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Thermodynamic uncertainty relations (TURs) place strict bounds on the fluctuations of thermodynamic
quantities in terms of the associated entropy production. In this Letter, we identify the tightest (and
saturable) matrix-valued TUR that can be derived from the exchange fluctuation theorems describing the
statistics of heat and particle flow between multiple systems of arbitrary dimensions. Our result holds for
both quantum and classical systems, undergoing general finite-time nonstationary processes. Moreover, it
provides bounds not only for the variances, but also for the correlations between thermodynamic quantities.
To demonstrate the relevance of TURs to the design of nanoscale machines, we consider the operation of a
2-qubit SWAP engine undergoing an Otto cycle and show how our results can be used to place strict bounds
on the correlations between heat and work.
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Introduction.—Over the last decades, technological devel-
opments have led to the creation of artificial meso- and
nanoscopic heat engines [1,2], with applications ranging
from nanojunction thermoelectrics [3] to quantum dots [4].
Understanding the fundamental principles ruling over the
nonequilibrium physics of such devices is therefore one of
the most sought-after challenges nowadays. One of the key
features of these nonequilibrium processes is that they are
always accompanied by an irreversible production of
entropy, and as the systems become smaller, the fluctuations
in the entropy production become significant. This requires
one to treat the entropy production Σ as a random variable
distributed according to a certain probability distribution
PðΣÞ. These distributions satisfy a set of fundamental
symmetry relations, known as fluctuation theorems (FTs)
[5–17], which can generally be expressed as PðΣÞ=
P̃ð−ΣÞ ¼ eΣ, where P̃ðΣÞ denotes the probability distribu-
tion of the time-reversed process. FTs represent a refinement
of the second law of thermodynamics, which at the stochastic
level is recast in the form hΣi ≥ 0. The additional informa-
tion they carry, however, can also be used to characterize
systems arbitrarily far from equilibrium, which generated
enormous interest acrossmany fields of research [3,4,18–21].
More recently, another set of powerful results called

thermodynamic uncertainty relations (TURs) have been
discovered [22–25]. TURs impose strict restrictions on the
fluctuations of thermodynamic currents (e.g., heat, par-
ticles, etc.). Letting Q denote any such integrated current
(net charge) exchanged during an out-of-equilibrium proc-
ess over some generic time interval, the TURs bound the
signal-to-noise ratio (SNR) of Q according to

VarðQÞ
hQi2 ≥

2

hΣi ; ð1Þ

where VarðQÞ ¼ hQ2i − hQi2 denotes the variance, hQi is
the average charge, and hΣi is the average entropy produc-
tion. Equation (1) expresses a trade-off between process
precision, quantified by the SNR, and dissipation, quantified
through the entropy production. To reduce fluctuations,
one must pay the inevitable price of dissipation. This has
important ramifications for the operation of microscopic
autonomous engines [24], where fluctuations in the output
power may be significant.
TURs were originally discovered in the context of non-

equilibrium steady states of classical time-homogeneous
Markov jump processes satisfying local detailed balance
[22–24]. Further refinements and extensions have since been
found for finite-time processes [25–27], periodically driven
systems [28–30], quantum systems in linear response [31],
and using geometrical arguments based on the manifold of
nonequilibrium steady states [32].
A natural question that emerges is whether TURs, being

inequalities, can be viewed as a consequence of FTs, just
like the second law hΣi ≥ 0. Explorations in this direction
began quite recently, starting with symmetric work pro-
tocols [30,33,34] and were subsequently generalized to
include measurement feedback [35,36]. In this Letter, we
derive a new type of saturable TUR for FTs stemming from
heat and particle exchange between multiple systems
[Fig. 1(a)]. This class of problems is particularly relevant,
as it encompasses microscopic autonomous engines,
which can be implemented in thermoelectric devices
[37,38] and are now starting to be pursued in controlled
quantum platforms [39–45]. A set of charges Q1;…;Qn
(energy, work, heat, particles, etc.) in this case satisfies the
so-called exchange fluctuation theorems (EFTs) [11–13]
(see also [14,15])
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PðQ1;…;QnÞ
Pð−Q1;…;−QnÞ

