σ 2

α , σ
2
λ , σ

2
ν ,

and σ 2
ε , respectively.

In the case that the data are balanced, the variance–covariance matrix of v,
has the form

� = σ 2
α (IN ⊗ JMLT ) + σ 2

λ (INM ⊗ JLT ) + σ 2
ν (INML ⊗ JT ) + σ 2

ε ILMNT ,

(12.5.3)

where Js be a square matrix of dimension s with all elements equal to 1.
Rewrite (12.5.3) in the form representing the spectral decomposition � (e.g.,
as in Appendix 3B), we have

� = MLT σ 2
α (IN ⊗ PMLT ) + LT σ 2

λ (INM ⊗ PLT )

+ T σ 2
ν (INML ⊗ PT ) + σ 2

ε ILMNT

= σ 2
ε (INML ⊗QT ) + σ 2

1 (INM ⊗QL ⊗ PT )

+ σ 2
2 (IN ⊗QM ⊗ PLT ) + σ 2

3 (IN ⊗ PMLT )

(12.5.4)

where Ps ≡ 1
s
Js,Qs = Is − Ps , and

σ 2
1 = T σ 2

ν + σ 2
ε , (12.5.5)

σ 2
2 = LT σ 2

λ + T σ 2
ν + σ 2

ε , (12.5.6)

σ 2
3 = MLT σ 2

α + LT σ 2
λ + T σ 2

ν + σ 2
ε , (12.5.7)
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σ 2
ε are the characteristic roots of�. As each of the terms of (12.5.4) is orthogonal

to each other and sum to INMLT , it follows that

�−1/2 = σ−1
ε (INML ⊗QT ) + σ−1

1 (INM ⊗QL ⊗ PT )

+ σ−1
2 (IN ⊗QM ⊗ PLT ) + σ−1

3 (IN ⊗ PMLT ) (12.5.8)

Expanding all the Q matrices as the difference of I and P , multiplying both
sides of the equation by σε , and collecting terms yield

σε�
−1/2 = INMLT −

(
1 − σε

σ1

)
(INML ⊗ PT )

−
(
σε

σ1
− σε

σ2

)
(INM ⊗ PLT)

−
(
σε

σ2
− σε

σ3

)
(IN ⊗ PMLT) .

(12.5.9)

The generalized least-squares estimator (GLS) of (12.5.1) is equivalent to the
least squares estimator of

y∗
ij�t = yij�t −

(
1 − σε

σ1

)
ȳij�. −

(
σε

σ1
− σε

σ2

)
ȳij ..−

(
σε

σ2
− σε

σ3

)
ȳi...,

(12.5.10)

on

x∗
ij�t = xij�t −

(
1 − σε

σ1

)
x̄ij�. −

(
σε

σ1
− σε

σ2

)
x̄ij ..−

(
σε

σ2
− σε

σ3

)
x̄i...,

(12.5.11)

where ȳij�.(x̄ij�.), ȳij..(x̄ij..) and ȳi...(x̄i...) indicate group averages. The applica-
tion of feasible GLS can be carried out by replacing the variances in (12.5.10)
and (12.5.11) by their estimates obtained from the three groupwise between
estimates and the within estimate of the innermost group.

The pattern exhibited in (12.5.10) and (12.5.11) is suggestive of solutions
for higher order hierarchy with a balanced structure. If the hierarchical struc-
ture is unbalanced, Kronecker product operation can no longer be applied. It
introduces quite a bit of notational inconvenience into the algebra (e.g., Baltagi
(1995, Chapter 9) and Wansbeek and Kapteyn (1978)). Neither can the GLS
estimator be molded into a simple transformation for least-squares estimator.
However, an unbalanced panel is made up of N top level groups, each contain-
ingMi second-level groups, the second-level groups containing the innermost
Lij subgroups, which in turn containing Tij� observations, the number of obser-
vations in the higher-level groups are thus Tij =∑Lij

�=1 Tij� and Ti =∑Mi
j=1 Tij ,

and the total number of observations isH =∑N
i=1 Ti . The number of top-level

groups is N , the number of second level groups is F =∑N
i=1Mi , and the

bottom-level groups is G =∑N
i=1

∑Mi
j=1 Lij . We can redefine J matrices to
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be block diagonal of size H ×H , corresponding in structure to the groups or
subgroups they represent. They can be constructed explicitly by using “group
membership” matrices consisting of 1’s and 0’s that uniquely assign each of
the H observations to one of the G (or F or N ) groups. Antweiler (2001)
has derived the maximum-likelihood estimator for the panels with unbalanced
hierarchy.

When data contains a multilevel hierarchical structure, the application of
a simple error component estimation, although inefficient, remains consistent
under the assumption that the error component is independent of the regressors.
However, the estimated standard errors of the slope coefficients are usually
biased downward.

12.6 ERRORS OF MEASUREMENT

Thus far we have assumed that variables are observed without errors. Eco-
nomic quantities, however, are frequently measured with errors, particularly if
longitudinal information is collected through one-time retrospective surveys,
which are notoriously susceptible to recall errors. If variables are indeed sub-
ject to measurement errors, exploiting panel data to control for the effects
of unobserved individual characteristics using standard differenced estimators
(deviations from means, etc.) may result in even more biased estimates than
simple least-squares estimators using cross-sectional data alone.