¼ e
P

i
AiQi ; ð2Þ

where Ai are thermodynamic affinities associated with
each charge. The corresponding entropy production is
Σ ¼ P

i AiQi.
As our first main result, we show that the EFT (2) implies

a generalized TUR for any charge Qi of the form

VarðQiÞ
hQii2

≥ fðhΣiÞ; ð3Þ

where fðxÞ ¼ csch2½gðx=2Þ�, cschðxÞ is the hyperbolic
cosecant, and gðxÞ is the function inverse of x tanhðxÞ.
We prove that this bound represents the tightest saturable
trade-off bound for the SNR of any observable satisfying
(2), given hQii. In fact, we are also able to provide an
explicit form for the probability distribution PðQ1;…;QnÞ
saturating (3). This is to be compared, for instance, to the
bounds derived in [30,33–35], which are looser but cannot
be saturated. On the other hand, a series expansion of fðxÞ
around x ¼ 0 yields fðxÞ ≃ 2=x − 2=3, so that for hΣi ≪ 1
one recovers the bound (1). The bound (1), however, does
not necessarily apply to all scenarios involving the
exchange fluctuation theorem and can be violated. Our
bound, on the other hand, is always looser than (1) and
always holds in any EFT scenario.
Our framework also allows us to go further and construct

a matrix-valued TUR for the covariance matrix Cij ¼
CovðQi;QjÞ ¼ hQiQji − hQiihQji between different
charges, similar in spirit to Refs. [27,31,32]. In this case,
the bound becomes

C − fðhΣiÞqqT ≥ 0; ð4Þ

where q ¼ ðhQ1i;…; hQniÞ and the inequality is to be
interpreted as a condition on the positive semidefiniteness
of the matrix on the left-hand side. This bound, therefore,
not only places restrictions on the fluctuations of currents,
but also on their correlations.
Equations (3) and (4) are the main results of this Letter.

They hold for (i) quantum and classical systems of arbitrary
dimensions and (ii) undergoing arbitrarily finite-time proc-
esses far from equilibrium. The steady-state scenario is also
contemplated as a particular case in which the systems
become macroscopically large [12]. Below, we start by
reviewing the physical scenarios where our results are
valid. We then provide the details of the proof and discuss
their physical consequences. To illustrate their usefulness,
we then apply them to a 2-qubit SWAP engine functioning as
a nanoscale Otto cycle.
Exchange fluctuation theorem scenario.—We consider

the scenario depicted in Fig. 1(a) and studied in Refs. [11–
15]. An arbitrary number M of quantum systems are
initially prepared in a factorized grand-canonical state

ρ ¼ Q
i Z

−1
i exp ½−βiðHi − μiN iÞ�, where Hi, N i are the

local Hamiltonians and particle number operators, and βi,
μi are the inverse temperature and chemical potential of the
ith subsystem [46]. The quantum systems are put in contact
at time t ¼ 0 up to a time τ by means of an arbitrary unitary
Û incorporating the effect of all interactions between the
subsystems, as well as any possible external driving. The
only assumption is that the external drives are time
symmetric, so that the unitary related to the time-reversed
process is simply Û†. Classical systems can be treated in a
similar way [11].
As a result of this time-dependent protocol, the sub-

systems exchange both energy and particles with each
other; we denote by QEi ¼ ΔEi and QNi

≡ ΔN i the
integrated energy and particle currents during the time
window ð0; τÞ. Following [12,15], the full statistics of these
quantities can be shown to satisfy the FT

PðQE1 ;…;QEM ;QN 1
;…;QNM

Þ
Pð−QE1 ;…;−QEM ;−QN 1

;…;−QNM
Þ ¼ e

P
i
βiðQEi

−μiQN i
Þ;

ð5Þ
which is of the form (2).
Variations of Eq. (5) may also be naturally constructed.