Consider, for example, the following single-equation model (Solon 1985):

yit = α∗
i + βxit + uit , i = 1, . . . , N,

t = 1, . . . , T ,
(12.6.1)

where uit is independently identically distributed, with mean 0 and variance
σ 2
u , and Cov(xit , uis) = Cov(α∗

i , uit ) = 0 for any t and s, but Cov(xit , α∗
i ) �=

0. Suppose further that we observe not xit itself, but rather the error-ridden
measure

x∗
it = xit + τit , (12.6.2)

where Cov(xis, τit ) = Cov(α∗
i , τit ) = Cov(uit , τis) = 0, and Var(τit ) = σ 2

τ ,
Cov(τit , τi,t−1) = γτσ 2

τ .
If we estimate (12.6.1) by ordinary least-squares (OLS) with cross-sectional

data for period t , the estimator converges to (as N → ∞)

plim
N→∞

β̂LS = β + Cov(xit ,α∗
i )

σ 2
x+σ 2

τ
− βσ 2

τ

σ 2
x+σ 2

τ
, (12.6.3)

where σ 2
x = Var(xit ). The inconsistency of the least-squares estimator involves

two terms, the first due to the failure to control for the individual effects α∗
i and

the second due to measurement error.
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If we have panel data, say T = 2, we can alternatively first difference the
data to eliminate the individual effects, α∗

i ,

yit − yi,t−1 = β(x∗
it − x∗

i,t−1) + [(uit − βτit ) − (ui,t−1 − βτi,t−1)],

(12.6.4)

and then apply least squares. The probability limit of the differenced estimator
as N → ∞ becomes

plim
N→∞

β̂d = β
[

1 − 2(1 − γτ )σ 2
τ

Var(x∗
it − x∗

i,t−1)

]

= β − βσ 2
τ

[(1 − γx)/(1 − γτ )]σ 2
x + σ 2

τ

, (12.6.5)

where γx is the first-order serial-correlation coefficient of xit . The estimator β̂d
eliminates the first source of inconsistency, but may aggravate the second. If
γx > γτ , the inconsistency due to measurement error is larger for β̂d than for
β̂LS . This occurs because if the serial correlation of the measurement error is
less than that of the true x (as seems often likely to be the case), first differencing
increases the noise-to-signal ratio for the measured explanatory variable.

The standard treatment for the errors-in-variables models requires extra-
neous information in the form of either additional data (replication and/or
instrumental variables) or additional assumptions to identify the parameters
of interest (e.g., Aigner et al. (1984)). The repeated measurement property of
panel data allows a researcher to use different transformations of the data to
induce different and deducible changes in the biases in the estimated param-
eters that can then be used to identify the importance of measurement errors
and recover the “true” parameters (Ashenfelter, Deaton, and Solon (1984);
Griliches and Hausman (1986). For instance, if the measurement error, τit , is
independently identically distributed across i and t and x is serially correlated,
then in the foregoing example we can use x∗

i,t−2 or (x∗
i,t−2 − x∗

i,t−3) as instru-
ments for (x∗

it − x∗
i,t−1) as long as T > 3. Thus, even though T may be finite,

the resulting IV estimator is consistent when N tends to infinity.
Alternatively, we can obtain consistent estimates through a comparison of

magnitudes of the bias arrived at by subjecting a model to different transfor-
mations (Griliches and Hausman 1986). For instance, if we use a covariance
transformation to eliminate the contributions of unobserved individual compo-
nents, we have

(yit − ȳi) = β(x∗
it − x̄∗

i ) + [(uit − ūi) − β(τit − τ̄i)], (12.6.6)

where ȳi , x̄∗
i , ūi , and τ̄i are individual time means of respective variables.

Under the assumption that the measurement errors are independently identically
distributed, the LS regression of (12.6.6) converges to

plim
N→∞

βw = β
[

1 − T − 1

T

σ 2
τ

Var(x∗
it − x̄∗

i )

]
. (12.6.7)
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Then consistent estimators ofβ and σ 2
τ can be solved from (12.6.5) and (12.6.7),

β̂ =
[

2β̂w
Var (x∗

it − x∗
i,t−1)

− (T − 1)β̂d
T Var(x∗

it − x̄∗
i )

]
(12.6.8)

·
[

2

Var(x∗
it − x∗

i,t−1)
− T − 1

T Var(x∗
it − x̄∗

i )

]−1

,

σ̂ 2
τ = β̂ − β̂d

β̂
· Var(x∗

it − x∗
i,t−1)

2
. (12.6.9)

In general, if the measurement errors are known to possess certain structures,
consistent estimators may be available from a method of moments and/or from
an IV approach by utilizing the panel structure of the data. Moreover, the first
difference and the within estimators are not the only ones that will give us an
implicit estimate of the bias. In fact, there are T/2 such independent estimates.
For a six-period cross section with τit independently identically distributed, we
can compute estimates of β and σ 2

τ from y6 − y1, y5 − y2, and y4 − y3 using
the relationships

plim
N→∞

β̂61 = β − 2βσ 2
τ /Var(x∗

i6 − x∗
i1),

plim
N→∞

β̂52 = β − 2βσ 2
τ /Var(x∗

i5 − x∗
i2),

plim
N→∞

β̂43 = β − 2βσ 2
τ /Var(x∗

i4 − x∗
i3).

(12.6.10)

Thus, there are alternative consistent estimators. This fact can be exploited
to test the assumption with regard to measurement errors,which provide the
rationale for the validity of the instruments, by comparing whether or not the
alternative estimates of β are mutually coherent (e.g., Griliches and Hausman
1986). The moment conditions (12.6.5), (12.6.7), and (12.6.10) can also be
combined together to obtain efficient estimates of β and σ 2

τ by the use of
Chamberlain π method (Chapter 3, Section 3.8) or generalized method of
moments estimator.

For instance, transforming y and x by the transformation matrix Ps such that
PseT = 0 eliminates the individual effects from the model (12.6.1). Regress-
ing the transformed y on transformed x yields estimator that is a function of
β, σ 2

x , στ and the serial correlations of x and τ . Wansbeek and Koning (1989)
have provided a general formula for the estimates based on various transfor-
mation of the data by letting

Y ∗ = eNT μ+X∗� + v∗ (12.6.11)
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where Y ∗ = (y∗′
1 , . . . , y∗′

T )′, y∗
t = (y1t , . . . , yNt )′, X∗ = (x∗

1, . . . , x∗
T )′, x∗

t =
(x′

1t , . . . , x′
Nt ), v

∗ = (v∗′
1 , . . . , v

∗′
T )′, and v∗

t = (v1t . . . . , vNT )′. Then

b̂s = [X∗′
(Qs ⊗ IN )X∗]−1[X∗′

(Qs ⊗ IN )Y ∗]

= � + [X∗′
(Qs ⊗ IN )X∗]−1[X∗′

(Qs ⊗ IN )(u∗ − � ∗�)],
(12.6.12)

where Qs = P ′
sPs,u

∗ = (u∗′
1 , . . . ,u

∗′
T )′,u∗

t = (u1t , . . . , uNt )′, � ∗ = (� ∗
1, . . . ,

� ∗
T )′, and � ∗

t = (� 1t , . . . , �Nt ). In the case of K = 1 and measurement errors
are serially uncorrelated, Wansbeek and Koning (1989) show that them differ-
ent transformed estimators b = (b1, . . . , bm)′

√
N (b − β(em − σ 2

τ �)] ∼ N (0, V ), (12.6.13)

where � = (φ1, . . . , φm)′, φs = (trQs/trQs
x∗ ),


x∗ = Cov (x∗
i ), x

∗
i = (x∗

i1. . . . , x∗
iT )′,

V = F ′{σ 2
u
x∗ ⊗ IT + β2σ 2

τ (
x∗ + σ 2
τ IT ) ⊗ IT }F,

and F is the T 2 ×m matrix with the sth column f s = vec (Qs)/(trQs
x∗ ),
where vec (A) denotes the operation of transforming anm× nmatrix A into the
mn× 1 vector by stacking the columns of A one underneath the other (Magnus
and Neudecker (1999, p. 30). Then one can obtain an efficient estimator by
minimizing

[b − β(em − σ 2
τ �)]′V −1[b − β(em − σ 2

τ �)], (12.6.14)

with respect to β and σ 2
τ , which yields

β̂ =
{

�′V −1b
�′V −1�

− e′
mV

−1b
e′
mV

−1�

}
/

{
�′V −1e
�′V −1�

− e′
mV

−1em
e′
mV

−1�

}
(12.6.15)

and

σ 2
τ =

{
�′V −1em
�′V −1b

− e′
mV

−1em
e′
mV

−1b

}
/

{
�′V −1�

�′V −1b
− e′

mV
−1�

e′
mV

−1b

}
.

(12.6.16)

Extensions of this simple model to the serially correlated measurement
errors are given by Biørn (2000), Hsiao and Taylor (1991). Wansbeek and
Kapteyn (1978) consider simple estimators for dynamic panel data models with
measurement errors. In the case of only one regressor for a linear panel data
model, Wansbeek (2001) has provided a neat framework to derive the moment
conditions under a variety of measurement errors assumption by stacking the
matrix of covariances between the vector of dependent variables over time and
the regressors, then projecting out nuisance parameters. To illustrate the basic
idea, consider a linear model,

yit = α∗
i + βxit + �′wit + uit

i = 1, . . . , N,

t = 1, . . . , T ,
(12.6.17)
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where xit is not observed. Instead one observes x∗
it , which is related to xit by

(12.6.2). Suppose that the T × 1 measurement error vector � i = (τi1, . . . , τiT )′

is i.i.d. with mean zero and covariance matrix � = E(� i� ′
i).

Suppose � has a structure of the form

vec � = R0�, (12.6.18)

where vec denotes the operation that stacks the rows of a matrix one after
another in a column vector form, R is a matrix of order T 2 ×m with known
elements, and � is anm× 1 vector of unknown constants. Using the covariance
transformation matrixQ = IT − 1

T
eT e′

T to eliminate the individual effects, α∗
i ,

yields

Qyi = Qxi +QWi� +Qui , (12.6.19)

Qx∗
i = Qxi +Q� i , (12.6.20)

where xi = (xi1, . . . , xiT )′,Wi = (w′
it ). Let

R ≡ (IT ⊗Q)R0. (12.6.21)

From (12.6.2), we have

E(� i ⊗Q� i) = (IT ⊗Q)E(� i ⊗ � i)

= (IT ⊗Q)R0�

= R�.

(12.6.22)

It follows that

E(x∗
i ⊗Qxi) = E(x∗

i ⊗Qx∗
i ) − E[(xi + � i) ⊗Q� i]

= E(x∗
i ⊗Qx∗

i ) − R�.
(12.6.23)

Therefore

E(x∗
i ⊗Qyi) = E(x∗

i ⊗Qx∗
i )β + E(x∗

i ⊗QWi)� − R��. (12.6.24)

Equation (12.6.24) contains the nuisance parameter �. To eliminate � from
(12.6.24), multiplyingMR = IT 2 − R(R′R)−1R′ to both sides of (12.6.24), we
have the orthogonality conditions:

MRE{x∗
i ⊗Q(yi − x∗

i β −Wiγ )} = 0 (12.6.25)

Combining (12.6.25) with the moment conditionsE(W ′
iQui) = 0, we have the

moment conditions for the measurement error model (12.6.17)

E[M(di − Ci�)] = 0, (12.6.26)

where

M =
[
MR 0
0 IK

]
,di =

[
x∗
i ⊗ IT
W ′
i

]
Qyi ,

Ci =
[

x∗
i ⊗ IT
W ′
i

]
Q[x∗

i ,Wi], �′ = (β,�′).
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A GMM estimator is obtained by minimizing

1

N

[
N∑
i=1

M(di − Ci�)

]′

AN

[
N∑
i=1

M(di − Ci�)

]
. (12.6.27)

An optimal GMM estimator is to let

A−1
N = 1

N

N∑
i=1

(di − Ci �̂)(di − Ci �̂)′, (12.6.28)

where �̂ is some consistent estimator of � such as

�̂ =
[(

N∑
i=1

C ′
i

)
M

(
N∑
i=1

Ci

)]−1
⎡⎣( N∑

i=1

Ci

)′

M

(
N∑
i=1

di

)⎤⎦ . (12.6.29)

In the case when τit is i.i.d. across i and over t ,� is diagonal with equal diag-
onal element. Then m = 1 and R0 = vec IT , R = (IT ⊗Q) vec IT = vecQ,
R′R = trQ = T − 1, andMR = IT 2 − 1

T−1 (vecQ) (vecQ)′. When� is diag-
onal with distinct diagonal elements,m = T andR0 = i t i ′

t ⊗ i t , where i t is the
t th unit vector of order T . When τit is a first-order moving average process and
T = 4,

� =

⎡⎢⎢⎣
a c 0 0
c b c 0
0 c b c

0 0 c a

⎤⎥⎥⎦ ,
then

R0 =
⎡⎣1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0

⎤⎦ ,
and � = (a, b, c)′.