Consider, for instance, the particularly relevant case of
M ¼ 2 subsystems. Particle conservation implies that it
suffices to consider the particle charge QN ¼ ΔN 2 ¼
−ΔN 1 and hence work only with PðQE1 ;QE2 ;QN Þ. In
addition, it may be of interest to change variables and use
as thermodynamic quantities a heat charge QH ¼ −ΔE1

and a work charge QW ¼ ΔE1 þ ΔE2. The EFT for the
joint distribution (5) then becomes [47,48]

T1, µ1

T3, µ3 T2, µ2

(a) (b)

FIG. 1. (a) Exchange fluctuation theorem scenario: A system
consisting of M (here M ¼ 3) subsystems is allowed to interact
by means of a unitary U. As a result, the subsystems will
exchange energy and particles, amounting to net transferred
charges (integrated currents) of energy QEi and particles QN i

.
(b) For microscopic systems, any generic Qi will be a stochastic
variable and fluctuate from one repetition of the experiment to the
other, represented pictorially by the jagged gray curve. This is to
be contrasted with the average charge hQii shown as a dashed
line. The fluctuations in Qi are represented by the variance
VarðQiÞ, which we illustrate here by the red interval. (Inset) A
plot of the function fðxÞ on the right-hand side of Eq. (3),
compared with the traditional bound 2=x that appears in Eq. (1).
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PðQH;QW;QN Þ
Pð−QH;−QW;−QN Þ ¼ eδβQHþβBQWþδβμQN ; ð6Þ

where δβ ¼ βB − βA and δβμ ¼ βAμA − βBμB are the cor-
responding affinities. This result, as stated, does not assume
any form of weak coupling or strict energy conservation
(i.e., in general, ΔE1 ≠ −ΔE2). But if that is the case,
then no work is performed and it suffices to deal with
PðQH;QN Þ.
Derivation of the TUR.—We now turn to the derivation

of our TUR bound. The starting point is a general joint
probability distribution PðQ1;…;QnÞ satisfying (2). We
first perform a change of variables to Σ ¼ P

i AiQi and
Z ¼ P

i ziQi, where zi are a set of auxiliary variables.
The corresponding probability distribution PðΣ; ZÞ ¼
hδðΣ −

P
i AiQiÞδðZ −

P
i ziQiÞi will then have the same

symmetry as Eq. (2) [49]. Namely,

PðΣ; ZÞ
Pð−Σ;−ZÞ ¼ eΣ: ð7Þ

Our bound is now entirely based on the following simple
question: for fixed hΣi and hZi, what is the probability
distribution PðΣ; ZÞ, satisfying Eq. (7), that has the smallest
possible variance VarðZÞ? We call this the minimal
distribution. Our main technical contribution can then be
summarized by the following theorem:
Theorem (“TUR de force”).—For fixed finite hΣi and

hZi, the probability distribution PðΣ; ZÞ satisfying (7), with
the smallest possible variance (the minimal distribution), is
the distribution

PminðΣ; ZÞ ¼
1

2 coshða=2Þ fe
a=2δðΣ − aÞδðZ − bÞ

þ e−a=2δðΣþ aÞδðZ þ bÞg; ð8Þ

where the values of a and b are fixed by hΣi ¼ a tanhða=2Þ
and hZi ¼ b tanhða=2Þ.
The proof is given in the Supplemental Material [50].

We also note that a similar distribution also appears in
Ref. [33]. For the minimal distribution (8), the variance of Z
is given by

VarðZÞmin ¼ hZi2fðhΣiÞ; ð9Þ

where fðxÞ is the function discussed below Eq. (3) and
VarðZÞmin is the variance of Z calculated with respect to
Pmin in Eq. (8). Proving that this distribution is minimal
hence implies that

VarðZÞ ≥ fðhΣiÞhZi2 ð10Þ

for any other probability distribution.
Matrix-valued TUR.—We are now in the position to

complete the derivation of our TUR. The bound (10) holds

for a general combination Z ¼ P
i ziQi of the charges, with

arbitrary parameters zi. Let us then write hZi ¼ P
i ziqi,

where qi ¼ hQii, and VarðZÞ ¼ P
ij Cijzizj, where Cij ¼

CovðQi;QjÞ. Equation (10) can then also be written as

zT ½C − fðhΣiÞqqT �z ≥ 0:

Since this must be true for any set of numbers zi, it follows
that the matrix inside the parentheses must itself be positive
semidefinite. We therefore finally arrive at our main result
in Eq. (4); viz., C − fðhΣiÞqqT ≥ 0. The positive semi-
definiteness of this matrix implies that the diagonal entries
must also be non-negative. This then leads to Eq. (3).
In addition, a condition on the covariances may be

obtained by using the fact that, ifG is a positive semidefinite
matrix, then −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
GiiGjj

p
≤ Gij ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffi
GiiGjj

p
. Applying this to

Eq. (4) immediately leads to

fðhΣiÞqiqj −Mij ≤ Cij ≤ fðhΣiÞqiqj þMij; ð11Þ

where M2
ij ¼ ½VarðQiÞ − fðhΣiÞq2i �½VarðQjÞ − fðhΣiÞq2j �.