In general, the identifiability of the slope parameters � for a linear regression
model depends on whether the moment equations involving observables in
levels and differences for different order of lags are sufficient to obtain a
unique solution for � given the assumption about the autocorrelation patterns
of measurement errors. For additional references, see Biørn (2000), Biørn
and Klette (1998), Biørn and Krishnakumar (2008), Wansbeek (2001), and
Wansbeek and Meijer (2000, Chapter 6, Section 6.6).

The measurement errors for nonlinear models are much more difficult to
handle (e.g., Hsiao 1992c). For binary choice models with measurement errors,
see Kao and Schnell (1987a,b) and Hsiao (1991b).
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12.7 NONPARAMETRIC PANEL DATA MODELS

Our discussion of panel data models have been confined to parametrically
or semiparametrically specified models. The generalization to panel nonpara-
metric models can be very complicated. However, in a static framework, the
generalization to the nonparametric setup is fairly straightforward although the
computation can be tedious. To see this, let

yit = m(xit ) + νit , i = 1, . . . , N,

t = 1, . . . , T ,
(12.7.1)

νit = αi + uit , (12.7.2)

where xit denotes the K × 1 strictly exogenous variables with respect to
uit , E(uit | xis) = 0 for all t and s.

If αi is treated as random and uncorrelated with xit , then m(xit ) can
be estimated by kernel method or the local linear least-squares method
(min

∑N
i=1

∑I
t=1K( xit−x∗

σN
)(yit −m(xit ))2) in which

m(xit ) = m(x∗) + (xit − x∗)′�(x∗) (12.7.3)

for xit close to x∗, where the “closeness” is defined in terms of some kernel
function, σ−K

N K
( xit−x∗

σN

)
, withK(v) ≥ 0,K(v) −→ 0 as v −→ ±∞ and σN is

a bandwidth parameter. Substituting (12.7.3) into (12.7.1), one can estimate
m(x∗) and �(x∗) by the least squares method (Li and Racine (2007, ch. 2)).
However, the least squares method ignores the error components structure of
vit . Martins-Filho and Yao (2009), Su, Ullah, and Wang (2010), etc. have
considered more efficient two-step estimators.

When αi is treated as fixed constant, Kernel approach is not a convenient
method to estimate m(xit ) because linear difference of yit has to be used to
eliminate αi . (e.g., Li and Stengos 1996). A convenient approach is to put
m(xit ) into the following general index format,

m(xit ) = ν0(xit ,�0) +
m∑
j=1

hj0(νj (xit ,�0)), (12.7.4)

where νj (xit ,�0) for j = 0, 1, . . . , m are known functions of xit and hj0(·) for
j = 1, . . . , m are unknown functions.

However, to uniquely identify the parameters of interest of the index model
(12.7.4) one needs to impose the following normalization conditions:

(1) hj0(0) = 0 for j = 1, . . . , m.
(2) The scaling restriction, say �0′

�0 = 1 or the first element of �0 be
normalized to 1 if it is known different from 0.

(3) The exclusion restriction when νj (x,�) and νs(x,�) are homogeneous
of degree 1 in the regressors for some s �= j .



462 Miscellaneous Topics

When (1) does not hold, it is not possible to distinguish (hj0(·)), αi) from
hj0(·) − μ, αi + μ) for any constant μ and for any j in (1). When (2) does not
hold, it is not possible to distinguish (�0, h0(·)) from (c�0, h̃0(·) = h0(·/c)) for
any nonzero constant c. When (3) does not hold, say (h10(·), h20(·) containing
a common element x3it , then (h10, h20) is not distinguishable from (h10 +
g(x3it ), h20 − g(x3it )) for any function g (For further details, see Ai and Li
(2008)).

A finite sample approximations for hj (·) is to use series approximations

hj0(·) � pj (·)′
j (12.7.5)

The simplest series base function is to use the power series. However, power
series can be sensitive to outliers. Ai and Li (2008) suggest using the piecewise
local polynomial spline as a base function in nonparametric series estimation.
An t th order univariate B-spline base function is given by (see Chui (1992,
Chapter 4).

Br (x | t0, . . . , tr ) = 1

(r − 1)!

r∑
j=1

(−1)j
(
r

j

)
[max (0, x − tj )]r−1, (12.7.6)

where t0, t1, . . . , tr are the evenly spaced design knots on the support of X.
When r = 2, (12.7.6) gives a piecewise linear spline, and when r = 4, it gives
piecewise cubic splines (i.e., the third-order polynomials). Substituting the
parametric specification (12.7.5) in lieu of hj0(·) into (12.7.1), we obtain the
parametric analog of (12.7.4). Then, just like in the parametric case, one can
remove αi by taking the deviation of yit from the ith individual time series
mean ȳi = 1

T

∑T
t=1 yit . Therefore one can obtain consistent estimators of �0

and 
j , j = 1, . . . , m by minimizing

N∑
i=1

T∑
t=1

{(yit − ν0(xit ,�) −
m∑
j=1

pj (νj (xit ,�))′
j )

− 1

T

T∑
t=1

(yis − ν0(xis ,�) −
m∑
j=1

pj (νj (xis ,�)′
j ))}2

(12.7.7)

Shen (1997), Newey (1997), and Chen and Shen (1998) show that both �̂ and
ĥj (·), j = 1, . . . , m are consistent and asymptotically normally distributed if
kj −→ ∞ while kj

N
−→ 0 (at certain rate) where kj denotes the dimension

of 
j .
The series approach can also be extended to the sample selection model (or

partial linear model) discussed in Chapter 8,

yit = x′
it� +m(zit ) + αi + uit , (12.7.8)



12.7 Nonparametric Panel Data Models 463

where yit is observed if the dummy variable dit = 1. The sample selection
effect m(zit ) given dit = 1 can be approximated

m(zit ) ∼
m∑
j=1

hj (zjit ), (12.7.9)

where hj (·) are unknown function. For identification purpose, hj (·) is com-
monly assumed to satisfy the local restriction hj (0) = 0 for all j and the
exclusive restriction that z1it , . . . , zmit are mutually exclusive. Then each hj (·)
can be approximated by the linear sieve pkjj (·)′
j , where pkjj (·) is a vector of

approximating functions satisfying pkjj (0) = 0. The unknown parameters � and
the coefficients 
 = (
′

1, . . . ,

′
m)′ can be estimated by the generalized least-

squares estimator if αi are treated as random and uncorrelated with (xit , zit ),
or by minimizing

N∑
i=1

∑
s<t

⎡⎣(yit − yis) − (xit − xis)′� −
m∑
j=1

(pkjj (zjit ) − pkjj (zis))′
j

⎤⎦2

.

(12.7.10)

Ai and Li (2005) show that the resulting estimator is consistent and derive its
asymptotic distribution.1

The nonparametric estimates of � and 
j can be used to test the paramet-
ric specification of the model following the idea of Hong and White (1995).
However, the strict exogeneity assumption of xit excludes the inclusion of
lagged dependent variables. Neither is this approach of replacing unknown
hj (·) by series expansion easily generalizable to censored or nonlinear panel
data models [for further discussion, see Ai and Li (2008), and Su and Ullah
(2011)].

1 Ai and Li (2005) show that the nonlinear least-squares estimator of � is asymptotically normally
distributed, but not 
j .



CHAPTER 13

A Summary View

13.1 BENEFITS OF PANEL DATA

As discussed in Chapter 1, panel data provides major benefits for econometric
estimation in at least six areas: (1) increasing degrees of freedom and reducing
problems of data multicollinarity, (2) constructing more realistic behavioral
models and discriminating between competing economic hypotheses, (3) elim-
inating or reducing estimation bias, (4) obtaining more precise estimates of
micro relations and generating more accurate micro predictions, (5) providing
information on appropriate level of aggregation, and (6) simplifying cross sec-
tions or time series data inferential procedures. In this section we provide a
summary view on how different methods discussed in this monograph can be
used to achieve these benefits.

13.1.1 Increasing Degrees of Freedom and Lessening the Problem
of Multicollinearity

In empirical studies investigators often encounter problems of shortage of
degrees of freedom and multicollinearity. That is, the information provided
by the sample is not rich enough to meet the requirement of the specified
model. To narrow this gap, investigators either often have to impose ad hoc
prior restrictions (e.g., Hsiao, Mountain, and Ho-Illman 1995) or to augment
sample information. Panel data have many more degrees of freedom than cross-
sectional or time series data. Moreover, panel data containing information on
both interindividual differences across cross-sectional units and intraindividual
dynamics over time can substantially increase the sample information. Pooling
procedures to obtain more accurate estimation of common parameters for linear
static and dynamic models are discussed in Chapters 3, 4, 9, 11 (Section 11.4),
and 12 (Section 12.3); static and dynamic system of equations are in Chapters 5
and 10; nonlinear models are in Chapters 7, 8, and 12 (Sections 12.1 and 12.2).
Pooling for heterogeneous individuals is discussed in Chapter 6.

464
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Figure 13.1. Robustness of IMF data scrutinized. ∗ Source: The top figure is
from IMF World Economic Outlook, Oct. 2012. The bottom figure is from
Financial Times, Oct 13/14, 2012.

13.1.2 Identification and Discrimination between
Competing Hypotheses

Aggregate time series data are not particularly useful for discriminating between
hypotheses that depend on individual attributes. A single individual time series
data set is not possible to provide information on the effects of different socio-
demographic factors. Cross-sectional data, though containing information on
microeconomic and demographic variables, cannot take account the (unob-
served) heterogeneity across individuals. A fundamental assumption inherent
in studies using cross-sectional data is that E(yi | x = x∗) = E(yj | x = x∗).
This homogeneity (conditional on x) assumption can lead to grossly misleading
or sensitive inference on the impact of x on y. For instance, with many eco-
nomics in fiscal consolidation model since financial crises broke out in 2008, a
debate has been raging about the size of fiscal multipliers. The smaller the mul-
tipliers, the less costly the fiscal consolidation. Under rational expectations and
if the correct forecast model has been used, there should be no relation between
the forecast error for real GDP growth and planned fiscal consolidation (mea-
sured as changes in the structural fiscal balance (due to tax rises and spending
cuts) as a percentage of potential GDP). The top figure of Figure 13.1 shows
the International Monetary Fund (IMF) estimate of the effect of austerity plans
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on the 2010–11 forecast error of the real GDP growth rate (World Economic
Outlook IMF, October 9, 2012). The figures shows a large, negative relation.
The baseline estimate suggests that a planned consolidation of 1 percent of
GDP is associated with a growth forecast error of about 1 percentage point.
Based on this analysis, IMF concludes that the assumed multipliers of about 0.5
underlying the forecast models have been too low by about 1. The short-term
fiscal multipliers should be in the range of 0.9 to 1.7. The bottom figure shows
the Financial Times (October 13/14, 2012) estimates after removing Greece
and Germany. The relationship between deficit reduction efforts and forecast
error of the growth rate is simply not there. One reason that these results
are so sensitive to the includion and exclusion of certain countries is because
the cross-sectional analysis cannot take account the effects of (unobserved)
country-specific factors.

In economics, as in other branches of the social and behavioral sciences,
often there are competing theories. Examples of these include the effect of
collective bargaining on wages, the appropriate short-term policy to alleviate
unemployment (Chapters 1 and 7), the effects of schooling on earnings (Chap-
ter 5), and the question of causal ordering such as “Does delinquency lead
to low self-esteem or does low self-esteem lead to delinquency?” (e.g., Jang
and Thornberry 1998). Economists on opposite sides of these issues generally
have very different views on the operation of the economy and the influence of
institutions on economic performance. Some economists believe unions indeed
raise wages or that advertising truly generates greater sales. Adherents of the
opposite view tend to regard the effects more as epiphenomena than as sub-
stantive forces and believe that observed differences are due mainly to sorting
of workers or firms by characteristics (e.g., Allison 2000).

Proper recognition of the sources of variation can provide very useful infor-
mation for discriminating individual behavior from average behavior or for
identifying an otherwise unidentified model. For instance, in the foregoing
collective bargaining example, even if information on worker quality is not
available, if a worker’s ability stays constant or changes only slowly, the within
correlation between the union-status dummy and the worker-quality variable
is likely to be negligible. Thus, the impact of worker quality can be controlled
through the use of within estimates (Chapter 3). The resulting coefficient for
the union-status dummy then will provide a measure of the effect of unionism.
In the income schooling model, the availability of family groupings can pro-
vide an additional set of cross-sibling covariances via a set of common omitted
variables. These additional restrictions can be combined with the conventional
slope restrictions to identify what would otherwise be unidentified structure
parameters (Chapter 5, Section 5.4).