In addition to their magnitude, particularly relevant infor-
mation is also contained in the sign of the covariances
Cij ¼ CovðQi;QjÞ. When Cij is positive (negative), values
of Qi above average imply values of Qj above (below)
average.
It is possible to find a simple criteria determining when

CovðQi;QjÞ will have a well-defined sign (namely, the
same as that of qiqj). This will occur whenever the lower
and upper bounds in Eq. (11) have the same sign, which
amounts to checking whether ðfqiqjÞ2 ≥ M2

ij. Using the
definition of Mij, one then finds

q2i
VarðQiÞ

þ q2j
VarðQjÞ

≥
1

fðhΣiÞ : ð12Þ

If this inequality is satisfied, then it is guaranteed that
sign CovðQi;QjÞ ¼ signqiqj.
Application to a microscopic engine.—To illustrate our

results, we consider the application of our bound to an engine
composed of 2 qubits,with energygaps ϵA and ϵB, interacting
by means of a SWAP unitary Û ¼ 1

2
ð1þ σ̂A · σ̂BÞ, where σ̂i’s

are the Pauli matrices [51]. The nonresonant nature of the 2
qubits means that there will be, in general, a finite amount
of work involved. As shown in Ref. [52], this work can
physically be associated with the cost of turning the
interaction between A and B on and off. It is not necessary
to specify precisely how this takes place, however. All we
need is the form of the final unitary Û.
After the qubits interact, one may reset their states by

coupling them individually to two heat baths at different
temperatures and allowing them to fully thermalize again
[see Fig. 2(a)]. Repeating the procedure sequentially then
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leads to a stroke-based engine operating at the Otto
efficiency [53]. We assume A is in contact with the hot
bath, so βA < βB. The change in energy of qubit Amay thus
be associated with the heat dumped into the hot reservoir,
so we define QH ¼ −ΔEA. Similarly, the heat dumped to
the cold reservoir is QC ¼ −ΔEB, whereas their mismatch
is precisely the work,W ¼ −QH −QC ¼ ΔEA þ ΔEB. The
engine will thus be characterized by the stochastic variables
QH and W. The corresponding probability distribution
PðQH;WÞ, whose calculation details are presented in the
Supplemental Material [50], will satisfy the EFT

PðQH;WÞ
Pð−QH;−WÞ ¼ eðβB−βAÞQHþβBW; ð13Þ

which is clearly of the form (6), so that our basic framework
applies.
Figure 2(b) shows hWi, hQHi, and hΣi¼ðβB−βAÞhQHi þ

βBhWi as a function of ϵB=ϵA with fixed βA=βB ¼ 1=2. If
ðϵB=ϵAÞ < ðβA=βBÞ, the device operates as a refrigerator,
consuming work from an external agent to make heat flow
from the cold to the hot bath. Instead, if ðβA=βBÞ <
ðϵB=ϵAÞ < 1, it operates as a heat engine extracting useful
work (hWi < 0). Finally, if ðϵB=ϵAÞ > 1, the device operates
as an accelerator, consuming external work to increase the
heat flow from hot to cold.
In Figs. 2(c) and 2(d) we present results for the

fluctuations of QH and W, respectively. The results are
compared with the bound (3) as well as the bound (1),
included for comparison. As previously discussed, the
bound (1) can be violated depending on the value of
ϵB=ϵA. The bound (3), on the other hand, is minimal and
thus can never be violated.
Finally, in Fig. 2(e) we present results for the covariance