Panel data providing sequential observations for a number of individuals
allow an investigator to distinguish interindividual differences from intraindi-
vidual differences and construct a proper causal structure (Chapters 5, 9 [Sec-
tions 9.3, 9.4], and 10). Furthermore, addition of the cross-sectional dimension
to the time series dimension provides a distinct possibility to identify the pat-
tern of serial correlations in the residuals or to identify the lag adjustment
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patterns when the conditioning variables are changed without having to resort
to imposing prior parametric restrictions (Chapters 3 [Section 3.8] and 11 [Sec-
tion 11.4]) or to identify a model subject to measurement errors (Chapter 12,
Section 12.6).

13.1.3 Reducing Estimation Bias

A fundamental statistical problem facing every econometrician is the specifi-
cation problem. By that we mean the selection of variables to be included in
a behavioral relationship as well as the manner in which these variables are
related to the variables that affect the outcome but appear in the equation only
through the error term. Empirical findings are often criticized on the grounds
that the researcher has not explicitly recognized the effects of omitted variables
that are correlated with the included explanatory variables (in the union exam-
ple, the omitted variable, worker quality, can be correlated with the included
variable, union status). If the effects of the omitted variables are correlated with
the included explanatory variables, and if these correlations are not explicitly
allowed for, the resulting regression estimates could be seriously biased (Chap-
ter 3, Sections 3.4 and 3.5). To minimize the bias, it is helpful to distinguish four
types of correlations between the included variables and the error term. The
first type is due to the correlation between the included exogenous variables
and those variables that should be included in the equation but are not, either
because of a specification error or because of unavailability of data (Chapters 3,
7, and 8). The second type is due to the dynamic structure of the model and
the persistence of the shocks that give rise to the correlation between lagged
dependent variables and the error term (Chapters 4 and 10). The third type is
due to the simultaneity of the model, which gives rise to the correlation between
the jointly dependent variables and the error terms (Chapters 5 and 10 [Section
10.4]). The fourth type is due to measurement errors in the explanatory vari-
ables (Chapter 12, Section 12.6). Knowing the different sources of correlations
provides important information for devising consistent estimators. It also helps
one avoid the possibility of eliminating one source of bias while aggravating
another (e.g., Chapter 5, Section 5.1).

Panel data can help identify these four sources of correlations. For instance,
if the effects of these omitted variables stay constant for a given individual
through time or are the same for all individuals in a given time period and the
model is linear (e.g., Chapters 3 and 4), the omitted-variable bias can be elim-
inated by one of the following three methods when panel data are available:
(1) differencing the sample observations to eliminate the individual-specific
and/or time-specific effects, (2) using dummy variables to capture the effects of
individual invariant and/or time-invariant variables; and (3) postulating a con-
ditional distribution of unobserved effects given observed exogenous variables,
then integrating out the unobserved effects to make inferences based on the
marginal distribution of observables. The first two approaches are commonly
referred as the fixed-effects inference and the third approach is referred as the
random-effects inference.
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Panel data can also help to identify the correlations between the regres-
sors and errors that are due to simultaneity or to the correlations between the
unobserved individual- or time-specific effects and the regressors. The stan-
dard approach to eliminate simultaneity bias is to use instrumental variables to
purge the correlations between the joint dependent variables and the error of
the equation. However, if there exist correlations between the regressors and
the unobserved individual- or time-specific effects, what are generally consid-
ered as valid instruments may not be valid any more (Chapter 5, Sections 5.3
and 5.4.)

Measurement errors in the explanatory variables create correlations between
the regressors and the errors of the equation. If variables are subject to mea-
surement errors, the common practice of differencing out individual effects
eliminates one source of bias but may aggravate the bias due to measurement
errors. However, different transformation of the data can induce different and
deducible changes in the estimated regression parameters, which can be used
to determine the importance of measurement errors and obtain consistent esti-
mators of parameters of interest (Chapter 12, Section 12.6).

13.1.4 Generating More Accurate Predictions for
Individual Outcomes

If individual behaviors are similar conditional on certain variables, panel data
provide the possibility of learning an individual’s behavior by observing the
behavior of others. Thus, it is possible to obtain a more accurate description
of an individual’s behavior by supplementing observations of the individual in
question with data on other individuals (e.g., Chapter 6).

13.1.5 Providing Information on Appropriate Level of Aggregation

A model is a simplification of reality, not a slavish reproduction of all real-world
data. The real-world detail is reduced through aggregation of “homogeneous”
units or through the “representative agent” assumption. However, if micro
units are heterogeneous, not only can the time series properties of aggregate
data be very different from those of disaggregate data (e.g., Granger 1980;
Lewbel 1992, 1994; Stoker 1993), policy evaluation based on aggregate data
can be grossly misleading. Furthermore, the prediction of aggregate outcomes
using aggregate data can be less accurate than the prediction based on micro-
equations (e.g., Chapter 6, Section 6.8.2 or Hsiao, Shen, and Fujiki 2005).
Panel data containing time series observations for a number of individuals is
ideal for investigating the “homogeneity” versus “heterogeneity” issue. More-
over, when “homogeneity” in panel is rejected, the variable coefficient mod-
els discussed in Chapter 6 provides a feasible alternative to make inferences
about the population while taking account of the heterogeneity among micro
units.
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13.1.6 Simplifying Computation and Statistical Inference

Panel data involve at least two dimensions, a cross-sectional dimension and a
time series dimension. Under normal circumstances the computation of panel
data estimator or inference would be more complicated than cross-sectional or
time series data. However, on many occasions, the availability of panel data
actually simplifies computation and inference. For instance, in the analysis of
time series properties of a variable, first one will need large number of time
series observations to properly distinguish stationary time series from nonsta-
tionary time series. Second, when time series data are not stationary, the large
sample approximation of the distributions of the least-squares or maximum
likelihood estimators are no longer normally distributed (e.g., Anderson 1959;
Dickey and Fuller 1979, 1981; Phillips and Durlauf 1986). But if panel data
are available, one can invoke the central limit theorem across cross-sectional
units to show that the limiting distributions of many estimators remain asymp-
totically normally distributed. Moreover, even only a small number of time
series observations are available, an investigator making use of information on
cross-sectional dimension may be able to distinguish unit roots or cointegration
processes from stationary process (Chapter 10).

Another example is in the evaluation of the impact of social program. When
only cross-sectional data are available, the control of the impact of selection on
observables or unobservables could be complicated (Chapter 9, Section 9.6.2).
However, if panel data are available and if individual units are cross-sectionally
dependent, then one can use cross-sectional units information to construct the
counterfactuals for the evaluation of the impact of social program without
the need to worry about the issues of selection on observables or unobserv-
ables which may considerably simplify the analysis (Chapter 9, Sections 9.6.3
and 9.6.4).

13.2 CHALLENGES FOR PANEL DATA ANALYSIS

Although panel data offer many advantages over a cross-sectional or time series
data set, there are many interesting and unresolved issues remain such as (1)
how best to model unobserved heterogeneity across individuals and/or over
time; (2) controlling the impact of unobserved heterogeneity to obtain valid
inference for nonlinear models; (3) modeling cross-sectional dependence; (4)
multidimensional asymptotics; and (5) sample attrition, etc.

13.2.1 Modeling Unobserved Heterogeneity

As discussed in the introduction (Chapter 1, Section 1.3), panel data focus on
individual outcomes over time. Factors affecting individual outcomes could be
numerous. One of the most challenging issues in panel data modeling is how to
model the unobserved heterogeneity across individuals and over time that are
not captured by the conditional variables x. This monograph essentially follows
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the approach of letting part of the parameters characterizing the conditional
distribution of yit given xit to vary across i and over t , f (yit | xit ,�,�it ),
where � is assumed identical over i and t and �it vary across i and over t .
To control the impact of �it on the inference of �,�it is further decomposed
into components that are individual-specific, 	 i , and component that are time-
specific, � t . Is this the best way to model unobserved heterogeneity? When time
series dimension or cross-sectional dimension becomes large, is the assumption
of time-invariance in 	 i or individual-invariance of � t still reasonable? Further,
the function of a variable could have very different meanings at different time.
For instance, Friedman (1969) found that there was a stable relation between the
M2 and nominal GDP in the 1960s. However, with technological development
there are many financial instruments today that can also perform the function
of currency and demand deposits. Do today’s M2 still have the same economic
implication as M2 in the 1960s or should these close substitutes be also included
in the analysis of money?

There is also an issue of whether to treat the unobserved heterogeneity
as fixed and different (fixed effects) or as random draws from a common
(conditional) distribution (random effects). In general, if the unobserved het-
erogeneity can be viewed as random draws from a common population, then
it is more appropriate to postulate a random-effects model. If the unobserved
heterogeneity is correlated with explanatory variables or comes from heteroge-
neous population, then it is more appropriate to postulate a fixed-effects model
unless the interaction between observables and unobservables are known to
investigators. The fixed-effects formulation makes inference conditional on the
specific effects; hence it has the advantage of not requiring one to postulate
the distribution of the effects. However, there is also a loss of efficiency in
conditional inference because of the loss of degrees of freedom in estimating
the specific effects. It may even introduce incidental parameters problem if the
dimension of the effects increase at the same rate as sample size (Chapters 4, 7,
and 8). The advantages of a random effects specification is that the probability
function of the effects in general depends only on a finite number of param-
eters and there is no incidental-parameter problem, and efficient inference is
possible. The disadvantage is that it requires explicit knowledge about the way
in which observables and unobservables interact. In general, the advantages of
fixed effects formulation are the disadvantages of random effects formulation
and the disadvantages of the fixed effects formulation are the advantages of
the random effects formulations (e.g., see the discussions in Chapters 3 and 4).
Unfortunately, without explicit knowledge about the way in which observables
and unobservables interact it is hard to decide which approach to adopt.

13.2.2 Controlling the Impact of Unobserved Heterogeneity
in Nonlinear Models

There is a very fundamental difference between the linear and nonlinear models.
If a model is linear, one can condition the effects on the observables and apply
a minimum distance type estimator. If the model is nonlinear, the assumptions
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for the conditional distribution of the effects need to be very specific. However,
the effects are unobservable. It is hard to specify the conditional distribution of
the effects without explicit assumptions about how the observables and unob-
servables interact. Moreover, the derivation of random-effect estimator often
would involve multidimensional integration which can be very complicated
even with today’s computing capacity.

If the effects are treated as fixed, and if the number of unknown specific
effects increases at the same rate as the sample size, attempts to estimate the
specific effects creates the incidental-parameter problem. For general nonlinear
models, there does not exist a generally applicable framework to implement
the Neyman–Scott (1948) principle of separating the estimation of the com-
mon coefficients from the estimation of the specific effects. To devise consistent
estimators of the structural parameters, one has to exploit the specific structure
of a nonlinear model. The three most commonly used approaches are: (1) the
conditional approach that conditions on the minimum sufficient statistics of
the effects, (2) the semiparametric approach that exploits the latent linear struc-
ture of a model (Chapters 7 and 8), and (3) reparameterization of the model so
that the information matrix of the reparameterized individual effects are uncor-
related with the reparameterized structural parameters (Lancaster 2001). The
first two approaches apply classical sampling inference to a model that no longer
involve incidental parameters. The transformation of a model containing inci-
dental parameters to a model without incidental parameters is obtained through
exploiting the specific structure of the original model. The third approach
is from a Bayesian perspective. It can be shown that when the information
matrix of the structural (or common) parameters are orthogonal to the inciden-
tal (or individual-specific) parameters, taking a uniform prior for the incidental
parameter reduces the bias (Arellano and Bonhomme 2009). However, for most
nonlinear models there does not appear that simple transformations to achieve
information orthogonality exist. Whether any of these approaches will yield
consistent estimators has to be considered case by case. Moreover, even in
the case that consistent estimators exist, the conditions imposed on the data
are so restrictive that hardly any data set can meet them (e.g., Chapter 7,
Section 7.5).1

13.2.3 Modeling Cross-Sectional Dependence

If panel data are not conditional independent across cross-sectional units, ignor-
ing cross-sectional dependence can lead to misleading inference. Contrary to
time series observations there is no natural ordering of cross-sectional units.
Chapter 9 surveyed some of the popular approaches that have been tried econo-
metrically. Each approach has its merits and also limitations. In particular, in

1 For instance, in the dynamic logit model considered in Chapter 7, Section 7.5, the conditions for
the existence of consistent estimator requires at least (1) four times series observations for each
individual; (2) indivdiuals switch position during the two intermediate periods; and (3) the value
of the exogenous variable has to be equal in period 3 and period 4.
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the case when N is large and T is small or the model is nonlinear, methods to
take account cross-sectional dependence remain to be developed.