CovðW;QHÞ. Studies on the correlations between thermo-
dynamic quantities are still incipient [31]. As can be seen in
the image, in both the heat engine and the refrigerator
regimes, the two quantities are negatively correlated,
whereas for the accelerator they become positively corre-
lated. The covariance in this case is bounded by the interval
in Eq. (11), which is represented by the two orange lines
in Fig. 2(e). For all parameters of this model, in the
refrigerator regime the two bounds are always negative.
Equation (12), establishing the sign of CovðW;QHÞ, is
always satisfied only in the refrigerator regime. Thus, in
this regime, CovðW;QHÞ < 0 and work and heat are
always anticorrelated. In the other operation regimes, such
a general claim cannot be made.
Comparison with other TURs.—As discussed in the

Introduction, an expansion of Eq. (3) when hΣi ≪ 1 leads
to the original TUR Eq. (1). These two bounds, however,
must be compared with care, as they are derived for different
physical scenarios. The original TUR (1) was obtained for
time-homogeneous Markovian jump processes. Our bound,

on the other hand, was derived assuming only the EFT.
The two scenarios do not coincide. Indeed, as shown in
Fig. 2(c), the bound (1) can actually be violated in the EFT
case. One situation for which the two scenarios could
coincide is if the subsystems are macroscopically large.
In this case, there may exist intermediate time intervals for
which the exchange of energy will resemble that of a
nonequilibrium steady state [54].

(a)

(d) (e)

(c)(b)

FIG. 2. Fluctuations of heat and work in a 2-qubit SWAP engine.
(a) Schematic operation of the engine: 2 qubits thermalize with
two baths at different temperatures. Then they are uncoupled
from the baths and allowed to interact with each other by means
of a SWAP operation, which produces a certain amount of workW.
Repeating this procedure sequentially allows the device to
operate as either a refrigerator, an engine, or an accelerator.
(b) Averages of the work hWi, heat to the hot bath hQHi, and
entropy production hΣi as a function of ϵB=ϵA for βA=βB ¼ 1=2.
The different regimes of operation of the engine are separated by
dashed vertical lines. (c) Fluctuations in the heat to the hot bath
VarðQHÞ. The orange line represents our bound (3) and the green-
dashed line represents the bound (1), included for comparison.
For small values of the detuning ϵB=ϵA, (i.e., in the refrigerator
regime), one can see that the bound (1) is violated (the black line
lies below the green-dashed one), while (3) is always valid.
(d) Same but for the fluctuations in the work VarðWÞ. (e) The
correlations between heat and work, as measured by the covari-
ance CovðW;QÞ. The two orange lines represent the bounds in
Eq. (11).
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It is also important to compare our bound with the one
derived in Refs. [30,33], which, translated into our nota-
tion, implies replacing the function fðxÞ in Eq. (3) with

VarðQiÞ
hQii2

≥
2

ehΣi − 1
: ð14Þ

This bound is looser than both the original TUR (1) and our
generalized TUR (3). Moreover, relevant to the present
Letter, this bound was obtained by a different route than the
one employed here, by means of a chain of inequalities
[34]. However, as we have just proved, the bound (3) is the
tightest possible bound and can only be saturated for a
minimal distribution. As a consequence, the bound (14) can
never be saturated. Indeed, in Ref. [35], by the same authors
as in [34], the bound (14) was replaced by a bound
structurally identical to Eq. (3).
Finally, we mention the connection with Ref. [32], where

some of us have considered the nonequilibrium steady state
of a system connected to two infinite baths, a scenario
where the original TUR (1) can also be violated [55,56].
As this scenario does not satisfy an EFT, in Ref. [32] we
approached the problem using the Zubarev statistical
ensemble, which allowed us to show that a TUR of the
form (1) also exists, but looser by a numerical factor.
The two approaches therefore deal with different scenarios,
but are both are motivated by the same drive to generalize
TURs beyond their original formulation and into the
quantum regime.
Conclusions.—In this Letter, we have rigorously derived

a new matrix-valued TUR solely as a consequence of EFT.
This new trade-off represents the tightest bound achievable
on both the signal-to-noise ratio of any integrated current
and for the covariance matrix between any pair of currents.
Our derivation also allowed us to explicitly find the
distribution saturating this ultimate bound. This result
helps to answer in the affirmative the question of whether
TURs, being inequalities, can also be viewed as a conse-
quence of fluctuation theorems, much like the second law is
obtained through Jensen’s inequality. It hence places an
important cornerstone in the direction of understanding and
controlling nonequilibrium thermodynamic processes.
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