13.2.4 Multidimensional Asymptotics

This monograph focuses on panels that contain a cross-sectional dimension
(N ) and a time-series dimension (T ). The majority of the discussions are on
the case that there are a few observations in one dimension (usually the time
dimension) and a great many observations in another dimension (usually the
cross-sectional dimension), but there are panels where N and T are of similar
magnitude. It is important to understand the properties of inferential procedures
when a panel with only one dimension observations that are large or a panel
that both or multidimensional observations are large, say both N and T → ∞,
and the relative speed of their increase. On the basis of this information, one
can then determine which parameters can, and which parameters cannot, be
consistently estimated from a given panel or where the asymptotic bias comes
from. For instance, in a linear dynamic model with the error composed of the
sum of two components, one being individually time-invariant and the other
being independently distributed, then the individual time-invariant effects can
be eliminated by differencing successive observations of an individual. We can
then use lagged dependent variable (of sufficiently high order) as instruments
for the transformed model to circumvent the issues of the serial dependence of
the residual (Chapter 4, Sections 4.3 and 4.5). When T is fixed and N is large,
the resulting estimator is consistent and asymptotically normally distributed.
However, when T increases with N and T

N
→ c �= 0 as N → ∞, although the

resulting estimator is consistent, there is an asymptotic bias term when the
estimator is multiplied by the scale factor,

√
NT , that needs to be corrected

to obtain asymptotic valid inference (e.g., Chapters 4 and 10, Appendix 4B or
Alvarez and Arellano 2003; Phillips and Moon 1999).

Computing speed and storage capability have enabled researchers to collect,
store and analyze data sets of very high dimensions. Multidimensional panel
will become more available. Classical asymptotic theorems under the assump-
tion that the dimension of data is fixed (e.g., Anderson (1985)) appear to be
inadequate to analyze issues arising from finite sample of very high dimensional
data (e.g., Bai and Silverstein 2004). For example, Bai and Saranadasa (1996)
proved that when testing the difference of means of two high-dimensional
populations, Dempsters (1959) nonexact test is more powerful than Hotellings
(1931) T 2-test even though the latter is well defined. Many interesting and
important issues remain to be worked out. Statistic theorems providing insight
to finite sample issues for high dimensional data analysis can be very useful to
economists and/or social scientists (e.g., Bai and Silverstein 2006).

13.2.5 Sample Attrition

Panel data follows a number of individuals over time. As Table 1.1 shows, as
time goes on, a number of individuals drop out. If sample attrition is random,
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it does not pose serious issues on panel data model, as one can simply focus on
the remaining samples that have complete history. If a test (Chapter 11, Sec-
tion 11.1) indicates that sample attrition is behaviorably related, ignoring the
attrition issues could result in misleading inference. Baltagi and Song (2006),
and Hirano et al. (2001) show the potential of using refreshment samples to dis-
tinguish between various forms of attrition. However, to properly take account
of sample attrition, one will have to have explicit knowledge of why individuals
drop out. Moreover, as Hausman and Wise (1977) (see Chapter 8, Section 8.2)
or Ridder (1990) illustrates, computationally it could be a formidable task to
take into account the sample attrition issue.

13.3 A CONCLUDING REMARK

This monograph hopes to provide an overview of the many statistical tools
developed to analyze panel data and demonstrate the many advantages panel
data may possess. In choosing the proper method to exploit the richness and
unique property of panel data, it is helpful to keep several factors in mind.
First, what advantages do panel data offer us in adapting economic theory for
empirical investigation over data sets consisting of a single cross section or
time series? Second, what are the limitations of panel data and the econometric
methods that have been proposed for analyzing such data? Third, the usefulness
of panel data in providing particular answers to certain issues depends critically
on the compatibility between the assumptions underlying the statistical infer-
ence procedures and the data-generating process. Fourth, when using panel
data, how can we increase the efficiency of parameter estimates? “Analyzing
economic data requires skills of synthesis, interpretation and empirical imag-
ination. Command of statistical methods is only a part, and sometimes a very
small part, of what is required to do a first-class empirical research” (Heckman
2001). Panel data are no panacea. Nevertheless, if “panel data are only a little
window that opens upon a great world, they are nevertheless the best window
in econometrics” (Mairesse 2007).
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60. Berlin: Springer-Verlag.

Antweiler, W. (2001). “Nested Random Effects Estimation in Unbalanced Panel Data.”
Journal of Econometrics, 101, 295–313.

Arellano, M. (2003). Panel Data Econometrics. Oxford: Oxford University Press.
Arellano, M., and S. Bond. (1991). “Some Tests of Specification for Panel Data: Monte

Carlo Evidence and an Application to Employment Equations.” Review of Economic
Studies, 58, 277–97.

Arellano, M., and S. Bonhomme. (2009). “Robust Priors in Nonlinear Panel Data
Models.” Econometrica, 77, 489–536.

Arellano, M., and O. Bover. (1995). “Another Look at the Instrumental Variable Esti-
mation of Error-Components Models.” Journal of Econometrics, 68, 29–51.

Arellano, M., and R. Carrasco. (2003). “Binary Choice Panel Data Models with Prede-
termined Variables.” Journal of Econometrics, 357–81.
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Data, 3rd ed., edited by L. Mátyás and P. Sevestre, pp. 547–602. Berlin: Springer.
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Honoré, B.E., and J.L. Powell. (1994). “Pairwise Difference Estimators of Censored
and Truncated Regression Models.” Journal of Econometrics, 64, 241–78.
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